Amendment 13 to the Fishery Management Plan for the Crustacean Fisheries of the Western Pacific Region

Total Page:16

File Type:pdf, Size:1020Kb

Amendment 13 to the Fishery Management Plan for the Crustacean Fisheries of the Western Pacific Region Amendment 13 to the Fishery Management Plan for the Crustacean Fisheries of the Western Pacific Region Management of Heterocarpus spp. Fisheries, Including Federal Permitting and Reporting Requirements Including an Environmental Assessment November 21, 2008 Western Pacific Regional Fishery Management Council 1164 Bishop St., Suite 1400 Honolulu, HI 96813 Telephone (808) 522-8220 Fax (808) 522-8226 Photo Credits Photo by James F. Schlais From “Shrimping Hawaiian Style.” O`ahu Magazine, volume 7, number 2, March-April 1983, p. 17. Included caption: “Hawaiian Deep Sea Shrimp are sorted and tailed by crew members aboard the F/V EASY RIDER TOO, then boxed and frozen, a finished product ready for the consumer. The scientific name for the shrimp most commonly (caught) is Heterocarpus laevigatus.” ii SUMMARY Several deepwater shrimp species of the genus Heterocarpus occur in the Western Pacific Region, primarily at depths between 350 m and 1200 m. Also referred to as pandalid shrimp or smooth nylon shrimp, they are harvested commercially for their sweet flavor and tender texture, and mainly for sushi markets in Asia, Europe, and the U.S. Worldwide, a deepwater shrimp fishery does not seem to have started until the early 1960s. Since then, the global capture of deepwater shrimp has increased from only a few hundred tons in the early 1960s to a high of over 35,000 tons in 2000. In the Western Pacific region, this fishery has operated intermittently, including some operations in Hawaii that have operated occasionally since the 1960s. Other places in the region such as Guam have attempted a small scale fishery for deepwater shrimp in the 1970’s and Commonwealth of the Northern Mariana Islands (CNMI) has also had a deepwater shrimp fishery during the mid-1990s, around Saipan and Tinian. In general, these operations have consisted of one to four vessels and have been rather sporadic. Gear loss and a short shelf life and history of inconsistent quality, have led to fluctuating market demand. Also, known fishing areas tend to be limited and subject to reduced catch rates following initially high harvests. At this point, vessels leave the fishery for two to five years while the biomass increases enough to make the fishery profitable again. The rapid appearance and disappearance of these operations as well as depletion of an area have become a concern for fishery and resource managers. The preferred alternative in this amendment would add Heterocarpus spp. as Management Unit Species (MUS) under the Crustaceans FMP, with Federal permitting and reporting requirements. Many species of the genus Heterocarpus are caught in the fishery and difficulties in identification and lack of information makes it sensible to include all species in the designation. In this manner, information on the harvests (including bycatch) of these species would be collected and made available to fishery scientists and managers. This would result in an improved understanding of these fisheries and their impact on marine resources, including the larger marine ecosystem. Although resource concerns for Heterocarpus spp. have not arisen to date, because it is not an MUS there are no mechanisms in place to implement management measures should they become necessary. In addition to the preferred alternative, this document examines several alternatives for the management of Heterocarpus spp. in the Western Pacific Region. It also designates Essential Fish Habitat (EFH) for Heterocarpus spp. as required under the Magnuson- Stevens Fishery Conservation and Management Act (MSA). Amendment 13, including an Environmental Assessment, will be made available for public review and comment from Council and through www.regulations.gov. NMFS will consider public comments on the EA that are received within 60-day public comment period for Amendment 13. iii Table 1: Summary of the Alternatives Alternative Description of the Alternative Alternative 1- No Action Alternative 1 would maintain the current list of Crustacean Management Unit Species and would not add Heterocarpus spp. to the MUS list. No Federal permits or reporting requirements would be implemented. Alternative 2-Add Heterocarpus spp. as Alternative 2 would add the deepwater an MUS shrimp genus, Heterocarpus spp., as a Management Unit Species under the Crustaceans FMP. Alternative 3-Add Heterocarpus spp. as Alternative 3 would add the deepwater an MUS with Federal permitting and shrimp genus, Heterocarpus spp., as a reporting requirements (Preferred) Management Unit Species under the Crustaceans FMP and would require any persons fishing for Heterocarpus spp. in EEZ waters around the Western Pacific Region to obtain a Federal permit and to submit Federal logbooks to the National Marine Fisheries Service (NMFS). iv TABLE OF CONTENTS SUMMARY....................................................................................................................... iii TABLE OF CONTENTS.....................................................................................................v List of Tables..................................................................................................................vi List of Figures.................................................................................................................vi List of Acronyms........................................................................................................... vii 1.0 INTRODUCTION ........................................................................................................1 1.1 Responsible Agencies................................................................................................1 1.2 Overview of the Crustaceans Fishery Management Plan and Amendments.............1 1.3 Roles and Responsibilities for the Proposed Crustaceans FMP Management Measures...........................................................................................................................5 1.4 Decision to be Made..................................................................................................5 1.5 Public Review Process and Schedule ........................................................................5 1.6 List of Preparers.........................................................................................................6 1.7 Purpose and Need for Action.....................................................................................6 1.8 Management Objectives ............................................................................................7 2.0 MANAGEMENT ALTERNATIVES...........................................................................7 2.1 Description of the Alternatives..................................................................................7 2.1.1 Alternative 1- No Action.................................................................................... 7 2.1.2 Alternative 2-Add Heterocarpus spp. as an MUS ............................................. 7 2.1.3 Alternative 3-Add Heterocarpus spp. as an MUS and Federal permitting and reporting requirements (Preferred)............................................................................... 7 3.0 AFFECTED ENVIRONMENT....................................................................................8 3.1 Target Species............................................................................................................8 3.1.1 Ecology of Heterocarpus Shrimps..................................................................... 8 3.1.2 Potential Habitat and Occurrence of Heterocarpus in the Western Pacific Region ..........................................................................................................................9 3.1.3 Management Program ...................................................................................... 10 3.2 Fisheries...................................................................................................................10 3.2.1 Overview of Global Deepwater Shrimp Fishery.............................................. 10 3.2.2 Types of Fishing Gear Used............................................................................. 11 3.2.3 Deepwater Shrimp Fisheries in the Western Pacific Region ........................... 11 3.2.4 Processing of Deepwater Shrimp ..................................................................... 14 3.2.5 Estimated Management Costs ...............................................................................14 3.3 Protected Species.....................................................................................................15 3.3.1 Marine Mammals .............................................................................................. 15 3.3.2 Sea Turtles......................................................................................................... 18 3.3.3 Seabirds ............................................................................................................. 20 3.4 Essential Fish Habitat Identifications and Descriptions..........................................21 3.4.1 Background on the Essential Fish Habitat Requirement.................................. 21 3.4.2 General Distribution and Habitat Descriptions for Heterocarpus Species ...... 23 3.4.3 EFH Designations for Heterocarpus Species................................................... 24 4.0 ENVIRONMENTAL IMPACTS OF THE ALTERNATIVES..................................26 4.1 Impacts to Physical Environment, EFH, HAPC......................................................26
Recommended publications
  • Redescription of Heterocarpus Laevis A
    20 March 1985 PROC. BIOL. SOC. WASH. 98(1), 1985, pp. 237-242 REDESCRIPTION OF HETEROCARPUS LAEVIS A. MILNE EDWARDS (CRUSTACEA: DECAPODA: PANDALIDAE) Abstract. -Heterocarpus laevis was figured by A. Milne Edwards in 1883, based on material from Martinique. One other specimen has been recorded from off the Cayman islands. No written description was provided, and the species has not been recorded since. Based on fresh material from St. Croix, U.S. Virgin Islands, the species is figured and redescribed. Heterocarpus laevis is unique in this genus, for lacking lateral carapace carinae. A deepwater shrimp trapping survey was conducted by the second author at selected sites off St. Croix, U.S. Virgin Islands, in August 1982, as part of the Virgin Islands Fishery Development and Demonstration Project. Twenty-four hour-sets were made with polyethylene traps (Fathoms Plus, San Diego, California), 73 cm wide by 87 cm long by 30 cm high, baited with blue runner (Caranx crysos). Trap mesh size was reduced to 1.3 cm with an internal plastic netting. Each set consisted of six traps spaced at 20 m intervals with 5 kg weights before the first and after the last trap. Several deepwater shrimps and other invertebrate species were obtained from a depth of 460 m in the Salt River Canyon, off the north coast of St. Croix. These specimens were submitted to the first author for identification. Among these were six specimens which proved to be Heterocarpus laevis. In April 1883, Alphonse Milne Edwards published a set of 44 plates of new or rare crustaceans from various sources, including the Blake, and Travailleur and Talisman expeditions.
    [Show full text]
  • Zootaxa, Heterocarpus Tenuidentatus (Crustacea, Decapoda, Caridea
    Zootaxa 1200: 61–68 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1200 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Heterocarpus tenuidentatus, a new species of shrimp from the Solomon Islands (Crustacea, Decapoda, Caridea, Pandalidae) RÉGIS CLEVA1 & ALAIN CROSNIER2 1Département Milieux et Peuplements aquatiques Muséum national d’Histoire naturelle 61 rue Buffon, F-75231 Cedex 05, France. E-mail: [email protected] 2Département Systématique et Évolution Muséum national d’Histoire naturelle 55 rue Buffon, F-75231 Cedex 05, France. E-mail: [email protected] Abstract Heterocarpus tenuidentatus n. sp. is described from an ovigerous female collected off the Solomon Islands at a depth of between 814 and 980 meters. It is distinguished by a branchiostegal carina that extends along two thirds of the carapace, this being the only long, sharp carina on the lateral part of the carapace. It is also characterized by having the rostrum scarcely longer than half the length of the carapace, the small size of the upper rostral and postrostral teeth, the proportionally wide blade of the scaphocerite, and by being larger in size than any other Heterocarpus species. Key words: Crustacea, Decapoda, Caridea, Pandalidae, Heterocarpus, deep water, Pacific Ocean, Solomon Islands, new species. Introduction During the SALOMON 2 cruise of the IRD research vessel Alis off the Solomon Islands, organized jointly by the IRD (Institut de Recherche pour le Développement, ex ORSTOM) and the Muséum national d’Histoire naturelle, Paris (MNHN), a single specimen of Heterocarpus A. Milne Edwards, 1881, was caught between 814 and 980 meters deep. The specimen clearly belongs to a new species, based on several unique characters.
    [Show full text]
  • 10 Taxonomy, Biology and Distribution of Deep Sea Shrimps
    Taxonomy, Biology and 10 Distribution of Deep Sea Shrimps Rekha Devi Chakraborty Crustacean Fisheries Division Shellfish systematics is the most unique one in fisheries science in view of its importance and implications in diversity. The systematic zoology is the science that discovers names, determines relationships, classifies and studies the evolution of living organisms. It is an important branch in biology and is considered to be one of the major subdivisions of biology having a broader base than genetics, biochemistry and physiology. The shellfish includes two highly diversified phyla i.e. phylum Arthropoda and phylum Mollusca. These two groups are named as shellfishes because of the presence of exoskeleton made of chitin in arthropods and shells made of calcium in molluscs. These two major phyla are invertebrates. They show enormous diversity in their morphology, in the habitats they occupy and in their biology. Phylum Arthropoda includes economically important groups such as lobsters, shrimps, crabs. Taxonomical study reveals numerous interesting phenomena in shellfish phylogeny and the study is most indispensable for the correct identification of candidate species for conservation and management of our fishery resources and aquaculture practices. On the whole taxonomic study on shellfishes furnishes the urgently needed information about species and it cultivates a way of thinking and approaching of all biological problems, which are much needed for the balance and well being of shellfish biology as a whole. Training Manual on Species Identification Shrimp resources are available both from inshore and from offshore waters. As the fish resource from inshore waters remained static during the last two decades, fishing pattern underwent several changes in the previous decade, leading to the exploitation of deep sea resources either with deployment of large sized vessels or modified medium/small sized vessels.
    [Show full text]
  • Stable Isotopes Reveal Food Web Dynamics of a Data-Poor Deep-Sea Island Slope Community
    Food Webs 10 (2017) 22–25 Contents lists available at ScienceDirect Food Webs journal homepage: www.journals.elsevier.com/food-webs Stable isotopes reveal food web dynamics of a data-poor deep-sea island slope community Oliver N. Shipley a,b,c,⁎, Nicholas V.C. Polunin a, Steven P. Newman a,d, Christopher J. Sweeting a, Sam Barker e, Matthew J. Witt e,EdwardJ.Brooksb a School of Marine Science & Technology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK b Shark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, PO Box EL-26029, Bahamas, c School of Marine and Atmosphere Sciences, Stony Brook University, 11780, NY, USA d Banyan Tree Marine Lab, Vabbinfaru, Kaafu Atoll, Maldives e The Environment and Sustainability Institute, University of Exeter Penryn Campus, Cornwall TR10 9EZ, UK article info abstract Article history: Deep-sea communities are subject to a growing number of extrinsic pressures, which threaten their structure Received 6 December 2016 and function. Here we use carbon and nitrogen stable isotopes to provide new insights into the community struc- Received in revised form 20 January 2017 ture of a data-poor deep-sea island slope system, the Exuma Sound, the Bahamas. A total of 78 individuals from Accepted 3 February 2017 16 species were captured between 462 m and 923 m depth, and exhibited a broad range of δ13C(9.45‰)andδ15N Available online 12 February 2017 (6.94‰). At the individual-level, δ13C decreased strongly with depth, indicative of shifting production sources, as fi δ15 Keywords: well as potential shifts in community composition, and species-speci c feeding strategies.
    [Show full text]
  • Remote Camera and Trapping Survey of the Deep-Water Shrimps Heterocarpus Laevigatus and H
    Remote Camera and Trapping Survey of the Deep-water Shrimps Heterocarpus laevigatus and H. ensifer and the Geryonid Crab Chaceon granulatus in Palau W. B. SAUNDERS and LEE C. HASTIE Introduction persal, and depth ranges, as well as scale deep-water shrimp fishery in 3 population characteristics such as size­ Palau (Saunders et aI., 1989 ). Deep-water bottom-dwelling com­ distribution, sex ratios, etc. More so­ Procedures munities of the Indo-Pacific are not phisticated analyses of larger trapping well known, owing to their relative data bases have been used to describe Trapping inaccessibility. Most available infor­ reproductive biology, growth, and mation has been derived from trap­ mortality (Dailey and Ralston, 1986), A total of 103 traps was set between ping-based surveys which, for the and to calculate potential exploitable 170-900 m depth at five sites around most part, have been pilot efforts di­ biomass and sustainable yields under Palau (Fig. I) during May-October rected at evaluating economic poten­ intensive fishing pressure (Polovina et 1987 and 1988. The following trap de­ tial of deep-water shrimps (King, aI., 1985; Ralston, 1986; Moffitt and signs were used during the survey: I) 1980, 1982, 1984; Struhsaker and Polovina, 1987; Tagami and Ralston, A small collapsible trap (60 x 40 x 20 Aasted, 1974; Gooding, 1984). These 1988). Only recently has it been lo­ cm); 2) a large pyramidal trap (2 m surveys have generated information on gistically possible to attempt to study square at the base x 1.5 m high); 3) a species identifications, geographic dis- the deepwater habitat directly, and sev­ traditional fish trap design (1.5 x 1 x 1 eral recent efforts using a submers­ , m); 4) a covered box trap (1.5 x 0.5 x ible show much promise (Ralston et 0.5 m); 5) a small box-shaped trap (1 x W.
    [Show full text]
  • 77 Camarões Da Subordem Pleocyemata
    CAMARÕES DA SUBORDEM PLEOCYEMATA BURKENROAD, 1963 CAPTURADOS DURANTE PESCARIAS EXPERIMENTAIS PARA O PROGRAMA REVIZEE/NORTE (CRUSTACEA, DECAPODA) Marilena Ramos-Porto 1 Anna Paula Malcher Muniz 2 Kátia Cristina de Araújo Silva 3 Israel Hidenburgo Aniceto Cintra 3 Girlene Fábia Segundo Viana4 RESUMO O presente trabalho tem como objetivo divulgar as informações sobre os camarões da subordem Pleocyemata, coletados durante o programa REVIZEE/ Norte. Os indivíduos amostrados foram oriundos de Campanhas de Prospecção de Recursos Demersais, direcionadas para crustáceos, efetuadas pelo N.Pq. Almirante Paulo Moreira, do CEPNOR/IBAMA, no período entre 1996 e 2001. Foram identificadas 13 espécies, pertencentes a sete gêneros e seis famílias, quais sejam: Oplophoridae – Acanthephyra eximia Smith, 1884, Oplophorus gracilirostris A. Milne Edwards, 1881; Psalidopodidae - Psalidopus barbouri Chace, 1939; Palaemonidae – Nematopalaemon schmitti (Holthuis, 1950); Hippolytidae – Exhippolysmata oplophoroides (Holthuis, 1948). Pandalidae – Heterocarpus ensifer A. Milne Edwards, 1881; Heterocarpus oryx A. Milne Edwards, 1881; Plesionika acanthonotus (Smith, 1882); Plesionika ensis (A. Milne Edwards, 1881); Plesionika martia (A. Milne Edwards, 1883); Glyphocrangonidae – Glyphocrangon alispina Chace, 1939; Glyphocrangon neglecta Faxon, 1895; Glyphocrangon spinicauda (A. Milne Edwards, 1881). A família Pandalidae apresentou o maior número de espécies, sendo G. spinicauda a mais abundante. Palavras-chave: camarões, Caridea, Programa REVIZEE/Norte. ___________________
    [Show full text]
  • Light and Vision in the Deep-Sea Benthos: I
    Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences 10-1-2012 Light and Vision in the Deep-Sea Benthos: I. Bioluminescence at 500-1000 m Depth in the Bahamian Islands Sönke Johnsen Duke University Tamara M. Frank Nova Southeastern University, [email protected] Steven H.D. Haddock Monterey Bay Aquarium Research Institute Edith A. Widder Ocean Research and Conservation Association Charles G. Messing Nova Southeastern University, [email protected] Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Johnsen, Sönke, Tamara M. Frank, Steven HD Haddock, Edith A. Widder, and Charles G. Messing. "Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000 m depth in the Bahamian Islands." The ourJ nal of experimental biology 215, no. 19 (2012): 3335-3343. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. 3335 The Journal of Experimental Biology 215, 3335-3343 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.072009 RESEARCH ARTICLE Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000m depth in the Bahamian Islands Sönke Johnsen1,*, Tamara M.
    [Show full text]
  • The Conservation Status of North American, Central American, and Caribbean Chondrichthyans the Conservation Status Of
    The Conservation Status of North American, Central American, and Caribbean Chondrichthyans The Conservation Status of Edited by The Conservation Status of North American, Central and Caribbean Chondrichthyans North American, Central American, Peter M. Kyne, John K. Carlson, David A. Ebert, Sonja V. Fordham, Joseph J. Bizzarro, Rachel T. Graham, David W. Kulka, Emily E. Tewes, Lucy R. Harrison and Nicholas K. Dulvy L.R. Harrison and N.K. Dulvy E.E. Tewes, Kulka, D.W. Graham, R.T. Bizzarro, J.J. Fordham, Ebert, S.V. Carlson, D.A. J.K. Kyne, P.M. Edited by and Caribbean Chondrichthyans Executive Summary This report from the IUCN Shark Specialist Group includes the first compilation of conservation status assessments for the 282 chondrichthyan species (sharks, rays, and chimaeras) recorded from North American, Central American, and Caribbean waters. The status and needs of those species assessed against the IUCN Red List of Threatened Species criteria as threatened (Critically Endangered, Endangered, and Vulnerable) are highlighted. An overview of regional issues and a discussion of current and future management measures are also presented. A primary aim of the report is to inform the development of chondrichthyan research, conservation, and management priorities for the North American, Central American, and Caribbean region. Results show that 13.5% of chondrichthyans occurring in the region qualify for one of the three threatened categories. These species face an extremely high risk of extinction in the wild (Critically Endangered; 1.4%), a very high risk of extinction in the wild (Endangered; 1.8%), or a high risk of extinction in the wild (Vulnerable; 10.3%).
    [Show full text]
  • ROV) in the Marquesas Islands, French Polynesia (Crustacea: Decapoda
    Zootaxa 3550: 43–60 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:214A5D4F-E406-4670-BBB6-2EA5931713E9 Deep-water decapod crustaceans studied with a remotely operated vehicle (ROV) in the Marquesas Islands, French Polynesia (Crustacea: Decapoda) JOSEPH POUPIN1, 4, LAURE CORBARI2, THIERRY PÉREZ3 & PIERRE CHEVALDONNÉ3 1Institut de Recherche de l’École Navale, IRENav, groupe des écoles du Poulmic, CC 600, Lanvéoc, F-29240 BREST Cedex 9, France. E-mail: [email protected] 2UMR7138 Systématique, Adaptation, Évolution, Muséum national d’Histoire naturelle, 43 rue Cuvier, 75005 Paris, France. E-mail: [email protected] 3UMR CNRS 7263 IMBE, Institut Méditerranéen de la Biodiversité et d'Écologie marine et continentale, Aix-Marseille Université, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France. E-mail: [email protected], [email protected] 4Corresponding author Abstract Decapod crustaceans were studied in the Marquesas Islands, French Polynesia, between 50–550 m by using a remotely operated vehicle (ROV) equipped with high resolution cameras and an articulated arm. Careful examination of videos and photographs combined with previous inventories made in the area with conventional gears allowed the identification of 30 species, including 20 species-level determinations. Species identified belong to shrimps (Penaeoidea, Stenopodidea, and Caridea), lobsters (Astacidea and Achelata), anomurans (Galatheoidea and Paguroidea), and brachyuran crabs (Dromioidea, Homolodromioidea, Raninoidea, Leucosioidea, Majoidea, Parthenopoidea, Portunoidea, and Trapezioidea). Most of these species were observed and photographed in situ for the first time. A discussion is given on the geographic distribution, density, ecology, and behavior.
    [Show full text]
  • Decapoda (Crustacea) of the Gulf of Mexico, with Comments on the Amphionidacea
    •59 Decapoda (Crustacea) of the Gulf of Mexico, with Comments on the Amphionidacea Darryl L. Felder, Fernando Álvarez, Joseph W. Goy, and Rafael Lemaitre The decapod crustaceans are primarily marine in terms of abundance and diversity, although they include a variety of well- known freshwater and even some semiterrestrial forms. Some species move between marine and freshwater environments, and large populations thrive in oligohaline estuaries of the Gulf of Mexico (GMx). Yet the group also ranges in abundance onto continental shelves, slopes, and even the deepest basin floors in this and other ocean envi- ronments. Especially diverse are the decapod crustacean assemblages of tropical shallow waters, including those of seagrass beds, shell or rubble substrates, and hard sub- strates such as coral reefs. They may live burrowed within varied substrates, wander over the surfaces, or live in some Decapoda. After Faxon 1895. special association with diverse bottom features and host biota. Yet others specialize in exploiting the water column ment in the closely related order Euphausiacea, treated in a itself. Commonly known as the shrimps, hermit crabs, separate chapter of this volume, in which the overall body mole crabs, porcelain crabs, squat lobsters, mud shrimps, plan is otherwise also very shrimplike and all 8 pairs of lobsters, crayfish, and true crabs, this group encompasses thoracic legs are pretty much alike in general shape. It also a number of familiar large or commercially important differs from a peculiar arrangement in the monospecific species, though these are markedly outnumbered by small order Amphionidacea, in which an expanded, semimem- cryptic forms. branous carapace extends to totally enclose the compara- The name “deca- poda” (= 10 legs) originates from the tively small thoracic legs, but one of several features sepa- usually conspicuously differentiated posteriormost 5 pairs rating this group from decapods (Williamson 1973).
    [Show full text]
  • Crustacea, Decapoda)
    New species and new records of deep-water caridean shrimps from the South Atlantic Océan (Crustacea, Decapoda) Marcos TAVARES Universidade Santa Ursula, Instituto de Ciências Biologicas e Ambientais, Rio de Janeiro 22231-040 (Brazil) [email protected] Tavares M. 1999. — New species and new records of deep-water caridean shrimps from the South Atlantic Océan (Crustacea, Decapoda). ZoosystemaZ^ (4) : 671-677. ABSTRACT One new species of deep-water caridean shrimp is described from the south­ western Atlantic, Heterocarpus inopinatus n. sp. (Pandalidae). The new spe­ cies can be promprly distinguished from the other species of the genus wirh a short but distinct exopod on the third maxilliped as follows: 1) from Heterocarpus affinis by the absence of incision on the dorsal carina of the third abdominal segment (carina distinctly incised in H. affinis); 2) from Heterocarpus hostilis by the latéral carinae on the carapace well defined (no distinct latéral carinae in H. hostilis); 3) and from Heterocarpus dorsalis by the carapace with dorsal carina unarmed on posterior one third of length (poste­ rior two thirds in H. dorsalis). Additionally, four new records are established as follows: Heterocarpus dorsalis Bate, 1888 (Pandalidae) from the Atlantic KEYWORDS Océan; Heterogenys microphthalma (Smith, 1885) (Oplophoridae) from the Deep-water shrimps, southwestern Atlantic; Heterocarpus oryx A. Milne-Edwards, 1881 Decapoda Caridea, western Atlantic, (Pandalidae) and Acanthephyra eximia Smith, 1884 (Oplophoridae) from new records and species. southeastern Brazil. ZOOSYSTEMA • 1999 • 21 (4) 671 Tavares M. RESUME Nouvelle espèce et nouvelles répartitions de crevettes carides profondes de l'Atlan­ tique Sud (Crustacea, Decapoda). Une nouvelle espèce d'une crevette caride de profondeur est décrite de l'Atlantique sud-occidental, Heterocarpus inopinatus n.
    [Show full text]
  • (2012). Light and Vision in the Deep-Sea Benthos: I
    3344 The Journal of Experimental Biology 215, 3344-3353 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.072033 RESEARCH ARTICLE Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans Tamara M. Frank1,*, Sönke Johnsen2 and Thomas W. Cronin3 1Oceanographic Center, Nova Southeastern University, Dania Beach, FL 33004, USA, 2Biology Department, Duke University, Durham, NC 27708, USA and 3Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA *Author for correspondence ([email protected]) SUMMARY Using new collecting techniques with the Johnson-Sea-Link submersible, eight species of deep-sea benthic crustaceans were collected with intact visual systems. Their spectral sensitivities and temporal resolutions were determined shipboard using electroretinography. Useable spectral sensitivity data were obtained from seven species, and in the dark-adapted eyes, the spectral sensitivity peaks were in the blue region of the visible spectrum, ranging from 470 to 497nm. Under blue chromatic adaptation, a secondary sensitivity peak in the UV portion of the spectrum appeared for two species of anomuran crabs: Eumunida picta (max363nm) and Gastroptychus spinifer (max383nm). Wavelength-specific differences in response waveforms under blue chromatic adaptation in these two species suggest that two populations of photoreceptor cells are present. Temporal resolution was determined in all eight species using the maximum critical flicker frequency (CFFmax). The CFFmax for the isopod Booralana tricarinata of 4Hz proved to be the lowest ever measured using this technique, and suggests that this species is not able to track even slow-moving prey. Both the putative dual visual pigment system in the crabs and the extremely slow eye of the isopod may be adaptations for seeing bioluminescence in the benthic environment.
    [Show full text]