A Qualitative Zoogeographic Analysis of Decapod Crustaceans of the Continental Slopes and Abyssal Plain of the Gulf of Mexico$

Total Page:16

File Type:pdf, Size:1020Kb

A Qualitative Zoogeographic Analysis of Decapod Crustaceans of the Continental Slopes and Abyssal Plain of the Gulf of Mexico$ ARTICLE IN PRESS Deep-Sea Research I 52 (2005) 1745–1765 www.elsevier.com/locate/dsr A qualitative zoogeographic analysis of decapod crustaceans of the continental slopes and abyssal plain of the Gulf of Mexico$ Mary K. Wickstena,Ã, Jane M. Packardb aDepartment of Biology, Texas A&M University, College Station, TX 77843-3258, USA bDepartment of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843-2258, USA Received 8 November 2004; received in revised form 25 April 2005; accepted 25 April 2005 Available online 19 July 2005 Abstract Occurrence of 130 species of decapod crustaceans was compared between the continental slope (200–2500 m) and the abyssal plain (2500–3840 m) of the Gulf of Mexico. We compiled records of these species from published literature and from the crustacean catalogue of the Marine Invertebrate Collection of Texas A&M University. Each species was scored as present or absent in each of 10 polygons that were defined by physiographic features of the sea floor. Using cluster analysis, we identified inherent patterns of species richness. A distinct faunal assemblage occurred in the Sigsbee Abyssal Plain. This deep plain was a potential ‘‘coldspot’’ in terms of the number of species in the basin, compared to a ‘‘hotspot’’ in the vicinity of De Soto Canyon. Polygons of the eastern upper slopes (i.e. calcareous substrate of western Florida) contained the most species that were not found elsewhere in the Gulf of Mexico. Usingan inductive approach, we identified the followinghypotheses: (1) most crustacean species of the deep SigsbeeAbyssal Plain occur in oceans world-wide, (2) overall, almost a quarter of the deep sea species in the Gulf of Mexico range from the western Atlantic (south of Cape Hatteras) to the Caribbean, and (3) the Gulf of Mexico is particularly rich in species of Munidopsis (25 species). r 2005 Elsevier Ltd. All rights reserved. Keywords: Benthic macrofauna; Biodiversity; Crustaceans; Biogeography; Gulf of Mexico $Abbreviations: CAR ¼ Caribbean, EATL ¼ eastern Atlantic, EPAC ¼ eastern Pacific, GoM ¼ Gulf of Mexico, 1. Introduction IN ¼ Indian Ocean, IWP ¼ Indo-Pacific, NATL ¼ northern Atlantic, NPAC ¼ northern Pacific, NWPAC ¼ northwestern Although biodiversity hotspots (areas with Pacific, SoF ¼ Straits of Florida, SWPAC ¼ southwestern greater species richness than average) have been Pacific, WATL ¼ western Atlantic. ÃCorrespondingauthor. Fax: +1 979 862 1977. identified for shallow marine systems (Roberts E-mail address: [email protected] et al., 2002), relatively little is known about deep sea (M.K. Wicksten). patterns of beta diversity in tropical macrobenthic 0967-0637/$ - see front matter r 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.dsr.2005.04.006 ARTICLE IN PRESS 1746 M.K. Wicksten, J.M. Packard / Deep-Sea Research I 52 (2005) 1745–1765 fauna, i.e. comparison of species assemblages Soto et al. (1999) described decapod faunal across habitats (Moritz, 2002). Biodiversity in assemblages by depth and related them to food warm deep seas may be sensitive to anomalous sources on the upper continental slope in the climatic (or oceanic current) events as well as southwestern Gulf of Mexico. Since 1970, new global climate change (Danovaro et al., 2004). species have been described by Pequegnat and However, before patterns of global change in Pequegnat (1971), Dardeau and Heard (1983), biodiversity can be evaluated quantitatively, sev- Manningand Holthuis (1984) , Lemaitre (1986), eral factors need to be addressed: (a) the com- Williams (1988), Pequegnat and Williams (1995), pleteness of taxonomic studies (Adrianov, 2003; and Felder and Kensley (2004). Seifried, 2004), (b) the use of specific taxonomic The present inductive study synthesizes infor- groups (Cartes and Carrasson, 2004), (c) commu- mation on occurrence of decapod crustacean nity structure of feedingguilds( Maynou and species in deep waters throughout the Gulf of Cartes, 2000; Cartes et al., 2002), and (d) Mexico (Appendix), usingall records available in consistency across taxonomic levels (Doerries the published literature, ecological surveys and and Van Dover, 2003). museum collections. Patterns of distribution are Decapod crustaceans (crabs, shrimp and lob- related to depth, bottom topography, patterns of sters) are large and conspicuous invertebrates, currents, and sediments, to identify hypotheses readily visible in bottom (in situ) photographs and that could be tested in future deductive analyses. often collected duringecological surveys. At least The purpose is to identify which clusters of areas 130 species inhabit the bathyal regions at depths of are most similar and which are most distinctive in 200–3840 m in the Gulf of Mexico. Beinga well- terms of occurrences of species. For future studies, defined, confined ocean basin, the Gulf of Mexico this exploratory analysis provides insights into the provides a good area in which to study geographic diversification of the deep Gulf decapod fauna in distribution of species. addition to providingan initial basis for other A synthesis of information collected duringthe researchers to identify appropriate conservation last half a century is now possible based on units for ecosystem planning. museum collections and published records. Studies on decapods of the Gulf of Mexico date back to the cruises of the U.S. Coast Survey Steamer 2. Methods Blake, under the direction of Alexander Agassiz, in 1877–78 (Milne-Edwards, 1880). More recent We define the Gulf of Mexico (Fig. 1) as that publications include reports of ecological or fish- body of water lyingwithin the northernmost part eries studies sponsored by various governmental agencies. Bullis and Thompson (1965) prepared lists of species taken at stations in 1956–1960 on the continental shelf and upper slope in the Gulf of __30 2 3 Mexico. Thompson (1963) incorporated some of 5 4 200m 9 these records into his work on shrimp of the 2000m 1 southwestern Atlantic, as well as includingkeys, illustrations and comments on nomenclature. _25 10 Pequegnat and Chace (1970) and Pequegnat 8 (1983) prepared detailed reports on locations 6 3000m and depths of collection for many species, and gave historical overviews of collecting. Pequegnat __20 et al. (1990) provided a summary of geographic 7 distribution, zonation by depth, and relative 95 90 85 abundance of invertebrate groups in the Gulf Fig. 1. Map of the Gulf of Mexico showing numbering system of Mexico, with emphasis on the northern Gulf. for polygons. ARTICLE IN PRESS M.K. Wicksten, J.M. Packard / Deep-Sea Research I 52 (2005) 1745–1765 1747 of the Yucatan Peninsula (approximately 211300N, Crosnier (2000) for polychelid lobsters. Other 871 000), the mainland of northeastern Mexico and records and information on world-wide species the southeastern USA and the Florida Peninsula distributions came from the works of Rathbun southward to approximately 251 000N, 831 000W (1918,1925,1937), Chace (1942), Bullis and (north of the Florida Keys and Dry Tortugas). Thompson (1965), Pequegnat and Chace (1970), The Straits of Florida, Yucatan Channel and areas Firth and Pequegnat (1971), Holthuis(1971), Man- north and west of Cuba are excluded, although ningand Chace (1971) , Crosnier and Forest these areas were included in the work by Pequeg- (1973), Perez-Farfante and Bullis (1973), Mayo nat and Chace (1970) as part of the southeastern (1974), Powers (1977), Chace and Holthuis (1978), Gulf of Mexico. We found that at least 10 species Wenner (1979), Dardeau and Heard (1983), reported from the ‘‘Southeast Gulf’’ were taken Takeda and Okutani (1983), Manningand only in the area between the Florida Keys and Holthuis (1984), Gore (1985), Griffin and Tranter Cuba. Following Soto (1985), we consider this (1986), Williams and Turner (1986), Kensley and area as part of the Straits of Florida and exclude Tobias (1985), Williams (1988), Abele and Martin its fauna from this study. (1989), de Saint Laurent and Macpherson Our primary source of information on records (1990a,b), Chan and Yu (1991), Lemaitre of decapods from the Gulf of Mexico was the (1999,2004) and Soto et al. (1999). The earliest Marine Invertebrate Collection, Texas Coopera- collection was Albatross station 2377, 11 February tive Wildlife Collection (TCWC), housed at 1885; the latest was R/V Ronald H. Brown North- Texas A&M University. The collection (formerly ern Gulf Deep Sea Habitats Dive 36, 23 September held by the Department of Oceanography) 2003. In all, the specimens came from 407 contains over 8000 lots of decapods, most of samplingsites, includingsamplingstations of them taken at approximately 200 stations during research vessels as well as locations of crustaceans cruises of the R/V Alaminos from 1963 to 1973. taken duringcommercial fishing. (See Pequegnat and Pequegnat, 1970a,b, for a We include all species known to the senior map of stations through year 1969). Also present author from the Gulf, includingfive unidentified in the collections are specimens taken by the R/V species. A complete list of these species with Oregon and Oregon II in 1955–1974, the Citation information on their occurrence in the Gulf and and Gyre in 1984–85 as part of the Northern elsewhere in the world’s oceans is given in Gulf of Mexico Benthos Project (NGoMB), the Appendix. We provide synonyms for species fishingvessel Success in 1989–90, and specimens whose names have been changed since the taken by other collectors or donated as vouchers publication of the authoritative work edited by from ecological surveys. We included new records Pequegnat and Chace (1970). The records contain from specimens collected by the R/V Gyre in species either that are strictly benthic or that 2000–2002 duringthe Deep Gulf of Mexico commonly are collected in bottom trawls despite Benthos Project (DGoMB). These specimens are some capability to swim. Species of the midwater housed at the United States National Museum of families Oplophoridae, Pasiphaeidae and other Natural History (Smithsonian Institution shrimp that may be taken in benthic trawls, but (USNM)). Records are included of specimens usually occur in the water column, are not taken by trawl or baited trap during2003 as part included.
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Okeanos Explorer ROV Dive Summary
    Okeanos Explorer ROV Dive Summary Dive Information General Location General Area Blake Escarpment, US Continental Margin Descriptor Site Name Blake Escarpment South Science Team Leslie Sautter / Cheryl Morrison Leads Expedition Kasey Cantwell Coordinator ROV Dive Bobby Mohr Supervisor Mapping Lead Derek Sowers ROV Dive Name Cruise EX1806 1 Leg - Dive Number DIVE04 Equipment Deployed ROV Deep Discoverer Camera Platform Seirios ☒ CTD ☒ Depth ☒ Altitude ☒ Scanning Sonar ☒ USBL Position ☒ Heading ROV ☒ Pitch ☒ Roll ☒ HD Camera 1 Measurements ☒ HD Camera 2 ☒ Low Res Cam 1 ☒ Low Res Cam 2 ☒ Low Res Cam 3 ☒ Low Res Cam 4 ☒ Low Res Cam 5 Equipment D2 USBL tracking was very poor at 50m. However, after deciding to proceed with the Malfunctions dive, tracking locked in starting 10m later. Likely weird conditions at 50m. Dive Summary: EX1806_DIVE04 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In Water: 2018-06-17T12:24:26.436709 30°, 56.422' N ; 77°, 19.825' W On Bottom: 2018-06-17T13:28:25.988569 30°, 56.408' N ; 77°, 19.711' W ROV Dive Off Bottom: 2018-06-17T19:21:23.549677 Summary 30°, 56.494' N ; 77°, 19.827' W (from processed ROV data) Out Water: 2018-06-17T22:33:19.461489 30°, 56.462' N ; 77°, 19.472' W Dive duration: 10:8:53 Bottom Time: 5:52:57 Max. depth: 1321.0 m Though water samples were collected on this dive, there were issues with sample storage Special Notes and preservation, therefore no water samples were retained nor archived. Sample numbering and data remains the same, as if water sampling did occur. Name Institution email Scientists Involved Adrienne Copeland NOAA OAR OER [email protected] (please provide Amanda Netburn NOAA/OER [email protected] name, location, affiliation, email) Andrea Quattrini Harvey Mudd College [email protected] Andrew Shuler NOAA/JHT, inc.
    [Show full text]
  • BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
    Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • VITAE HARRIET MACGILL PERRY 872-4218 (Work)
    VITAE HARRIET MACGILL PERRY 872-4218 (work) PRESENT POSITION: Director, Center for Fisheries Research and Development, Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39564; Assistant Professor, Department of Coastal Sciences, University of Southern Mississippi EDUCATION: B.S., Biology, Florida State University, 1965. M.S., Zoology, University of Southern Mississippi, 1971. PROFESSIONAL EXPERIENCE January 2000 to Present: Director, Center for Fisheries Research and Development, Institute of Marine Science, Gulf Coast Research Laboratory, The University of Southern Mississippi. July 1998 to Present: Assistant Professor, Department of Coastal Sciences, Institute of Marine Science, The University of Southern Mississippi. October 1979 to Present: Research Biologist, Fisheries Research and Development, Gulf Coast Research Laboratory, Ocean Springs, Mississippi. August 1968 to September 1979: Bio-technician, Fisheries Research and Development, Gulf Coast Research Laboratory, Ocean Springs, Mississippi. MAJOR RESEARCH INTERESTS Fishery development, management of marine fisheries, blue crab aquaculture, population dynamics of estuarine and marine invertebrates, invertebrate taxonomy, invasive species. Gulf Guardian Award, The Alabama/Mississippi Rapid Assessment Program. PROCEEDINGS/BOOK CHAPTERS Co-editor - Proceedings of the Blue Crab Colloquium, Gulf States Marine Fisheries Commission, 1982. Editor - Profile of the Blue Crab Fishery of the Gulf of Mexico, Gulf States Marine Fisheries Commission, 1984. Co-editor - Proceedings of the National Symposium of the Soft-Shelled Blue Crab Fishery, Southeast Marine Advisory Service Network and Sea Grant Mid-Atlantic Advisory Service Network, 1985. Co-editor - The Blue Crab Fishery of the Gulf of Mexico, United States: A Regional Management Plan. Gulf States Marine Fisheries Commission, 1990. Co-editor - A Profile of the Western Gulf Stone Crab, Menippe adina.
    [Show full text]
  • 1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
    1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al.
    [Show full text]
  • Prawn Fauna (Crustacea: Decapoda) of India - an Annotated Checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean Prawns
    Available online at: www.mbai.org.in doi: 10.6024/jmbai.2012.54.1.01697-08 Prawn fauna (Crustacea: Decapoda) of India - An annotated checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean prawns E. V. Radhakrishnan*1, V. D. Deshmukh2, G. Maheswarudu3, Jose Josileen 1, A. P. Dineshbabu4, K. K. Philipose5, P. T. Sarada6, S. Lakshmi Pillai1, K. N. Saleela7, Rekhadevi Chakraborty1, Gyanaranjan Dash8, C.K. Sajeev1, P. Thirumilu9, B. Sridhara4, Y Muniyappa4, A.D.Sawant2, Narayan G Vaidya5, R. Dias Johny2, J. B. Verma3, P.K.Baby1, C. Unnikrishnan7, 10 11 11 1 7 N. P. Ramachandran , A. Vairamani , A. Palanichamy , M. Radhakrishnan and B. Raju 1CMFRI HQ, Cochin, 2Mumbai RC of CMFRI, 3Visakhapatnam RC of CMFRI, 4Mangalore RC of CMFRI, 5Karwar RC of CMFRI, 6Tuticorin RC of CMFRI, 7Vizhinjam RC of CMFRI, 8Veraval RC of CMFRI, 9Madras RC of CMFRI, 10Calicut RC of CMFRI, 11Mandapam RC of CMFRI *Correspondence e-mail: [email protected] Received: 07 Sep 2011, Accepted: 15 Mar 2012, Published: 30 Apr 2012 Original Article Abstract Many penaeoid prawns are of considerable value for the fishing Introduction industry and aquaculture operations. The annual estimated average landing of prawns from the fishery in India was 3.98 The prawn fauna inhabiting the marine, estuarine and lakh tonnes (2008-10) of which 60% were contributed by freshwater ecosystems of India are diverse and fairly well penaeid prawns. An additional 1.5 lakh tonnes is produced from known. Significant contributions to systematics of marine aquaculture. During 2010-11, India exported US $ 2.8 billion worth marine products, of which shrimp contributed 3.09% in prawns of Indian region were that of Milne Edwards (1837), volume and 69.5% in value of the total export.
    [Show full text]
  • Chaceon Fenneri) Off the Northern Coast of Brazil
    Lat. Am. J. Aquat. Res., 37(3): 571-576, 2009 Golden crab fisheries off northeast Brazil 571 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-21 Short Communication Note on the fisheries and biology of the golden crab (Chaceon fenneri) off the northern coast of Brazil Tiago Barros Carvalho1, Ronaldo Ruy de Oliveira Filho1 & Tito Monteiro da Cruz Lotufo1 1Laboratório de Ecologia Animal, Instituto de Ciências do Mar (LABOMAR) Universidade Federal do Ceará, Av. Abolição 3207, CEP 60165-081, Fortaleza, CE, Brazil ABSTRACT. The occurrence of golden crabs (Chaceon fenneri) off the northern coast of Brazil was first re- ported in 2001. Since then, a few companies and boats have exploited this resource. In the state of Ceará, one company has been fishing for these crabs with a single boat since 2003. The production and fishing effort of this company indicated a decrease in the number of trips and total catches per year. Data collected on one trip in 2006 showed that the CPUE was highest at over 650 m depth. As registered for other geryonid crabs, C. fenneri was segregated by sex along the northern slope of Brazil. Male crabs were significantly larger than fe- males, presenting an isometric relationship between carapace width and length and an allometric relationship between carapace width and body weight. Keywords: biology, fishery, Chaceon fenneri, golden crab, Geryonidae, Brazil. Nota sobre la biología y la pesca del cangrejo dorado (Chaceon fenneri) frente a la costa norte de Brasil RESUMEN. La presencia de cangrejos dorados (Chaceon fenneri) frente a la costa norte de Brasil fue prime- ramente descrita en 2001.
    [Show full text]
  • ABSTRACT RINDONE, RICHARD RYAN. Predator-Prey Dynamics
    ABSTRACT RINDONE, RICHARD RYAN. Predator-prey Dynamics between Recently Established Stone Crabs (Menippe spp.) and Oyster Prey (Crassostrea virginica). (Under the direction of David B. Eggleston). Range expansion and population establishment of individual species can have significant impacts on previously established food webs and predator-prey dynamics. The stone crab (Menippe spp.) is found throughout southwestern North Atlantic waters, from North Carolina through the Gulf of Mexico and the Central American Caribbean, and including the Greater Antilles. Recent observations suggest that stone crabs have become better established on certain oyster reefs in North Carolina than in the early 1900’s when they we first observed in NC. To assess the predatory impact of stone crabs on oysters, we (1) quantified stone crab densities on subtidal oyster reefs in Pamlico Sound, NC using scuba diver surveys, and (2) conducted laboratory predation experiments to assess the functional response of stone crabs to varying densities of oysters. We then (3) analyzed previously unpublished functional response data on another important oyster predator, the mud crab Panopeus herbstii. Finally, we (4) compared and contrasted potential predatory impacts of stone, mud and blue crabs (Callinectes sapidus). The functional response data and analyses for stone crabs was consistent with either a type I or II functional response, whereas mud crabs exhibited a type I functional response. Mud crabs, on a m2 basis, inflicted the highest proportional mortality on oysters over a 24 hour period, followed by stone and then blue crabs. Proportional mortality did not vary significantly with oyster size; however, relatively small and large oysters were consumed disproportionately less than medium- sized oysters, likely due to the mechanical inability of stone crabs to handle small oysters, and the inability to crush large oysters.
    [Show full text]
  • On Two Reports Associated with James Wood-Mason and Alfred William
    Zootaxa 3757 (1): 001–078 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3757.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:880C6673-3534-4E2D-B205-A62DC1398149 ZOOTAXA 3757 On two reports associated with James Wood-Mason and Alfred William Alcock published by the Indian Museum and the Indian Marine Survey between 1890 and 1891: implications for malacostracan nomenclature RONY HUYS1,4, MARTYN E. Y. LOW2, SAMMY DE GRAVE3, PETER K. L. NG2 & PAUL F. CLARK1 1Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. E-mail: [email protected], [email protected] 2Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Block S6, Science Drive 2, #03-01, Singapore 117546, Republic of Singapore. E-mail: [email protected], [email protected] 3Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom. E-mail: [email protected] 4Corresponding author Magnolia Press Auckland, New Zealand Accepted by S. Ahyong: 13 Nov. 2013; published: 29 Jan. 2014 Rony Huys, Martyn E. Y. Low, Sammy De Grave, Peter K. L. Ng & Paul F. Clark On two reports associated with James Wood-Mason and Alfred William Alcock published by the Indian Museum and the Indian Marine Survey between 1890 and 1891: implications for malacostracan nomenclature (Zootaxa 3757) 78 pp.; 30 cm. 29 Jan. 2014 ISBN 978-1-77557-322-7 (paperback) ISBN 978-1-77557-323-4 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O.
    [Show full text]
  • Genus Panopeus H. Milne Edwards, 1834 Key to Species [Based on Rathbun, 1930, and Williams, 1983] 1
    610 Family Xanthidae Genus Panopeus H. Milne Edwards, 1834 Key to species [Based on Rathbun, 1930, and Williams, 1983] 1. Dark color of immovable finger continued more or less on palm, especially in males. 2 Dark color of immovable finger not continued on palm 7 2. (1) Outer edge of fourth lateral tooth longitudinal or nearly so. P. americanus Outer edge of fourth lateral tooth arcuate 3 3. (2) Edge of front thick, beveled, and with transverse groove P. bermudensis Edge of front if thick not transversely grooved 4 4. (3) Major chela with cusps of teeth on immovable finger not reaching above imaginary straight line drawn between tip and angle at juncture of finger with anterior margin of palm (= length immovable finger) 5 Major chela with cusps of teeth near midlength of immovable finger reaching above imaginary straight line drawn between tip and angle at juncture of finger with anterior margin of palm (= length immovable finger) 6 5. (4) Coalesced anterolateral teeth 1-2 separated by shallow rounded notch, 2 broader than but not so prominent as 1; 4 curved forward as much as 3; 5 much smaller than 4, acute and hooked forward; palm with distance between crest at base of movable finger and tip of cusp lateral to base of dactylus 0.7 or less length of immovable finger P. herbstii Coalesced anterolateral teeth 1-2 separated by deep rounded notch, adjacent slopes of 1 and 2 about equal, 2 nearly as prominent as 1; 4 not curved forward as much as 3; 5 much smaller than 4, usually projecting straight anterolaterally, sometimes slightly hooked; distance between crest of palm and tip of cusp lateral to base of movable finger 0.8 or more length of immovable finger P.
    [Show full text]
  • Volume III of This Document)
    4.1.3 Coastal Migratory Pelagics Description and Distribution (from CMP Am 15) The coastal migratory pelagics management unit includes cero (Scomberomous regalis), cobia (Rachycentron canadum), king mackerel (Scomberomous cavalla), Spanish mackerel (Scomberomorus maculatus) and little tunny (Euthynnus alleterattus). The mackerels and tuna in this management unit are often referred to as ―scombrids.‖ The family Scombridae includes tunas, mackerels and bonitos. They are among the most important commercial and sport fishes. The habitat of adults in the coastal pelagic management unit is the coastal waters out to the edge of the continental shelf in the Atlantic Ocean. Within the area, the occurrence of coastal migratory pelagic species is governed by temperature and salinity. All species are seldom found in water temperatures less than 20°C. Salinity preference varies, but these species generally prefer high salinity. The scombrids prefer high salinities, but less than 36 ppt. Salinity preference of little tunny and cobia is not well defined. The larval habitat of all species in the coastal pelagic management unit is the water column. Within the spawning area, eggs and larvae are concentrated in the surface waters. (from PH draft Mackerel Am. 18) King Mackerel King mackerel is a marine pelagic species that is found throughout the Gulf of Mexico and Caribbean Sea and along the western Atlantic from the Gulf of Maine to Brazil and from the shore to 200 meter depths. Adults are known to spawn in areas of low turbidity, with salinity and temperatures of approximately 30 ppt and 27°C, respectively. There are major spawning areas off Louisiana and Texas in the Gulf (McEachran and Finucane 1979); and off the Carolinas, Cape Canaveral, and Miami in the western Atlantic (Wollam 1970; Schekter 1971; Mayo 1973).
    [Show full text]