Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Zootaxa,Crustacean Classification
Zootaxa 1668: 313–325 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Crustacean classification: on-going controversies and unresolved problems* GEOFF A. BOXSHALL Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom E-mail: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . 313 Introduction . 313 Treatment of parasitic Crustacea . 315 Affinities of the Remipedia . 316 Validity of the Entomostraca . 318 Exopodites and epipodites . 319 Using of larval characters in estimating phylogenetic relationships . 320 Fossils and the crustacean stem lineage . 321 Acknowledgements . 322 References . 322 Abstract The journey from Linnaeus’s original treatment to modern crustacean systematics is briefly characterised. Progress in our understanding of phylogenetic relationships within the Crustacea is linked to continuing discoveries of new taxa, to advances in theory and to improvements in methodology. Six themes are discussed that serve to illustrate some of the major on-going controversies and unresolved problems in the field as well as to illustrate changes that have taken place since the time of Linnaeus. These themes are: 1. the treatment of parasitic Crustacea, 2. the affinities of the Remipedia, 3. the validity of the Entomostraca, 4. exopodites and epipodites, 5. using larval characters in estimating phylogenetic rela- tionships, and 6. fossils and the crustacean stem-lineage. It is concluded that the development of the stem lineage concept for the Crustacea has been dominated by consideration of taxa known only from larval or immature stages. -
Brachyura, Majoidea) Genera Acanthonyx Latreille, 1828 and Epialtus H
Nauplius 20(2): 179-186, 2012 179 Range extensions along western Atlantic for Epialtidae crabs (Brachyura, Majoidea) genera Acanthonyx Latreille, 1828 and Epialtus H. Milne Edwards, 1834 Ana Francisca Tamburus and Fernando L. Mantelatto Laboratory of Bioecology and Crustacean Systematics (LBSC) - Postgraduate Program in Comparative Biology - Department of Biology - Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) - University of São Paulo (USP). Av. Bandeirantes 3900, CEP 14040- 901, Ribeirão Preto (SP), Brazil. E-mails: (AFT) [email protected]; (FLM) [email protected] Abstract The present study provided information extending the known geographical distribution of three species of majoid crabs, the epialtids Acanthonyx dissimulatus Coelho, 1993, Epialtus bituberculatus H. Milne Edwards, 1834, and E. brasiliensis Dana, 1852. Specimens of both genera from different carcinological collections were studied by comparing morphological characters. We provide new data that extends the geographical distributions of E. bituberculatus to the coast of the states of Paraná and Santa Catarina (Brazil), and offer new records from Belize and Costa Rica. Epialtus brasiliensis is recorded for the first time in the state of Rio Grande do Sul (Brazil), and A. dissimulatus is reported from Quintana Roo, Mexico. The distribution of A. dissimulatus, previously known as endemic to Brazil, has a gap between the states of Espírito Santo and Rio de Janeiro. However, this restricted southern distribution is herein amplified by the Mexican specimens. Key words: Geographic distribution, majoid, new records, spider crabs. Introduction (Melo, 1996). Epialtus bituberculatus H. Milne Edwards, 1834 has been from Florida (USA), The family Epialtidae MacLeay, 1838 Gulf of Mexico, West Indies, Colombia, includes 76 genera, among them Acanthonyx Venezuela and Brazil (Ceará to São Paulo Latreille, 1828 and Epialtus H. -
Crustacean Diversity of Ildırı Bay (Izmir, Turkey)
DOI: 10.22120/jwb.2020.131461.1164 Special issue 41-49 (2020) Challenges for Biodiversity and Conservation in the Mediterranean Region (http://www.wildlife-biodiversity.com/) Research Article Crustacean diversity of Ildırı Bay (Izmir, Turkey) Introduction Murat Ozaydinli1*, Kemal Can Bizsel2 1Ordu University, Fatsa Faculty of Marine Crustaceans are a critical element of the marine Science, Department of Fisheries Technology benthic ecosystem in terms of macrofauna Engineering, 52400, Ordu, Turkey, diversity and impact assessment. Many studies 2 Dokuz Eylül University, Institute of Marine have been conducted on crustacean species in Sciences and Technology, 35340, Izmir, Turkey the Aegean Sea (Geldiay and Kocataş 1970, Geldiay and Kocataş 1973, Katağan 1982, *Email: [email protected] Ergen et al. 1988, Kırkım 1998, Katağan et al. Received: 22 July 2020 / Revised: 16 September 2020 / Accepted: 2001, Koçak et al. 2001, Ateş 2003, Sezgin 22 September 2020 / Published online: 21 October 2020. Ministry 2003, Yokeş et al. 2007, Anastasiadou et al. of Sciences, Research, and Technology, Arak University, Iran. 2020). These studies and more have been Abstract compiled by Bakır et al. (2014), who has given In this study, the crustacean diversity in Ildırı a checklist. A total of 1028 Crustacean species Bay, which is characterized by a high density of was reported along the Aegean Sea coast of aquaculture activity and tourism, was Turkey Bakır et al. (2014). investigated. Sampling was carried out by box- The Ildırı Bay is characterized by a high corer during four seasonal cruises (April, July, intensity of aquaculture and tourism activities November 2010, and February 2011) at eight (Demirel 2010, Bengil and Bizsel 2014). -
09-Innocenti 123-135
Atti Soc. Tosc. Sci. Nat., Mem., Serie B, 120 (2013) pagg. 123-135, tab. 1; doi: 10.2424/ASTSN.M.2013.09 GIANNA INNOCENTI & GIANLUCA STASOLLA (*) COLLECTIONS OF THE NATURAL HISTORY MUSEUM ZOOLOGICAL SECTION «LA SPECOLA» OF THE UNIVERSITY OF FLORENCE XXXI. Crustacea, Class Malacostraca, Order Decapoda. Superfamilies Dromioidea, Homoloidea, Aethroidea, Bellioidea, Calappoidea, Cancroidea, Carpilioidea, Cheiragonoidea, Corystoidea, Dairoidea, Dorippoidea, Eriphioidea Abstract - Collections of the Natural History Museum Zoological 1952). The first specimens were two species collected Section «La Specola» of the University of Florence. XXXI. Crustacea, during the cruise of the R/N «Magenta» (1865-1868), Class Malacostraca, Order Decapoda. Superfamilies Dromioidea, Homo- loidea, Aethroidea, Bellioidea, Calappoidea, Cancroidea, Carpilioidea, reported also by Targioni Tozzetti (1877) in his ca- Cheiragonoidea, Corystoidea, Dairoidea, Dorippoidea, Eriphioidea.A talogue. list of the specimens belonging to the order Decapoda, belonging Besides past collections, a good part of the Museum to the following families: Dromiidae, Dynomenidae, Homolidae, holdings consist of specimens collected in Somalia and Aethridae, Belliidae, Calappidae, Matutidae, Atelecyclidae, Can- cridae, Pirimelidae, Carpiliidae, Cheiragonidae, Corystidae, Dacry- other East African countries, during research missions opilumnidae, Dairidae, Dorippidae, Ethusidae, Eriphiidae, Menip- conducted by the Museum itself, by the «Spedizione pidae, Oziidae, Platyxanthidae preserved in the -
A New Classification of the Xanthoidea Sensu Lato
Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated -
From the Bohol Sea, the Philippines
THE RAFFLES BULLETIN OF ZOOLOGY 2008 RAFFLES BULLETIN OF ZOOLOGY 2008 56(2): 385–404 Date of Publication: 31 Aug.2008 © National University of Singapore NEW GENERA AND SPECIES OF EUXANTHINE CRABS (CRUSTACEA: DECAPODA: BRACHYURA: XANTHIDAE) FROM THE BOHOL SEA, THE PHILIPPINES Jose Christopher E. Mendoza Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543; Institute of Biology, University of the Philippines, Diliman, Quezon City, 1101, Philippines Email: [email protected] Peter K. L. Ng Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore Email: [email protected] ABSTRACT. – Two new genera and four new xanthid crab species belonging to the subfamily Euxanthinae Alcock (Crustacea: Decapoda: Brachyura) are described from the Bohol Sea, central Philippines. Rizalthus, new genus, with just one species, R. anconis, new species, can be distinguished from allied genera by characters of the carapace, epistome, chelipeds, male abdomen and male fi rst gonopod. Visayax, new genus, contains two new species, V. osteodictyon and V. estampadori, and can be distinguished from similar genera using a combination of features of the carapace, epistome, thoracic sternum, male abdomen, pereiopods and male fi rst gonopod. A new species of Hepatoporus Serène, H. pumex, is also described. It is distinguished from congeners by the unique morphology of its front, carapace sculpturing, form of the subhepatic cavity and structure of the male fi rst gonopod. KEY WORDS. – Crustacea, Xanthidae, Euxanthinae, Rizalthus, Visayax, Hepatoporus, Panglao 2004, the Philippines. INTRODUCTION & Jeng, 2006; Anker et al., 2006; Dworschak, 2006; Marin & Chan, 2006; Ahyong & Ng, 2007; Anker & Dworschak, There are currently 24 genera and 83 species in the xanthid 2007; Manuel-Santos & Ng, 2007; Mendoza & Ng, 2007; crab subfamily Euxanthinae worldwide, with most occurring Ng & Castro, 2007; Ng & Manuel-Santos, 2007; Ng & in the Indo-Pacifi c (Ng & McLay, 2007; Ng et al., 2008). -
Checklist of Brachyuran Crabs (Crustacea: Decapoda) from the Eastern Tropical Pacific by Michel E
BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE, BIOLOGIE, 65: 125-150, 1995 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN, BIOLOGIE, 65: 125-150, 1995 Checklist of brachyuran crabs (Crustacea: Decapoda) from the eastern tropical Pacific by Michel E. HENDRICKX Abstract Introduction Literature dealing with brachyuran crabs from the east Pacific When available, reliable checklists of marine species is reviewed. Marine and brackish water species reported at least occurring in distinct geographic regions of the world are once in the Eastern Tropical Pacific zoogeographic subregion, of multiple use. In addition of providing comparative which extends from Magdalena Bay, on the west coast of Baja figures for biodiversity studies, they serve as an impor- California, Mexico, to Paita, in northern Peru, are listed and tant tool in defining extension of protected area, inferr- their distribution range along the Pacific coast of America is provided. Unpublished records, based on material kept in the ing potential impact of anthropogenic activity and author's collections were also considered to determine or con- complexity of communities, and estimating availability of firm the presence of species, or to modify previously published living resources. Checklists for zoogeographic regions or distribution ranges within the study area. A total of 450 species, provinces also facilitate biodiversity studies in specific belonging to 181 genera, are included in the checklist, the first habitats, which serve as points of departure for (among ever made available for the entire tropical zoogeographic others) studying the structure of food chains, the relative subregion of the west coast of America. A list of names of species abundance of species, and number of species or total and subspecies currently recognized as invalid for the area is number of organisms of various physical sizes (MAY, also included. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Zootaxa, Deepwater Crabs from Seamounts And
ZOOTAXA 1708 Deepwater crabs from seamounts and chemosynthetic habitats off eastern New Zealand (Crustacea: Decapoda: Brachyura) SHANE T. AHYONG Magnolia Press Auckland, New Zealand Shane T. Ahyong Deepwater crabs from seamounts and chemosynthetic habitats off eastern New Zealand (Crustacea: Decapoda: Brachyura) (Zootaxa 1708) 72 pp.; 30 cm. 22 Feb. 2008 ISBN 978-1-86977-195-9 (paperback) ISBN 978-1-86977-196-6 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1708 © 2008 Magnolia Press AHYONG Zootaxa 1708: 1–72 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Deepwater crabs from seamounts and chemosynthetic habitats off eastern New Zealand (Crustacea: Decapoda: Brachyura) SHANE T. AHYONG Marine Biodiversity & Biosecurity, National Institute of Water and Atmosphere, Private Bag 14901, Kilbirnie, Wellington, New Zealand. E-mail: [email protected] -
Axiidea and Brachyura (Decapoda) from the Pliocene–Pleistocene Ananai Formation, Shikoku, Japan
Bulletin of the Mizunami Fossil Museum, no. 39 (2013), p. 51–54, 2 figs. 51 © 2013, Mizunami Fossil Museum Axiidea and Brachyura (Decapoda) from the Pliocene–Pleistocene Ananai Formation, Shikoku, Japan Hiroaki Karasawa1 and Yoshitaka Kinugawa2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan <[email protected]> 2 Kaminotani7-3-3, Suma-ku, Kobe City, 654-0162, Japan Abstract Four species of decapods are reported from the Ananai Formation of the Pliocene–Pleistocene Tonohama Group in Aki City, Kochi Prefecture, Shikoku, Japan. Ctenocheles sp. (Axiidea: Ctenochelidae), Anatolikos japonicus (Ortmann) (Brachyura: Cancridae), and two species of Charybdis (Brachyura: Portunidae) are included. Charybdis (Charybdis) kinugawai Karasawa, a new portunid is described. Key words: Decapoda, Axiidea, Brachyura, Ananai Formation, Pliocene–Pleistocene, Japan Introduction Systematics (By Karasawa) The Pliocene–Pleistocene Tonohama Group is distributed in the western part of the Muroto Peninsula, Kochi Prefecture, Shikoku. This Infraorder Axiidea de Saint Laurent, 1979 group consists of the Nobori, Ananai, and Ropponmatsu Formations in Superfamily Callianassoidea Dana, 1852 ascending order (Katto and Masuda, 1993; Iwai et al., 2006). Matsubara Family Ctenochelidae Manning and Felder, 1991 (2004) reviewed the geologic age of the Tonohama Group based Subfamily Ctenochelinae Manning and Felder, 1991 upon the previously known microfossils. He showed that the Nobori Genus Ctenocheles Kishinouye, 1926 Formation was assigned to the late early Pliocene–early late Pliocene (4.20–3.21 or 3.12 Ma; Berggren et al., 1995) and that the geological Ctenocheles sp. age of the Ananai Formation was the late Pliocene (2.78 or 2.73–1.97 (Fig. 1.1, 1.2) Ma) (=late Pliocene–early Pleistocene based upon Cohen and Gibbard, Material examined: Incomplete propodi of 1 st pereiopod, 2011).