Decapod Crustaceans in Fresh Waters of Southeastern Bahia, Brazil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
Estuarine Mudcrab (Rhithropanopeus Harrisii) Ecological Risk Screening Summary
Estuarine Mudcrab (Rhithropanopeus harrisii) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, May 2018 Web Version, 6/13/2018 Photo: C. Seltzer. Licensed under CC BY-NC 4.0. Available: https://www.inaturalist.org/photos/4047991. (May 2018). 1 Native Range and Status in the United States Native Range From Perry (2018): “Original range presumed to be in fresh to estuarine waters from the southwestern Gulf of St. Lawrence, Canada, through the Gulf of Mexico to Vera Cruz, Mexico (Williams 1984).” 1 Status in the United States From Perry (2018): “The Harris mud crab was introduced to California in 1937 and is now abundant in the brackish waters of San Francisco Bay and freshwaters of the Central Valley (Aquatic Invaders, Elkhorn Slough Foundation). Ricketts and Calvin (1952) noted its occurrence in Coos Bay, Oregon in 1950. Rhithropanopeus harrisii, a common resident of Texas estuaries, has recently expanded its range to freshwater reservoirs in that state (Howells 2001; […]). They have been found in the E.V. Spence, Colorado City, Tradinghouse Creek, Possum Kingdom, and Lake Balmorhea reservoirs. These occurrences are the first records of this species in freshwater inland lakes.” From Fofonoff et al. (2018): “[…] R. harrisii has invaded many estuaries in different parts of the world, and has even colonized some freshwater reservoirs in Texas and Oklahoma, where high mineral content of the water may promote survival and permit reproduction (Keith 2006; Boyle 2010).” This species is in trade in the United States. From eBay (2018): “3 Freshwater Dwarf Mud Crabs Free Shipping!!” “Price: US $26.00” “You are bidding on 3 unsexed Freshwater Dwarf Mud Crabs (Rhithropanopeus harrisii).” Means of Introductions in the United States From Fofonoff et al. -
From the Bohol Sea, the Philippines
THE RAFFLES BULLETIN OF ZOOLOGY 2008 RAFFLES BULLETIN OF ZOOLOGY 2008 56(2): 385–404 Date of Publication: 31 Aug.2008 © National University of Singapore NEW GENERA AND SPECIES OF EUXANTHINE CRABS (CRUSTACEA: DECAPODA: BRACHYURA: XANTHIDAE) FROM THE BOHOL SEA, THE PHILIPPINES Jose Christopher E. Mendoza Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543; Institute of Biology, University of the Philippines, Diliman, Quezon City, 1101, Philippines Email: [email protected] Peter K. L. Ng Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore Email: [email protected] ABSTRACT. – Two new genera and four new xanthid crab species belonging to the subfamily Euxanthinae Alcock (Crustacea: Decapoda: Brachyura) are described from the Bohol Sea, central Philippines. Rizalthus, new genus, with just one species, R. anconis, new species, can be distinguished from allied genera by characters of the carapace, epistome, chelipeds, male abdomen and male fi rst gonopod. Visayax, new genus, contains two new species, V. osteodictyon and V. estampadori, and can be distinguished from similar genera using a combination of features of the carapace, epistome, thoracic sternum, male abdomen, pereiopods and male fi rst gonopod. A new species of Hepatoporus Serène, H. pumex, is also described. It is distinguished from congeners by the unique morphology of its front, carapace sculpturing, form of the subhepatic cavity and structure of the male fi rst gonopod. KEY WORDS. – Crustacea, Xanthidae, Euxanthinae, Rizalthus, Visayax, Hepatoporus, Panglao 2004, the Philippines. INTRODUCTION & Jeng, 2006; Anker et al., 2006; Dworschak, 2006; Marin & Chan, 2006; Ahyong & Ng, 2007; Anker & Dworschak, There are currently 24 genera and 83 species in the xanthid 2007; Manuel-Santos & Ng, 2007; Mendoza & Ng, 2007; crab subfamily Euxanthinae worldwide, with most occurring Ng & Castro, 2007; Ng & Manuel-Santos, 2007; Ng & in the Indo-Pacifi c (Ng & McLay, 2007; Ng et al., 2008). -
Investigation of Maryland's Coastal Bays and Atlantic Ocean Finfish
Investigation of Maryland’s Coastal Bays and Atlantic Ocean Finfish Stocks July 2015 - June 2016 Final Report Prepared by: Steve Doctor, Gary Tyler, Craig Weedon, and Angel Willey Federal Aid Project No. F-50-R-24 UNITED STATES DEPARTMENT OF INTERIOR Fish & Wildlife Service Division of Federal Assistance Region 5 Final Performance Progress Report Investigation of Maryland’s Coastal Bays and Atlantic Ocean Finfish Stocks April 1, 2015 through June 30, 2016 Grantee: Maryland Department of Natural Resources – Fisheries Service Grant No.: F15AF00156 Segment No.: F-50-R-24 Title: Investigation of Maryland’s Coastal Bays and Atlantic Ocean Finfish Stocks Period Covered: July 1, 2015 through June 30, 2016 ______ Prepared By: Angel Willey, Principal Investigator & Manager Coastal Program Approved By: Michael Luisi, Director, Estuarine & Marine Division Approved By: David Blazer, Appointing Authority Date Submitted: Statutory Funding Authority: Sport Fish Restoration X CFDA #15.605 State Wildlife Grants (SWG) Cooperative Management Act CFDA #15.634 Acknowledgements The Coastal Bays Fisheries Investigation has been sampling fishes in the Coastal Bays for 43 years. Although the survey began in 1972, it did not have dedicated funding until 1989. Consistent funding allowed staff to specifically dedicate time and make improvements to the sampling protocol that resulted in significant beneficial contributions to the fisheries of the Coastal Bays. We would like to thank the past and present staff that dedicated their careers to the Coastal Bays Fisheries Investigation for having the knowledge, initiative, and dedication to get it started and maintained. Additionally, staff of the Coastal Fisheries Program would like to thank all of the Maryland Department of Natural Resources (MDNR) employees who assisted with the operations, field work, and annual reports over the years whether it was for a day or a few months. -
The North American Mud Crab Rhithropanopeus Harrisii (Gould, 1841) in Newly Colonized Northern Baltic Sea: Distribution and Ecology
Aquatic Invasions (2013) Volume 8, Issue 1: 89–96 doi: http://dx.doi.org/10.3391/ai.2013.8.1.10 Open Access © 2013 The Author(s). Journal compilation © 2013 REABIC Research Article The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology Amy E. Fowler1,2*, Tiia Forsström3, Mikael von Numers4 and Outi Vesakoski3,5 1 Smithsonian Environmental Research Center, Edgewater, MD, USA 2 Biology Department, Villanova University, Villanova, PA 19085 USA 3 Department of Biology, University of Turku, FIN-20014 Turun yliopisto, Turku, Finland 4 Department of Biosciences, Environmental and Marine Biology – Åbo Akademi University, BioCity, FI-20520 Åbo, Finland 5 Finland Archipelago Research Institute, University of Turku, FIN-20014 Turku, Finland E-mail: [email protected] (AEF), [email protected] (FT), [email protected] (NM), [email protected] (VO) *Corresponding author Received: 2 November 2012 / Accepted: 29 January 2013 / Published online: 25 February 2013 Handling editor: Melisa Wong Abstract Here we present the known distribution and population demography of the most northern known population of the North American white- fingered mud crab, Rhithropanopeus harrisii, from southwest Finland in the Baltic Sea. This species was first reported in Finland in 2009 from the archipelago close to Turku and has been found from 82 locations within a 30 km radius since then. Due to the presence of young of year, juveniles, and gravid females observed at three sites in Finland, R. harrisii has established successful populations that are able to overwinter under ice and can opportunistically occupy diverse habitats, such as shafts of dead marsh plants, self-made burrows in muddy bottoms, and the brown algae Fucus vesiculosus in hard bottoms. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Distribution, Abundance, and Diversity of Epifaunal Benthic Organisms in Alitak and Ugak Bays, Kodiak Island, Alaska
DISTRIBUTION, ABUNDANCE, AND DIVERSITY OF EPIFAUNAL BENTHIC ORGANISMS IN ALITAK AND UGAK BAYS, KODIAK ISLAND, ALASKA by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 517 October 1977 279 We thank the following for assistance during this study: the crew of the MV Big Valley; Pete Jackson and James Blackburn of the Alaska Department of Fish and Game, Kodiak, for their assistance in a cooperative benthic trawl study; and University of Alaska Institute of Marine Science personnel Rosemary Hobson for assistance in data processing, Max Hoberg for shipboard assistance, and Nora Foster for taxonomic assistance. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environment Assessment Program (OCSEAP). SUMMARY OF OBJECTIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT Little is known about the biology of the invertebrate components of the shallow, nearshore benthos of the bays of Kodiak Island, and yet these components may be the ones most significantly affected by the impact of oil derived from offshore petroleum operations. Baseline information on species composition is essential before industrial activities take place in waters adjacent to Kodiak Island. It was the intent of this investigation to collect information on the composition, distribution, and biology of the epifaunal invertebrate components of two bays of Kodiak Island. The specific objectives of this study were: 1) A qualitative inventory of dominant benthic invertebrate epifaunal species within two study sites (Alitak and Ugak bays). -
Crustacea: Decapoda) from the Gulf of California, Mexico, and a Proposal for the Use of the Family Pseudorhombilidae Alcock, 1900
18 September 1998 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 111(3):634-644. 1998. A new genus and species of "goneplacid-like" brachyuran crab (Crustacea: Decapoda) from the Gulf of California, Mexico, and a proposal for the use of the family Pseudorhombilidae Alcock, 1900 Michel E. Hendrickx Institute de Ciencias del Mar y Limnologfa, Estacion Mazatlan, UNAM. P.O. Box 811, Mazatlan, Sinaloa 82000, Mexico Abstract.—A new genus and species of crab, Bathyrhombila furcata, are described from localities in the Gulf of California, western coast of Mexico. The new genus is close to Pseudorhombila H. Milne Edwards and belongs to a group of three genera tentatively assigned to the subfamily Pseudorhombi- linae Alcock, 1900 by Guinot in 1969. The affinity of Bathyrhombila, new genus, with other genera of "Goneplacidae" {Euphrosynoplax Guinot, Pseu dorhombila H. Milne Edwards, Nanoplax Guinot, Oediplax Rathbun, and Cha- cellus Guinot) is discussed, noting that they all represent primitive transitional forms between the cyclometopous and the catometopous abdomen-sternum or ganization, and a similar "xanthoid-goneplacid" facies. On the basis of these affinities, it is proposed that these six genera be included into the family Pseu dorhombilidae Alcock, within the Heterotremata Guinot, 1977. Resumen.—Se describe un nuevo genero y una nueva especie de cangrejo, Bathyrhombila furcata, recolectado en localidades de el golfo de California, costa oeste de Mexico. El nuevo genero se parece a Pseudorhombila H. Milne Edwards y pertenece a un grupo de tres generos tentativamente asignados a la subfamilia Pseudorhombilidae Alcock, 1900 por Guinot en 1969. Se discute la afinidad de Bathyrhombila, nuevo genero, con otros genero de "Goneplacidae" (Euphrosynoplax Guinot, Pseudorhombila H. -
Das System Der Decapoden-Krebse. Arnold Eduard Ortmann
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Nachdruck verboten liebersttzungsrecht vorbehalten. Das System der Decapoden-Krebse. Von Dr. Arnold E. Ortmann, in Princeton, N. J., — U. S. A. In einer Reihe von acht Abhandlungen, die ich in den Jahren 1890-1894 veröffentlicht habe ^), richtete ich besondere Aufmerksam- keit darauf, ein den Verwandtschaftsverhältnissen entsprechendes System der Decapoden-Krebse aufzustellen. Diese Untersuchungen, die sich auf den grundlegenden Arbeiten von Boas aufbauen, haben i) Oktmann, Die Decapoden-Krebse des Strassburger Museums. 1890. 1. Theil, Die Unterordnung Natantia Boas, in: Zool. Jahrb., V. 5, Syst., 1890. 1891a. 2. Theil, Versuch einer Revision der Gattungen Palaemon und Bithynis, ibid. V. 5, 1891. 1891b. 3. Theil, Die Abtheilungen der Reptantia Boas: Homaridea, Loricata und Thalassinidea, ibid. V. 6, 1891. 1892a. 4. Theil, Die Abtheilungen Galatheidea und Paguridea, ibid. V. 6, 1892. 1892b. 5. Theil, Die Abtheilungen Hippidea, Dromiidea und Oxystomata, ibid. V. 6, 1892. 1893a. 6. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) I. Unterabtheilung: Majoidea und Cancroidea, 1. Section : Portuninea, ibid. V. 7, 1893. 1893b. 7. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) II. Unterabtheilung : Cancroidea, 2. Section : Cancrinea, 1. Gruppe: Cyclometopa, ibid. V. 7, 1893. 1894. 8. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) III. Unterabtheilung : Cancroidea, 2. Section : Cancrinea, 2. Gruppe: Catametopa, ibid. V. 7, 1894. ZooI. Jahrb. IX. Abth. f. Syst. 27 - © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 4l0 A. ORTMANN, dazu geführt, dass ich die alte Eiiitheiluiig der Decapoden in Macrureil, Anomuren und Brachyuren gänzlich verliess und dafür eine Keihe von grossen ,, Abtheilungen" aufstellte, deren jede einen besondern, eigenthümlich entwickelten Hauptzweig des Decapoden-Stammes dar- stellt. -
Larval Growth
LARVAL GROWTH Edited by ADRIAN M.WENNER University of California, Santa Barbara OFFPRINT A.A.BALKEMA/ROTTERDAM/BOSTON DARRYL L.FELDER* / JOEL W.MARTIN** / JOSEPH W.GOY* * Department of Biology, University of Louisiana, Lafayette, USA ** Department of Biological Science, Florida State University, Tallahassee, USA PATTERNS IN EARLY POSTLARVAL DEVELOPMENT OF DECAPODS ABSTRACT Early postlarval stages may differ from larval and adult phases of the life cycle in such characteristics as body size, morphology, molting frequency, growth rate, nutrient require ments, behavior, and habitat. Primarily by way of recent studies, information on these quaUties in early postlarvae has begun to accrue, information which has not been previously summarized. The change in form (metamorphosis) that occurs between larval and postlarval life is pronounced in some decapod groups but subtle in others. However, in almost all the Deca- poda, some ontogenetic changes in locomotion, feeding, and habitat coincide with meta morphosis and early postlarval growth. The postmetamorphic (first postlarval) stage, here in termed the decapodid, is often a particularly modified transitional stage; terms such as glaucothoe, puerulus, and megalopa have been applied to it. The postlarval stages that fol low the decapodid successively approach more closely the adult form. Morphogenesis of skeletal and other superficial features is particularly apparent at each molt, but histogenesis and organogenesis in early postlarvae is appreciable within intermolt periods. Except for the development of primary and secondary sexual organs, postmetamorphic change in internal anatomy is most pronounced in the first several postlarval instars, with the degree of anatomical reorganization and development decreasing in each of the later juvenile molts. -
Decapoda: Brachyura: Xanthoidea) with Two New Genera and One New Species
JOURNAL OF CRUSTACEAN BIOLOGY, 27(2): 278–295, 2007 REVISION OF THE GENUS TITANOCARCINUS (DECAPODA: BRACHYURA: XANTHOIDEA) WITH TWO NEW GENERA AND ONE NEW SPECIES Carrie E. Schweitzer, Pedro Artal, Barry van Bakel, John W. M. Jagt, and Hiroaki Karasawa (CES, correspondence) Department of Geology, Kent State University Stark Campus, 6000 Frank Avenue NW, Canton, Ohio 44720, U.S.A. ([email protected]) (PA) Museo Geolo´gico del Seminario de Barcelona, Diputacio´n 231, E-08007 Barcelona, Spain ([email protected]) (BvB) c/o Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, The Netherlands ([email protected]) (JWMJ) Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, The Netherlands ([email protected]) (HK) Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan ([email protected]) ABSTRACT The brachyuran genus Titanocarcinus A. Milne-Edwards, 1864, is rediagnosed and restricted to six species. It is referred to the Tumidocarcinidae Schweitzer, 2005, based upon characters of the sternum, male pleon, and dorsal carapace, along with the closely related Lobonotus A. Milne-Edwards, 1864. Several species that had been referred to Titanocarcinus are herein referred to other genera, including two new ones, Nitotacarcinus and Lathahypossia, or to other families in indeterminate genera. One new species is described from the lowermost Eocene of Spain, Titanocarcinus decor. Titanocarcinus as currently defined ranged from the Cretaceous to Eocene in northern and central Europe. Lobonotus is known only from the Eocene of North and Central America. INTRODUCTION Feldmann et al. (1998) concurred. In addition, there have Numerous species have been referred to Titanocarcinus A. -
Systema Brachyurorum: Part I
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................