Decapoda, Pandalidae) in the Eastern Tropical Pacific Off Colombia

Total Page:16

File Type:pdf, Size:1020Kb

Decapoda, Pandalidae) in the Eastern Tropical Pacific Off Colombia Crustaceana 85 (6) 635-658 GROWTH, MATURITY, AND SIZE-AT-AGE VARIATION OF THE BIGHEADED SHRIMP HETEROCARPUS VICARIUS (DECAPODA, PANDALIDAE) IN THE EASTERN TROPICAL PACIFIC OFF COLOMBIA BY MILTON PEDRAZA-GARCÍA1,2,5),JAVIERA.DÍAZ-OCHOA3) and LUIS A. CUBILLOS2,4) 1) Programa de Doctorado en Ciencias Biológicas Mención Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile 2) Laboratorio de Evaluación de Poblaciones Marinas (EPOMAR) 3) Facultad de Ciencias, Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile 4) Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile ABSTRACT The bigheaded shrimp, Heterocarpus vicarius, is a commercially important species fished by bottom-trawling fleets in the Colombian Pacific. However, the life-history parameters necessary for a proper analysis of the population dynamics of this species remain unknown. This paper studies the growth, maturity, and size-at-age variations, of Heterocarpus vicarious, as well as observations on recruitment patterns. The Von Bertalanffy growth parameters were estimated by sex through modal progression analysis, which consisted of grouping cohorts into age classes. Growth parameters were similar for males and females, without significant differences (F = 3.23, p>0.05). The growth of both sexes is described by the following parameters: L∞ = 15.26 ± 1.93 cm total length (TL), −1 K = 0.594 ± 0.24 yr ,andt0 =−0.66 ± 0.31 yr. Size-at-age variability was due mainly to processes occurring before larval settlement, since the mean length of same-age individuals born during different reproductive events (intercohort) varied more than that of individuals born during the same reproductive event (intracohort). Length at 50% maturity was estimated at 11.72 cm TL for females, with 95% confidence intervals between 10.57 and 13.71 cm TL. The growth curve and the relatively advanced age at maturity estimated for H. vicarius in the study area suggest the species is very vulnerable to fishing exploitation. RESUMEN El camarón cabezudo Heterocarpus vicarius es un recurso económicamente importante de la costa Pacífica colombiana, capturado por una flota camaronera de arrastre de fondo; sin embargo, la información existente sobre parámetros de historia de vida y dinámica poblacional es escasa. Este trabajo contribuye al conocimiento de esta especie presentando información sobre crecimiento, 5) e-mail: [email protected] © Koninklijke Brill NV, Leiden, 2012 DOI:10.1163/156854012X643924 636 M. PEDRAZA-GARCÍA, J. A. DÍAZ-OCHOA & L. A. CUBILLOS madurez, variación de la talla a la edad e inferencias sobre patrones de reclutamiento. Los parámetros de la función de crecimiento de Von Bertalanffy (FCVB) fueron estimados por sexo a través de un análisis de progresión modal, el cual incluyó un agrupamiento ordenando de cohortes dentro clases de edad. El crecimiento entre sexos no presentó diferencias significativas (F = 3,23, p>0,05), describiéndose por los siguientes parámetros: L∞ = 15,26 ± 1,93 cm de longitud total (LT), −1 K = 0,594 ± 0,24 año y t0 =−0,66 ± 0,31 años. La variabilidad de la talla a la edad fue principalmente ocasionada por procesos previos al asentamiento ocurridos en la población, dado que la longitud promedio de los individuos nacidos en diferentes eventos reproductivos (inter-cohortes) presento mayor variación que aquella registrada para los individuos nacidos en un mismo evento reproductivo (intra-cohortes). La longitud al 50% de madurez en hembras fue estimada en 11,72 cm LT, con un intervalo de confianza al 95% entre 10,57 y 13,71 cm LT. La curva de crecimiento y la edad relativamente avanzada de maduración estimadas para H. vicarius en el área de estudio, sugiere que esta especie puede ser especialmente sensible a niveles altos de explotación. INTRODUCTION Numerous shrimp species belonging to the family Pandalidae are exploited commercially world-wide (Wilder, 1977; Moffitt, 1983; Gooding, 1984; Crosnier, 1986, 1988; King, 1987; Hendrickx, 1990; Hendrickx et al., 1998). About 34 species have been identified as economically important around the world (Holthuis, 1980). Some of these reach large body sizes, among them Heterocarpus vicarius (Faxon, 1893), the northern nylon shrimp, which is known in Colombia as the bigheaded shrimp. This species is caught from the Gulf of California to Peru and is found in depths between 73 and 1400 m (Hendrickx, 1995). It is particularly important for fisheries in Costa Rica, Panama, and Colombia (Holthuis, 1980; Pedraza-García, 2000). Most studies report that given its wide distribution and abundance levels, H. vicarius is a promising fish resource, inhabiting depths greater than 200 m in the Eastern Tropical Pacific (Del Solar & Mistakides, 1971; Hendrickx & Wicksten, 1989; Hendrickx, 1995; Kameya et al., 1997). In the Colombian Pacific, H. vicarius is caught as part of the bycatch in a bottom-trawling fishery operating below 40 fathoms (72 m). The target species are the shrimp Farfantepenaeus californiensis (Holmes, 1900) (brown or choco- late shrimp), Farfantepenaeus brevirostris (Kingsley, 1878) (pink shrimp), and Solenocera agassizi Faxon, 1893 (cauliflower shrimp) (Rueda et al., 2004; Puentes et al., 2007). This fishery is considered fully exploited and the yields have great potential for international markets because exports attained 31 million dollars in 2005 (De la Pava & Mosquera, 2001; Samper, 2006). However, few studies have been carried out on this fishery and most of the information has been obtained from assessment surveys in the 1980s by the Colombian Natural Resources and Environment Institute (Instituto de Recursos Naturales y del Ambiente – INDER- ENA) and the Japanese International Cooperation Agency (JICA). The surveys VARIATIONS IN GROWTH OF HETEROCARPUS VICARIUS 637 showed promising yields for species such as Solenocera agasizzi and Heterocar- pus vicarius (cf. Squires, 1971; Rueda et al., 2004). In spite of the increasing pres- sure from fishing and its economic potential, information on the biology of H. vicarius is still limited. The literature available is mostly devoted to taxonomy, geographic and bathymetric distribution and habitat preferences (Méndez, 1981; Hendrickx, 1995). To our knowledge, the only information available for the ad- ministration of this fishery comprises a few reports on yields, density distribution, and description of the community structure (e.g., Kameya et al., 1997; Hendrickx et al., 1998; Puentes et al., 2007; Wehrtmann & Echeverría-Sáenz, 2007). Con- sequently, we do not know about key life-history aspects of the biology of Hete- rocarpus vicarius in the Colombian Pacific, even though this species is fully ex- ploited. The species probably exhibits slow growth rates and high natural mortality rates, a dangerous combination that could lead to the species collapsing under in- tense exploitation (King, 1987). The objective of this paper is to contribute basic knowledge on the biology of H. vicarius in the Colombian Pacific basin. To do this, we provide estimations of important life-history parameters. We estimated growth parameters, using length frequency data, length at 50% maturity, and re- cruitment periodicity of the species. We discuss some aspects related to environ- mental effects on variations in length-at-age with respect to recruitment to fishing grounds. MATERIAL AND METHODS Data sources Length frequency data were collected from the fishing fleet operating in the Colombian Pacific (6°80-1°42N) (fig. 1). Each length-frequency data set corre- sponds to monthly summaries of random samples obtained from the catches of the industrial trawling vessels of the Buenaventura deep-water shrimp fleet. Body size of specimens of Heterocarpus vicarius was measured as total length (TL), which was defined as the distance between the anterior edge of the maxillipeds and the tip of the telson. Each specimen was sexed, and the number of females in ovigerous condition was registered. The period of study covered 12 months in the 1995/1996 fishing season. Recruitment periodicity Recruitment periodicity was determined using a trigonometric regression model (Greybill, 1976: 310), in which the logarithm of mean monthly length was used as 638 M. PEDRAZA-GARCÍA, J. A. DÍAZ-OCHOA & L. A. CUBILLOS Fig. 1. Study area in the Eastern Tropical Pacific off Colombia (6°80 -1°42 N). the dependent variable: ln TL(ti) ∝ sin(2πF0(ti + H))+ V + εi (1) where TL(ti) is the mean size of individual i in month t, F0 = 2π/P0 is the fundamental frequency (P0 is the fundamental recruitment period), H is the horizontal phase shift (the horizontal displacement from the beginning of the cycle), V is the vertical phase shift (the vertical distance from zero for the mean response variable ln TL(ti)), and ∝ is a proportionality factor fixed during model fitting and equal to the difference between maximal(ln TL) and mean(ln TL).The model was fitted by non-linear least squares with the NONLIN module of SYSTAT software (Wilkinson, 1988). The number of recruitment events was computed from the ratio T/P0 (where T is the total number of months analysed). VARIATIONS IN GROWTH OF HETEROCARPUS VICARIUS 639 Cohort identification Mean length data were grouped by considering the number of recruitment events and the parameters P0 and H . It was assumed that: (i) the amount of monthly data within each group depended on the value of P0 (for instance, P0 = 6 means that the group contains six months of information), and (ii) the month when each group started to be dependent of the value of H (e.g., H = 2 means that the group begins in the third month). Cohort identification was accomplished using the mixed distribution analysis (Macdonald & Pitcher, 1979; Macdonald & Green, 1988) included in the MIX 3.0 software (Ichthus Data Systems, Ontario, Canada). The MIX algorithm assumes that a length-frequency data (LFD) set consists of n components (cohorts), each one representing a probability density function f(x), for which a normal distribution of length-at-age was assumed.
Recommended publications
  • The Larvae of Some Species of Pandalidae (Decapoda) By
    THE LARVAE OF SOME SPECIES OF PANDALIDAE (DECAPODA) BY R. B. PIKE 1) AND D. I. WILLIAMSON 2) INTRODUCTION There are many cases in the literature of larvae which have been ascribed to the wrong species and several such cases concern the Pandalidae. Thus larvae described by Sars (1900) as "Pandalus boreali.r" and "P. bonnieri" were shown by Lebour (1930) to be the larvae of Caridion gordoni (Bate) and C. Jteveni Lebour respectively, and larvae which Stephensen (1912, 1916) named ""Pandalus propinqtlu/' and uSpirontocaris-larva No. 4" were later found to be stages in the development of P. boreali.r Krbyer (described by Berkeley, 1930). In his account of the Decapoda of the Godthaab Expedition, Stephensen (1935) corrected his former misidentifications and described another larva as "'Pandalus pro pinquu.r ( ? ) ". In the present paper we describe larvae of P. propinquus G. O. Sars from labora- tory hatchings and they differ appreciably from the larvae ascribed to this species by Stephensen (1935). They closely resemble "Spiro?ztocari.r-larva No. 5" (Ste- phensen, 1916, 1935) and also show only very small differences from the larvae of Dichelo pandalus bonnieri (Caullery), which are re-described below. The oppor- tunity is also taken in this paper to give more complete descriptions than have hitherto been available of the larval development of Pandalus montagui Leach and of Pandalina breviro.rtri.r (Rathke) and to summarise our present knowledge of pandalid larvae. The larvae described were obtained from laboratory hatchings at the Marine Station, Millport, and the Marine Biological Station, Port Erin, and from plankton collected in the Firth of Clyde and the Irish Sea.
    [Show full text]
  • Pandalus Platyceros Range: Spot Prawn Inhabit Alaska to San Diego
    Fishery-at-a-Glance: Spot Prawn Scientific Name: Pandalus platyceros Range: Spot Prawn inhabit Alaska to San Diego, California, in depths from 150 to 1,600 feet (46 to 488 meters). The areas where they are of higher abundance in California waters occur off of the Farallon Islands, Monterey, the Channel Islands and most offshore banks. Habitat: Juvenile Spot Prawn reside in relatively hard-bottom kelp covered areas in shallow depths, and adults migrate into deep water of 60.0 to 200.0 meters (196.9 to 656.2 feet). Size (length and weight): The Spot Prawn is the largest prawn in the North Pacific reaching a total length of 25.3 to 30.0 centimeters (10.0 to 12.0 inches) and they can weigh up to 120 grams (0.26 pound). Life span: Spot Prawn have a maximum observed age estimated at more than 6 years, but there are considerable differences in age and growth of Spot Prawns depending on the research and the area. Reproduction: The Spot Prawn is a protandric hermaphrodite (born male and change to female by the end of the fourth year). Spawning occurs once a year, and Spot Prawn typically mate once as a male and once or twice as a female. At sexual maturity, the carapace length of males reaches 1.5 inches (33.0 millimeters) and females 1.75 inches (44.0 millimeters). Prey: Spot Prawn feed on other shrimp, plankton, small mollusks, worms, sponges, and fish carcasses, as well as being detritivores. Predators: Spot Prawn are preyed on by larger marine animals, such as Pacific Hake, octopuses, and seals, as well as humans.
    [Show full text]
  • Decapoda:Pandalidae) from the West Coast of India
    NOTE New record of the monotypic shrimp genus Procletes (Decapoda:Pandalidae) from the West coast of India Barkha Purohit1 & Kauresh D. Vachhrajani1 1. The Maharaja Sayajirao University of Baroda, Faculty of Science, Department of Zoology, Marine Biodiversity and Ecology Laboratory, Vadod- dara-390002, Gujarat, India; [email protected], https://orcid.org/0000-0002-7810-6441 [email protected], https://orcid.org/0000-0002-6840-4752 Received 15-I-2019 • Corrected 12-III-2019 • Accepted 07-IV-2019 DOI: https://doi.org/10.22458/urj.v11i3.2600 ABSTRACT: Introduction: Significant work has been done on the di- RESUMEN: “NOTA. Nuevo registro del género monotípico del cama- versity and distribution of pandalid shrimps in Indian waters but re- rón Procletes (Decapoda: Pandalidae) de la costa oeste de la India”. ports did not include the presence of this species. Objective: To list Introducción: Se ha realizado un importante trabajo sobre la diver- the marine shrimps of Gujarat. Methods: Samples were collected from sidad y distribución de camarones pandálidos acuáticos de la India, trawl catch. Results: Procletes levicarina is reported for first time from pero los registros no incluyen la presencia de esta especie. Objetivo: the coastal area of Gujarat, including a detailed morphological descrip- Generar una lista de los camarones marinos de Gujarat. Métodos: Se tion and photographs. This species is previously reported from the east recolectaron muestras de capturas de arrastre. Resultados: Procletes le- coast of India. Conclusion: Procletes levicarina occurs in the west coast vicarina se reporta por primera vez en el área costera de Gujarat, inclu- of India. yendo descripciones morfológicas detalladas y fotografías.
    [Show full text]
  • Redescription of Heterocarpus Laevis A
    20 March 1985 PROC. BIOL. SOC. WASH. 98(1), 1985, pp. 237-242 REDESCRIPTION OF HETEROCARPUS LAEVIS A. MILNE EDWARDS (CRUSTACEA: DECAPODA: PANDALIDAE) Abstract. -Heterocarpus laevis was figured by A. Milne Edwards in 1883, based on material from Martinique. One other specimen has been recorded from off the Cayman islands. No written description was provided, and the species has not been recorded since. Based on fresh material from St. Croix, U.S. Virgin Islands, the species is figured and redescribed. Heterocarpus laevis is unique in this genus, for lacking lateral carapace carinae. A deepwater shrimp trapping survey was conducted by the second author at selected sites off St. Croix, U.S. Virgin Islands, in August 1982, as part of the Virgin Islands Fishery Development and Demonstration Project. Twenty-four hour-sets were made with polyethylene traps (Fathoms Plus, San Diego, California), 73 cm wide by 87 cm long by 30 cm high, baited with blue runner (Caranx crysos). Trap mesh size was reduced to 1.3 cm with an internal plastic netting. Each set consisted of six traps spaced at 20 m intervals with 5 kg weights before the first and after the last trap. Several deepwater shrimps and other invertebrate species were obtained from a depth of 460 m in the Salt River Canyon, off the north coast of St. Croix. These specimens were submitted to the first author for identification. Among these were six specimens which proved to be Heterocarpus laevis. In April 1883, Alphonse Milne Edwards published a set of 44 plates of new or rare crustaceans from various sources, including the Blake, and Travailleur and Talisman expeditions.
    [Show full text]
  • Zootaxa, Heterocarpus Tenuidentatus (Crustacea, Decapoda, Caridea
    Zootaxa 1200: 61–68 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1200 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Heterocarpus tenuidentatus, a new species of shrimp from the Solomon Islands (Crustacea, Decapoda, Caridea, Pandalidae) RÉGIS CLEVA1 & ALAIN CROSNIER2 1Département Milieux et Peuplements aquatiques Muséum national d’Histoire naturelle 61 rue Buffon, F-75231 Cedex 05, France. E-mail: [email protected] 2Département Systématique et Évolution Muséum national d’Histoire naturelle 55 rue Buffon, F-75231 Cedex 05, France. E-mail: [email protected] Abstract Heterocarpus tenuidentatus n. sp. is described from an ovigerous female collected off the Solomon Islands at a depth of between 814 and 980 meters. It is distinguished by a branchiostegal carina that extends along two thirds of the carapace, this being the only long, sharp carina on the lateral part of the carapace. It is also characterized by having the rostrum scarcely longer than half the length of the carapace, the small size of the upper rostral and postrostral teeth, the proportionally wide blade of the scaphocerite, and by being larger in size than any other Heterocarpus species. Key words: Crustacea, Decapoda, Caridea, Pandalidae, Heterocarpus, deep water, Pacific Ocean, Solomon Islands, new species. Introduction During the SALOMON 2 cruise of the IRD research vessel Alis off the Solomon Islands, organized jointly by the IRD (Institut de Recherche pour le Développement, ex ORSTOM) and the Muséum national d’Histoire naturelle, Paris (MNHN), a single specimen of Heterocarpus A. Milne Edwards, 1881, was caught between 814 and 980 meters deep. The specimen clearly belongs to a new species, based on several unique characters.
    [Show full text]
  • Distribution, Abundance, and Diversity of Epifaunal Benthic Organisms in Alitak and Ugak Bays, Kodiak Island, Alaska
    DISTRIBUTION, ABUNDANCE, AND DIVERSITY OF EPIFAUNAL BENTHIC ORGANISMS IN ALITAK AND UGAK BAYS, KODIAK ISLAND, ALASKA by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 517 October 1977 279 We thank the following for assistance during this study: the crew of the MV Big Valley; Pete Jackson and James Blackburn of the Alaska Department of Fish and Game, Kodiak, for their assistance in a cooperative benthic trawl study; and University of Alaska Institute of Marine Science personnel Rosemary Hobson for assistance in data processing, Max Hoberg for shipboard assistance, and Nora Foster for taxonomic assistance. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environment Assessment Program (OCSEAP). SUMMARY OF OBJECTIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT Little is known about the biology of the invertebrate components of the shallow, nearshore benthos of the bays of Kodiak Island, and yet these components may be the ones most significantly affected by the impact of oil derived from offshore petroleum operations. Baseline information on species composition is essential before industrial activities take place in waters adjacent to Kodiak Island. It was the intent of this investigation to collect information on the composition, distribution, and biology of the epifaunal invertebrate components of two bays of Kodiak Island. The specific objectives of this study were: 1) A qualitative inventory of dominant benthic invertebrate epifaunal species within two study sites (Alitak and Ugak bays).
    [Show full text]
  • Family PANDALIDAE the Genera of This Family May
    122 L. B. HOLTHUIS Family PANDALIDAE Pandalinae Dana, 1852, Proc. Acad. nat. Sci. Phila. 6: 17, 24. Pandalidae Bate, 1888, Rep. Voy. Challenger, Zool. 24: xii, 480, 625. The genera of this family may be distinguished with the help of the fol- lowing key, which is largely based on the key given by De Man (1920, Siboga Exped. 39 (a3) : 101, 102); use has also been made of Kemp's (1925, Rec. Indian Mus. 27:271, 272) key to the Chlorotocus section of this family. 1. Carpus of second pereiopods consisting of more than three joints. 2 — Carpus of second pereiopods consisting of 2 or 3 joints 13 2. No longitudinal carinae on the carapace except for the postrostral crest. 3 — Carapace with longitudinal carinae on the lateral surfaces. Integument very firm. 12 3. Rostrum movably connected with the carapace Pantomus — Rostrum not movable 4 4. Eyes poorly developed, cornea narrower than the eyestalk . Dorodotes — Eyes well developed, cornea much wider than the eyestalk .... 5 5. Third maxilliped with an exopod 6 — Third maxilliped without exopod 8 6. Epipods on at least the first two pereiopods 7 — No epipods on any of the pereiopods Parapandalus 7. Posterior lobe of scaphognathite broadly rounded or truncate. Stylocerite pointed anteriorly. Rostrum with at least some fixed teeth dorsally. Plesionika — Posterior lobe of scaphognathite acutely produced. Stylocerite broad and rounded. Rostrum with only movable spines dorsally Dichelopandalus 8. Laminar expansion of the inner border of the ischium of the first pair of pereiopods very large Pandalopsis — Laminar expansion of the inner border of the ischium of the first pair of pereiopods wanting or inconspicuous 9 9.
    [Show full text]
  • 10 Taxonomy, Biology and Distribution of Deep Sea Shrimps
    Taxonomy, Biology and 10 Distribution of Deep Sea Shrimps Rekha Devi Chakraborty Crustacean Fisheries Division Shellfish systematics is the most unique one in fisheries science in view of its importance and implications in diversity. The systematic zoology is the science that discovers names, determines relationships, classifies and studies the evolution of living organisms. It is an important branch in biology and is considered to be one of the major subdivisions of biology having a broader base than genetics, biochemistry and physiology. The shellfish includes two highly diversified phyla i.e. phylum Arthropoda and phylum Mollusca. These two groups are named as shellfishes because of the presence of exoskeleton made of chitin in arthropods and shells made of calcium in molluscs. These two major phyla are invertebrates. They show enormous diversity in their morphology, in the habitats they occupy and in their biology. Phylum Arthropoda includes economically important groups such as lobsters, shrimps, crabs. Taxonomical study reveals numerous interesting phenomena in shellfish phylogeny and the study is most indispensable for the correct identification of candidate species for conservation and management of our fishery resources and aquaculture practices. On the whole taxonomic study on shellfishes furnishes the urgently needed information about species and it cultivates a way of thinking and approaching of all biological problems, which are much needed for the balance and well being of shellfish biology as a whole. Training Manual on Species Identification Shrimp resources are available both from inshore and from offshore waters. As the fish resource from inshore waters remained static during the last two decades, fishing pattern underwent several changes in the previous decade, leading to the exploitation of deep sea resources either with deployment of large sized vessels or modified medium/small sized vessels.
    [Show full text]
  • The Protandric Life History of the Northern Spot Shrimp Pandalus Platyceros: Molecular Insights and Implications for Fishery Management
    The protandric life history of the Northern spot shrimp Pandalus platyceros: molecular insights and implications for fishery management. Item Type Article Authors Levy, Tom; Tamone, Sherry L; Manor, Rivka; Bower, Esther D; Sagi, Amir Citation Levy, T., Tamone, S.L., Manor, R. et al. The protandric life history of the Northern spot shrimp Pandalus platyceros: molecular insights and implications for fishery management. Sci Rep 10, 1287 (2020). https://doi.org/10.1038/s41598-020-58262-6 DOI 10.1038/s41598-020-58262-6 Publisher Nature Journal Scientific reports Download date 24/09/2021 06:45:06 Link to Item http://hdl.handle.net/11122/12052 www.nature.com/scientificreports OPEN The protandric life history of the Northern spot shrimp Pandalus platyceros: molecular insights and implications for fshery management Tom Levy 1, Sherry L. Tamone2*, Rivka Manor1, Esther D. Bower2 & Amir Sagi 1,3* The Northern spot shrimp, Pandalus platyceros, a protandric hermaphrodite of commercial importance in North America, is the primary target species for shrimp fsheries within Southeast Alaska. Fishery data obtained from the Alaska Department of Fish and Game indicate that spot shrimp populations have been declining signifcantly over the past 25 years. We collected spot shrimps in Southeast Alaska and measured reproductive-related morphological, gonadal and molecular changes during the entire life history. The appendix masculina, a major sexual morphological indicator, is indicative of the reproductive phase of the animal, lengthening during maturation from juvenile to the male phase and then gradually shortening throughout the transitional stages until its complete disappearance upon transformation to a female. This morphological change occurs in parallel with the degeneration of testicular tissue in the ovotestis and enhanced ovarian vitellogenesis.
    [Show full text]
  • 322 Cmr: Division of Marine Fisheries 322 Cmr 5.00
    322 CMR: DIVISION OF MARINE FISHERIES 322 CMR 5.00: NORTHERN SHRIMP Section 5.01: Purpose 5.02: Definitions 5.03: Permits 5.04: Commercial Fishery Moratorium and Annual Specifications 5.05: Gear Restrictions 5.06: Regulated Species Prohibition 5.01: Purpose The objective of 322 CMR 5.00 is to manage the northern shrimp fishery in cooperation with Maine and New Hampshire, under the auspices of the Atlantic States Marine Fisheries Commission. The three states are attempting to achieve sustainable production over time with minimum impact on other fisheries resources. Due to the absence of federal regulatory measures within the EEZ (3-200 miles), it is necessary to enforce 322 CMR 5.00 outside waters within the jurisdiction of the Commonwealth. Therefore, for the purposes of conservation and management of this migratory species, 322 CMR 5.00 shall apply within the waters of the EEZ and shall be actively enforced against vessels registered under the laws of Massachusetts. 5.02: Definitions For the purposes of 322 CMR 5.00: Cod-end means that portion of the net in which the catch is normally retained. Fish for means to harvest, catch, take, or attempt to harvest, catch, or take shrimp by any method or means. Fish Outlet means a triangular opening in the webbing of the extension of the trawl which allows the escapement of fish too large to pass between the bars of the grate. Grate means a rigid or semi-rigid planer device consisting of parallel bars attached to a frame with a spacing between bars of not more than one inch.
    [Show full text]
  • Stable Isotopes Reveal Food Web Dynamics of a Data-Poor Deep-Sea Island Slope Community
    Food Webs 10 (2017) 22–25 Contents lists available at ScienceDirect Food Webs journal homepage: www.journals.elsevier.com/food-webs Stable isotopes reveal food web dynamics of a data-poor deep-sea island slope community Oliver N. Shipley a,b,c,⁎, Nicholas V.C. Polunin a, Steven P. Newman a,d, Christopher J. Sweeting a, Sam Barker e, Matthew J. Witt e,EdwardJ.Brooksb a School of Marine Science & Technology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK b Shark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, PO Box EL-26029, Bahamas, c School of Marine and Atmosphere Sciences, Stony Brook University, 11780, NY, USA d Banyan Tree Marine Lab, Vabbinfaru, Kaafu Atoll, Maldives e The Environment and Sustainability Institute, University of Exeter Penryn Campus, Cornwall TR10 9EZ, UK article info abstract Article history: Deep-sea communities are subject to a growing number of extrinsic pressures, which threaten their structure Received 6 December 2016 and function. Here we use carbon and nitrogen stable isotopes to provide new insights into the community struc- Received in revised form 20 January 2017 ture of a data-poor deep-sea island slope system, the Exuma Sound, the Bahamas. A total of 78 individuals from Accepted 3 February 2017 16 species were captured between 462 m and 923 m depth, and exhibited a broad range of δ13C(9.45‰)andδ15N Available online 12 February 2017 (6.94‰). At the individual-level, δ13C decreased strongly with depth, indicative of shifting production sources, as fi δ15 Keywords: well as potential shifts in community composition, and species-speci c feeding strategies.
    [Show full text]
  • Remote Camera and Trapping Survey of the Deep-Water Shrimps Heterocarpus Laevigatus and H
    Remote Camera and Trapping Survey of the Deep-water Shrimps Heterocarpus laevigatus and H. ensifer and the Geryonid Crab Chaceon granulatus in Palau W. B. SAUNDERS and LEE C. HASTIE Introduction persal, and depth ranges, as well as scale deep-water shrimp fishery in 3 population characteristics such as size­ Palau (Saunders et aI., 1989 ). Deep-water bottom-dwelling com­ distribution, sex ratios, etc. More so­ Procedures munities of the Indo-Pacific are not phisticated analyses of larger trapping well known, owing to their relative data bases have been used to describe Trapping inaccessibility. Most available infor­ reproductive biology, growth, and mation has been derived from trap­ mortality (Dailey and Ralston, 1986), A total of 103 traps was set between ping-based surveys which, for the and to calculate potential exploitable 170-900 m depth at five sites around most part, have been pilot efforts di­ biomass and sustainable yields under Palau (Fig. I) during May-October rected at evaluating economic poten­ intensive fishing pressure (Polovina et 1987 and 1988. The following trap de­ tial of deep-water shrimps (King, aI., 1985; Ralston, 1986; Moffitt and signs were used during the survey: I) 1980, 1982, 1984; Struhsaker and Polovina, 1987; Tagami and Ralston, A small collapsible trap (60 x 40 x 20 Aasted, 1974; Gooding, 1984). These 1988). Only recently has it been lo­ cm); 2) a large pyramidal trap (2 m surveys have generated information on gistically possible to attempt to study square at the base x 1.5 m high); 3) a species identifications, geographic dis- the deepwater habitat directly, and sev­ traditional fish trap design (1.5 x 1 x 1 eral recent efforts using a submers­ , m); 4) a covered box trap (1.5 x 0.5 x ible show much promise (Ralston et 0.5 m); 5) a small box-shaped trap (1 x W.
    [Show full text]