Pandalus Platyceros Range: Spot Prawn Inhabit Alaska to San Diego

Total Page:16

File Type:pdf, Size:1020Kb

Pandalus Platyceros Range: Spot Prawn Inhabit Alaska to San Diego Fishery-at-a-Glance: Spot Prawn Scientific Name: Pandalus platyceros Range: Spot Prawn inhabit Alaska to San Diego, California, in depths from 150 to 1,600 feet (46 to 488 meters). The areas where they are of higher abundance in California waters occur off of the Farallon Islands, Monterey, the Channel Islands and most offshore banks. Habitat: Juvenile Spot Prawn reside in relatively hard-bottom kelp covered areas in shallow depths, and adults migrate into deep water of 60.0 to 200.0 meters (196.9 to 656.2 feet). Size (length and weight): The Spot Prawn is the largest prawn in the North Pacific reaching a total length of 25.3 to 30.0 centimeters (10.0 to 12.0 inches) and they can weigh up to 120 grams (0.26 pound). Life span: Spot Prawn have a maximum observed age estimated at more than 6 years, but there are considerable differences in age and growth of Spot Prawns depending on the research and the area. Reproduction: The Spot Prawn is a protandric hermaphrodite (born male and change to female by the end of the fourth year). Spawning occurs once a year, and Spot Prawn typically mate once as a male and once or twice as a female. At sexual maturity, the carapace length of males reaches 1.5 inches (33.0 millimeters) and females 1.75 inches (44.0 millimeters). Prey: Spot Prawn feed on other shrimp, plankton, small mollusks, worms, sponges, and fish carcasses, as well as being detritivores. Predators: Spot Prawn are preyed on by larger marine animals, such as Pacific Hake, octopuses, and seals, as well as humans. Fishery: There is both a recreational and a small, limited entry commercial trap fishery for Spot Prawn. Area fished: The Spot Prawn trap fleet operates along the entire coastline of California, from Oregon south to the Mexico border. Since the Spot Prawn trawl ban in 2003, fewer than six vessels typically fish north of Point Arguello, and regional landings are significantly less than those of the southern California fishery. In California, most fishing occurs in depths from approximately 600 to 1000 feet (180 to 300 meters). Fishing season: North of Point Arguello, the commercial season is open August through April. South of Point Arguello, the commercial season is open from February through October. The recreational fishery is open year round. vi Fishing gear: The traps used for Spot Prawn are either oval or rectangular-shaped mesh traps with a minimum inside measurement of 7/8 by 7/8 inches (22 by 22 millimeters). Market(s): The peak ex-vessel Spot Prawn value was achieved in 2016 at about $7.2 million. Most Spot Prawn are sold live and it is estimated about half is sold to domestic markets and the other half is sold to international markets, primarily in Asia. Current stock status: Though there is little information on the status of the stock, it is generally assumed to be healthy based on the relative stability of landings and effort. In 2017, California Spot Prawn commercial landings totaled 464,950 pounds. Management: The Department uses multiple methods of management, including a limited entry program that restricts the amount of commercial participation, seasonal closures, gear restrictions, and spatial restrictions. vii 1 The Species 1.1 Natural History 1.1.1 Species Description The Spot Prawn is the largest shrimp in the North Pacific reaching a total length of 30 centimeters (cm) (12 inches (in)) and they can weigh up to 120 grams (g) (0.26 pound (lb)) (Barr 1973). Though they are commonly called Spot Prawn, they are actually a shrimp in the family Pandalidae. Fishermen gave them this common name because they have two white spots on the first and fifth section of their abdomen (Butler 1964). Spot Prawn have a curved rostrum in the first larval stage and teeth in all larval stages, which is different from most of the other Pandalus species (Figure 1-1; Haynes 1985). They have four zoeal (larval) stages and five megalopa (post larval) stages (Price and Chew 1972). Spot Prawn are nocturnal, remaining in rock crevasses during the day. They also are carnivorous and forage for food off of the bottom (Barr 1973). Figure 1-1. Diagram of Spot Prawn larval (zoeal) stage. The diagram on the right shows the curved rostrum and teeth indicative of this species (Reproduced from Haynes 1985). 1.1.2 Range, Distribution, and Movement Spot Prawn range from Unalaska, Alaska to San Diego, California (Figure 1-2) (Sunada 1984). They inhabit areas with rocky bottoms and vertical rock walls at depths ranging from depths of 150 to 1,600 feet (ft) (46 to 488 meters (m)) (Shanks 2001). Spot Prawn tend to be in higher abundance in California waters off of the Farallon Islands, Monterey, the Channel Islands, and most offshore banks. After completing larval stage six at a carapace length of approximately 0.3 inches (in) (8.0 millimeters (mm)), Spot 1-1 Prawn are considered to be juveniles and progressively move deeper as they reach adulthood (Butler 1970; Sunada 1984; Lowry 2007). Spot Prawn exhibit ontogenetic movement from shallower to deeper depths. They spend their juvenile stage in these shallow habitats before emigrating to offshore deeper habitats before they mature into functional males. The trigger of this movement seems to be size-related (Barr 1973; Marliave and Roth 1995; Lowry 2007). Once they have migrated into adult grounds they exhibit little movement. Tagging studies conducted by Boutillier and Bond (1999) and Kimker et al. (1996) demonstrated that Spot Prawn stayed within 1.7 kilometers (km) (1.06 miles (mi)) of their release location over a period of months to years. Figure 1-2. Range of Spot Prawn. 1.1.3 Reproduction, Fecundity, and Spawning Season Spot Prawns are protandric hermaphrodites, and thus begin life as a male and then change into a female for the duration of their life (Barr 1973). Growth, size at sexual maturity, and size at sex change are very plastic and related to temperature and latitude (Charnov and Anderson 1989; Bergstroem 2000; Koeller et al. 2000). Sexual maturity as a male is reached between 2.5 and 3.5 years, with the carapace length (CL) averaging 1.5 in (38.0 mm). By year (yr) 4, many males begin to change sex, and this transformation is complete by the end of that year. At this point females average 1.75 in (44.0 mm) CL. Maximum observed age is estimated at over 6 yr, but there are 1-2 considerable differences in age and growth of Spot Prawn between areas (Sunada 1986; Lowry 2007). Studies indicate that prawns grow faster in a temperate environment than in a cold environment (Parsons et al. 1989; Hanson and Aschan 2000; Wieland 2004). Spawning occurs once a year in the late summer or early autumn, and each individual mates once as a male and once or twice as a female (Lowry 2007). Mating behavior has only been observed in the lab (Hoffman 1973). Spawning takes place at depths of 500 to 700 ft (152 to 213 m) at night immediately after the female has molted. The male attaches spermatophores to the underside of the female, which is later used to fertilize the eggs as the female extrudes them onto her swimmerets (Butler 1970). Female Spot Prawn carry eggs for a period of 4 to 5 months before they hatch. In California, the majority of female Spot Prawns are gravid from September to March (Schlining 1999). By April, only 15 % of females still carry eggs (CDFW 2008). Like mating, hatching occurs at night in deep water and one female will release her hatching eggs from her swimmerets over three or four successive nights (Lowry 2007). Fecundity varies with size and age, ranging from approximately 1,400 to 5,000 eggs for the first spawning down to 1,000 eggs for the second spawning. Eggs hatch over a 10 day period and the first three or four larval stages are planktonic (Lowry 2007). During the third or fourth stage, Spot Prawn larvae begin to settle out at depths as shallow as 30 ft (10 m). Upon settling they take refuge in algae such as Agarum spp., Laminaria spp., or other subtidal debris (Marliave and Roth 1995; Lowry 2007). Juvenile prawns migrate out of these shallow-water nursery areas and into deeper waters once they reach a size of about 20 mm CL (Barr 1973; Sunada 1986; Lowry 2007). The timing of this movement varies latitudinally, since Spot Prawn growth rate is closely linked to temperature (see section 1.1.5) and therefore Spot Prawn reach the necessary size at different ages. 1.1.4 Natural Mortality Determining the natural mortality (M) of marine species is important for understanding the health and productivity of their stocks. Natural mortality results from all causes of death not attributable to fishing such as old age, disease, predation or environmental stress. Natural mortality is generally expressed as a rate that indicates the percentage of the population dying in a year. Fish with high natural mortality rates must replace themselves more often and thus tend to be more productive. Natural mortality along with fishing mortality result in the total mortality operating on the fish stock. Natural mortality has been estimated for Spot Prawn by using the growth rate model for an unfished population with the assumption of equal recruitment annually when gear selection is known (Lowry 2007). Areas from the Eastern Strait of Juan de Fuca and Northern Puget Sound (known non-fished areas) were sampled four times with the assumption that gear used was selecting for prawns under 3 yr, so these estimates of mortality represent natural mortality (Lowry 2007).
Recommended publications
  • Shrimp Fishing in Mexico
    235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats.
    [Show full text]
  • The Fishery for Northern Shrimp (Pandalus Borealis) Off West Greenland, 1970–2019
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N7008 NAFO SCR Doc. 19/044 NAFO/ICES PANDALUS ASSESSMENT GROUP—November 2019 The Fishery for Northern Shrimp (Pandalus borealis) off West Greenland, 1970–2019 by AnnDorte Burmeister and Frank Rigét Greenland Institute of Natural Resources Box 570, 3900 Nuuk, Greenland Abstract The Northern shrimp (Pandalus borealis) occurs on the continental shelf off West Greenland in NAFO Divisions 0A and 1A–1F in depths between approximately 150 and 600 m. Greenland fishes this stock in Subarea 1, Canada in Div. 0A. The species is assessed in these waters as a single stock and managed by catch control. The fishery has been prosecuted over time by four fleets: Greenland small-vessel inshore; Greenland KGH offshore; Greenland recent offshore, and Canadian offshore. Catch peaked in 1992 at 105 000 tons but then decreased to around 80 000 tons by 1998 owing to management measures. Increases in allowed takes were subsequently accompanied by increased catches. The logbook recorded catches in 2005 and 2006, around 157 000 tons, were the highest recorded. Since then catches has decreased to a recent low level in 2015 at 72 256 tons. In the following years, both TACs and catches increased, and the total catches was 94 878 tons in 2018. The enacted TAC for Greenland in 2019 is set at 103 383 tons and a TAC of 1 617 tons were set for Canada, by the Greenland Self-government. The projected catch for 2019 is set at 100 000 tons.
    [Show full text]
  • Shrimp: Wildlife Notebook Series
    Shrimp Five species of pandalid shrimp of various commercial and subsistence values are found in the cool waters off the coast of Alaska. Pink shrimp (Pandalus borealis) are the foundation of the commercial trawl shrimp fishery in Alaska. Pinks are circumpolar in distribution, though greatest concentrations occur in the Gulf of Alaska. Ranging from Puget Sound to the Arctic coast of Alaska, the humpy shrimp (P. goniurus) is usually harvested incidentally to pink shrimp. In some cases, however, the humpy constitutes the primary species caught. Both pink and humpy shrimp are usually marketed as cocktail or salad shrimp. Known for its sweet flavor, the sidestripe shrimp (Pandalopsis dispar) is also caught incidentally to pinks; however, there are small trawl fisheries in Prince William Sound and Southeast Alaska which target on this deeper water species. The coonstripe shrimp (Pandalus hypsinotis) is the prized target of various pot shrimp fisheries around the state. Coonstripe shrimp can be found from the Bering Sea to the Strait of Juan de Fuca while sidestripes range from the Bering Sea to Oregon. Spot shrimp (P. platyceros) is the largest shrimp in the North Pacific. Ranging from Unalaska Island to San Diego, this species is highly valued by commercial pot fishers and subsistence users alike. Most of the catch from the sidestripe, coonstripe, and spot fisheries is sold fresh in both local and foreign markets. General description: Pandalid shrimp can be characterized by a long, well-developed spiny rostrum and are medium to large in size. The body is generally slender and there are five pairs of "swimmerets" located on the underside of the abdomen.
    [Show full text]
  • The Mediterranean Decapod and Stomatopod Crustacea in A
    ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1.
    [Show full text]
  • Pandalus Borealis (Krøyer, 1838)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Species Fact Sheets Pandalus borealis (Krøyer, 1838) Black and white drawing: (click for more) Synonyms Dymas typus Krøyer, 1861 Pandalus borealis typica Retovsky, 1946 FAO Names En - Northern prawn, Fr - Crevette nordique, Sp - Camarón norteño. 3Alpha Code: PRA Taxonomic Code: 2280400203 Scientific Name with Original Description Pandalus borealis Kroyer, 1838, Naturhist.Tidsskr., 2:254. Geographical Distribution FAO Fisheries and Aquaculture Department Launch the Aquatic Species Distribution map viewer North Atlantic: Spitsbergen and Greenland south to the North Sea and to Massachusetts (U.S.A.). North Pacific: Bering Sea to S.E. Siberia, Japan and Oregon (U.S.A.).The taxonomic status of the North Pacific form, usually considered a subspecies Pandalus borealis eous Makarov, 1935, is not fully clear yet. Habitat and Biology Depth 20 to 1 330 m.Bottom clay and mud. Marine. Size Maximum total length 120 mm (male), 165 mm (female). Interest to Fisheries Commercially this is one of the most important carideans of the North Atlantic; only Crangon crangon may be more important. Longhurst (1970:258) called it the principal product of the prawn fisheries of the northwestern Atlantic, being concentrated off Greenland, while in more recent years also more to the south fisheries for the species have started, e.g., in the Gulf of St. Lawrence, the Bay of Fundy and the Gulf of Maine (as far south as Gloucester, Mass.). There is an intensive fishery around Iceland and a most important one off the Norwegian coast. In the Kattegat and Skagerak it is fished for by Danish trawlers.
    [Show full text]
  • The Larvae of Some Species of Pandalidae (Decapoda) By
    THE LARVAE OF SOME SPECIES OF PANDALIDAE (DECAPODA) BY R. B. PIKE 1) AND D. I. WILLIAMSON 2) INTRODUCTION There are many cases in the literature of larvae which have been ascribed to the wrong species and several such cases concern the Pandalidae. Thus larvae described by Sars (1900) as "Pandalus boreali.r" and "P. bonnieri" were shown by Lebour (1930) to be the larvae of Caridion gordoni (Bate) and C. Jteveni Lebour respectively, and larvae which Stephensen (1912, 1916) named ""Pandalus propinqtlu/' and uSpirontocaris-larva No. 4" were later found to be stages in the development of P. boreali.r Krbyer (described by Berkeley, 1930). In his account of the Decapoda of the Godthaab Expedition, Stephensen (1935) corrected his former misidentifications and described another larva as "'Pandalus pro pinquu.r ( ? ) ". In the present paper we describe larvae of P. propinquus G. O. Sars from labora- tory hatchings and they differ appreciably from the larvae ascribed to this species by Stephensen (1935). They closely resemble "Spiro?ztocari.r-larva No. 5" (Ste- phensen, 1916, 1935) and also show only very small differences from the larvae of Dichelo pandalus bonnieri (Caullery), which are re-described below. The oppor- tunity is also taken in this paper to give more complete descriptions than have hitherto been available of the larval development of Pandalus montagui Leach and of Pandalina breviro.rtri.r (Rathke) and to summarise our present knowledge of pandalid larvae. The larvae described were obtained from laboratory hatchings at the Marine Station, Millport, and the Marine Biological Station, Port Erin, and from plankton collected in the Firth of Clyde and the Irish Sea.
    [Show full text]
  • Decapoda:Pandalidae) from the West Coast of India
    NOTE New record of the monotypic shrimp genus Procletes (Decapoda:Pandalidae) from the West coast of India Barkha Purohit1 & Kauresh D. Vachhrajani1 1. The Maharaja Sayajirao University of Baroda, Faculty of Science, Department of Zoology, Marine Biodiversity and Ecology Laboratory, Vadod- dara-390002, Gujarat, India; [email protected], https://orcid.org/0000-0002-7810-6441 [email protected], https://orcid.org/0000-0002-6840-4752 Received 15-I-2019 • Corrected 12-III-2019 • Accepted 07-IV-2019 DOI: https://doi.org/10.22458/urj.v11i3.2600 ABSTRACT: Introduction: Significant work has been done on the di- RESUMEN: “NOTA. Nuevo registro del género monotípico del cama- versity and distribution of pandalid shrimps in Indian waters but re- rón Procletes (Decapoda: Pandalidae) de la costa oeste de la India”. ports did not include the presence of this species. Objective: To list Introducción: Se ha realizado un importante trabajo sobre la diver- the marine shrimps of Gujarat. Methods: Samples were collected from sidad y distribución de camarones pandálidos acuáticos de la India, trawl catch. Results: Procletes levicarina is reported for first time from pero los registros no incluyen la presencia de esta especie. Objetivo: the coastal area of Gujarat, including a detailed morphological descrip- Generar una lista de los camarones marinos de Gujarat. Métodos: Se tion and photographs. This species is previously reported from the east recolectaron muestras de capturas de arrastre. Resultados: Procletes le- coast of India. Conclusion: Procletes levicarina occurs in the west coast vicarina se reporta por primera vez en el área costera de Gujarat, inclu- of India. yendo descripciones morfológicas detalladas y fotografías.
    [Show full text]
  • Current Ocean Wise Approved Canadian MSC Fisheries
    Current Ocean Wise approved Canadian MSC Fisheries Updated: November 14, 2017 Legend: Blue - Ocean Wise Red - Not Ocean Wise White - Only specific areas or gear types are Ocean Wise Species Common Name Latin Name MSC Fishery Name Gear Location Reason for Exception Clam Clearwater Seafoods Banquereau and Banquereau Bank Artic surf clam Mactromeris polynyma Grand Banks Arctic surf clam Hydraulic dredges Grand Banks Crab Snow Crab Chionoecetes opilio Gulf of St Lawrence snow crab trap Conical or rectangular crab pots (traps) North West Atlantic - Nova Scotia Snow Crab Chionoecetes opilio Scotian shelf snow crab trap Conical or rectangular crab pots (traps) North West Atlantic - Nova Scotia Snow Crab Chionoecetes opilio Newfoundland & Labrador snow crab Pots Newfoundland & Labrador Flounder/Sole Yellowtail flounder Limanda ferruginea OCI Grand Bank yellowtail flounder trawl Demersal trawl Grand Banks Haddock Trawl Bottom longline Gillnet Hook and Line CAN - Scotian shelf 4X5Y Trawl Bottom longline Gillnet Atlantic haddock Melangrammus aeglefinus Canada Scotia-Fundy haddock Hook and Line CAN - Scotian shelf 5Zjm Hake Washington, Oregon and California North Pacific hake Merluccius productus Pacific hake mid-water trawl Mid-water Trawl British Columbia Halibut Pacific Halibut Hippoglossus stenolepis Canada Pacific halibut (British Columbia) Bottom longline British Columbia Longline Nova Scotia and Newfoundland Gillnet including part of the Grand banks and Trawl Georges bank, NAFO areas 3NOPS, Atlantic Halibut Hippoglossus hippoglossus Canada
    [Show full text]
  • Distribution, Abundance, and Diversity of Epifaunal Benthic Organisms in Alitak and Ugak Bays, Kodiak Island, Alaska
    DISTRIBUTION, ABUNDANCE, AND DIVERSITY OF EPIFAUNAL BENTHIC ORGANISMS IN ALITAK AND UGAK BAYS, KODIAK ISLAND, ALASKA by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 517 October 1977 279 We thank the following for assistance during this study: the crew of the MV Big Valley; Pete Jackson and James Blackburn of the Alaska Department of Fish and Game, Kodiak, for their assistance in a cooperative benthic trawl study; and University of Alaska Institute of Marine Science personnel Rosemary Hobson for assistance in data processing, Max Hoberg for shipboard assistance, and Nora Foster for taxonomic assistance. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environment Assessment Program (OCSEAP). SUMMARY OF OBJECTIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT Little is known about the biology of the invertebrate components of the shallow, nearshore benthos of the bays of Kodiak Island, and yet these components may be the ones most significantly affected by the impact of oil derived from offshore petroleum operations. Baseline information on species composition is essential before industrial activities take place in waters adjacent to Kodiak Island. It was the intent of this investigation to collect information on the composition, distribution, and biology of the epifaunal invertebrate components of two bays of Kodiak Island. The specific objectives of this study were: 1) A qualitative inventory of dominant benthic invertebrate epifaunal species within two study sites (Alitak and Ugak bays).
    [Show full text]
  • Family PANDALIDAE the Genera of This Family May
    122 L. B. HOLTHUIS Family PANDALIDAE Pandalinae Dana, 1852, Proc. Acad. nat. Sci. Phila. 6: 17, 24. Pandalidae Bate, 1888, Rep. Voy. Challenger, Zool. 24: xii, 480, 625. The genera of this family may be distinguished with the help of the fol- lowing key, which is largely based on the key given by De Man (1920, Siboga Exped. 39 (a3) : 101, 102); use has also been made of Kemp's (1925, Rec. Indian Mus. 27:271, 272) key to the Chlorotocus section of this family. 1. Carpus of second pereiopods consisting of more than three joints. 2 — Carpus of second pereiopods consisting of 2 or 3 joints 13 2. No longitudinal carinae on the carapace except for the postrostral crest. 3 — Carapace with longitudinal carinae on the lateral surfaces. Integument very firm. 12 3. Rostrum movably connected with the carapace Pantomus — Rostrum not movable 4 4. Eyes poorly developed, cornea narrower than the eyestalk . Dorodotes — Eyes well developed, cornea much wider than the eyestalk .... 5 5. Third maxilliped with an exopod 6 — Third maxilliped without exopod 8 6. Epipods on at least the first two pereiopods 7 — No epipods on any of the pereiopods Parapandalus 7. Posterior lobe of scaphognathite broadly rounded or truncate. Stylocerite pointed anteriorly. Rostrum with at least some fixed teeth dorsally. Plesionika — Posterior lobe of scaphognathite acutely produced. Stylocerite broad and rounded. Rostrum with only movable spines dorsally Dichelopandalus 8. Laminar expansion of the inner border of the ischium of the first pair of pereiopods very large Pandalopsis — Laminar expansion of the inner border of the ischium of the first pair of pereiopods wanting or inconspicuous 9 9.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida
    SHRIMPS, LOBSTERS, AND CRABS OF THE ATLANTIC COAST OF THE EASTERN UNITED STATES, MAINE TO FLORIDA AUSTIN B.WILLIAMS SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1984 © 1984 Smithsonian Institution. All rights reserved. Printed in the United States Library of Congress Cataloging in Publication Data Williams, Austin B. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Rev. ed. of: Marine decapod crustaceans of the Carolinas. 1965. Bibliography: p. Includes index. Supt. of Docs, no.: SI 18:2:SL8 1. Decapoda (Crustacea)—Atlantic Coast (U.S.) 2. Crustacea—Atlantic Coast (U.S.) I. Title. QL444.M33W54 1984 595.3'840974 83-600095 ISBN 0-87474-960-3 Editor: Donald C. Fisher Contents Introduction 1 History 1 Classification 2 Zoogeographic Considerations 3 Species Accounts 5 Materials Studied 8 Measurements 8 Glossary 8 Systematic and Ecological Discussion 12 Order Decapoda , 12 Key to Suborders, Infraorders, Sections, Superfamilies and Families 13 Suborder Dendrobranchiata 17 Infraorder Penaeidea 17 Superfamily Penaeoidea 17 Family Solenoceridae 17 Genus Mesopenaeiis 18 Solenocera 19 Family Penaeidae 22 Genus Penaeus 22 Metapenaeopsis 36 Parapenaeus 37 Trachypenaeus 38 Xiphopenaeus 41 Family Sicyoniidae 42 Genus Sicyonia 43 Superfamily Sergestoidea 50 Family Sergestidae 50 Genus Acetes 50 Family Luciferidae 52 Genus Lucifer 52 Suborder Pleocyemata 54 Infraorder Stenopodidea 54 Family Stenopodidae 54 Genus Stenopus 54 Infraorder Caridea 57 Superfamily Pasiphaeoidea 57 Family Pasiphaeidae 57 Genus
    [Show full text]