And Prevention of New World Hantaviruses

Total Page:16

File Type:pdf, Size:1020Kb

And Prevention of New World Hantaviruses F'IELD AND LABORATORY BASED STUDIES ON THE TRANSMISSION AND PREVENTION OF NEW WORLD HANTAVIRUSES BY DAVID J. SAFRONETZ A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Medical Microbiology University of Manitoba Wiruripeg, Manitoba @ David J. Safronetz, 2008 THE UNIVERSITY OF MANITOBA FACULTY OF GÌ'A-DUA,TE STUDIES COPYRIGHT PERMISSION Field and Laboratory Based studies on the Transmission and prevention of New World Hantaviruses BY David Safronetz A ThesisÆracticum submitted to the Faculty of Graduate studies of rhe university of Manifoba in partial fulfillment of the requirement of the degree of Doctor of Philosophy David Safronetz O 2008 Permission has been granted to the university of Manitoba Libraries to lend a copy of this thesis/practicum, to Library and Archives canada (LAC) to tend a copy of ihis thesis/practicum, and to LAC's agent (uMlÆroeuest) to microfilm, sell copies and to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright orvner solely for the purpose of private study and research, and may onty be reproduced and copied as permitted by copyright larvs or rvith ,"iitt.n- authorization from the copyright orvner. "*p..r, ABSTRACT The Bunyaviridae is a lalge gloup ofviruses which contains several viruses of medical importance, the majority of which are transmitted to humans by arthlopod vectors. The exception are the members of the genus -É1a ntavbus which are maintained in nature and transmitted to humans by rodent reservoirs. Unique hantavirus species have been documented essentially worldwide and are associated with two distinct diseases in humans, hemorrhagic fevel with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Cunently, treatment and prevention options for HFRS and HPS are limited and mainly consist of education programs aimed at reducing contact with rodents and their excreta. The aim ofthe studies presented here was to investigate new strategies for preventing disease in humans through i). improved understanding of viral transmission from naturally infected rodents and ii). evaluating novel vaccine candidates in a lethal HPS disease model. In an attempt to elucidate pattems of infection and transmission in rodents, field studies were conducted in southern Manitoba between August 2003 and October 2005. The findings ofthese studies provided new insight into potential mechanisms of transmission in the natural setting with respect to routes and timing ofvirus transmission in relation to the stages ofinfection and confirmed the existence ofseveral pattems observed in studies conducted elsewhere (i.e., systemic infection in rodents, age, sex and seasonal bias ofinfection). Infection status in mice was determined using serological and molecular methods. To differentiate recently infected rodents from those infected in the distant past an antibody avidity assay was developed and determined tobe 89.5%o accurate in identif,ing recently (within 30 days) infected mice based on the presence of low avidity antibodies. Initial application ofthe avidity assay revealed a greater proportion of mice with low avidity antibodies had detectable viral RNA in oropharyngeal fluid (OPF) or urine samples compared with those from mice with high avidity antibody (21% versus 6.8%), suggesting recently infected mice are more likely to transmit virus via these routes. In contrast, no diffelence in the detection ofviral RNA in whole blood samples between the low and high avidity groups was observed. Retrospective analysis of samples collected as a part ofa pilot in August 2003 demonstrated similar pattems. These data suggests, recently infected mice represent a greater risk to humans acquiring infection, however based on the low rate ofdetection of viral RNA in OPF and urine samples compared with that of blood, viral transmission among rodents may frequently occur via the blood-borne route, presumably as a part of wound to wound contact associated with aggressive behaviors. The long-term goal for the prevention ofhantaviral disease in humans is the development of effective vaccines capable of inducing complete, sterile immunity in naiVe individuals. Cunently no specific vaccine exists for HPS, and the study ofthe protective immune response has been hampered by the lack of animal models which reflect disease progression in humans. The recently described lethal hamster model of HPS was evaluated for the study of Andes virus (ANDV) induced HPS and found to be an accurate disease model which was 100% lethal within approximately 10-11 days and demonstrated several features of disease in humans including symptomolgy and pathophysiology. Two, recombinant, replication deficient, viral vector platforms (Vesicular stomatitis virus pseudo-particles bearing the ANDV glycoproteins, VSV^G*AND-GPC, and Adenovil'us constructs, recAd, individually expressing ANDV G¡, G6 orN) were evaluated as potential vaccines in the hamster model. Immunization with VSVÂG*AND-GPC was protective in approximately 50% of immunized hamsters, however survivors had detectable N antibody titers, demonstrating seroconversion and indicating the presence of replicating ANDV. By contrast, immunization with any of the recAd vectors either alone, or in combination, was 100% protective from ANDV challenge. Based on low titers ofneutralizing serum antibodies post-immunization, the protective immune response associated with the recAd vectors was likely due to a potent cellular immune response. Unlike with VSV^G*AND-GPC, complete, sterile immunity was achieved in hamsters which received both the Gn and Gc expressing recAd vectors as determined by the lack of N specific antibodies, as well as no detectable viral RNA in tissue samples al6 andg days post-challenge. The recAd vectors are useful tools for dissecting the protective immune response and wan'ant further investigation as vaccine candidates for HPS and HFRS. n AcKNoWLEDGMENTS "Knowledge is in the end based on acknowledgement." - Ludwig Wittgenstein First and foremost, I'd like to thank my family and friends for their continued support during my PhD research. I am indebted to the staff members of the NML and the Department of Medical Microbiology at the University of Manitoba who have taken time to assist me in various aspects of my research. Over the last few years I have been privileged to work with numerous people in the Zoonotic Diseases and Special Pathogens department, all of which had a hand in the work presented here. My field studies projects could not have been completed without the expertise ofDr. Robbin Lindsay. I would also like to acknowledge the help of Tyler Cote and Kai Makowski with the fieldwork and Dr'. Brian Hjelle and his laboratory (Jniversity ofNew Mexico) for numerous discussions and for providing the timed sera samples necessary for validating the avidity assay. A special debt of gratitude is also owed to the individuals who allowed me to collect deer mice fi'om their private land. I'd like to thank Dr. Heinz Feldmann for allowing me the opporlunity to carry out research in a BSL 4 laboratory as well as Daryl Dick, Ricki Feldmann, Shane Jones, and Allen Grolla for training me to do so. Hamster work was assisted by helpful discussions and emails with Drs. Jay Hooper and Victoria Wahl-Jenson (USAMRIID) and assistance from Jason Glen. The histological analysis would not have been possible without the expertise of Catherine Roberstson (NML) and Don Gardner (Rocky Mountain Laboratory). Also, I would be amiss without specifrcally acknowledging Dt. Gary Kobinger and Michael Gray (ltlMl-) for their advice and assistance with the vaccine studies, Dr. David Johnson (Oregon Health and Science University) for providing the Adenovirus constructs and the many intellectual contributions of Dr. Hideki Ebihara (University of Tokyo /NML), who for an Ebola guy knows an awfül lot about hantaviruses! During the course ofthese studies I was fortunate to be supported by studentships from the Manitoba Health Research Council and the Canadian Institutes of Health Research/lntemational Center fro Infectious Disease /lJniversity of Manitoba training program in infectious diseases with additional travel suppoú from two Faculty of Graduate studies Student travel bursaries. Finally I'd like to thank my committee members, Drs. Harvey Artsob, Michael Drebot, Heinz Feldmann, Dan Gietz, and Robbin Lindsay, for their advice and guidance over the last few years, and Dr. Corurie Schmaljohn, for providing her expert opinion as the external thesis reviewer. TABLE oF CoNTENTS Abstract... ... I Acknowledgements.............,, IV Table of Contents. ..... ... ..... VI List ofFigures.. X List of Tables... XII List of Copyrighted materials..... XIII List of Abbreviations... ..... ... XIV Chapter I: Literature Review 1. Introduction 1.1 Briefhistory 1 i.2 Taxonomy... 2 1.3 Distribution. 5 2. Hantavirus Biology 2.i Genomic organization,.. 5 2.2Yiral lifecycle...... ... 11 3. Ecology ofHantaviruses in Nature 3.1 Maintenance 15 3,2 Hantavilus infections in the natural host... ...... ...... 16 3.3 Virustransmissionbetweenrodents............ 19 4. Human Disease 4.1 Epidemio1ogy.................. 24 4.1.2 Hantavirusdisease inCanada....................... 26 4.2 Transmission to humans... .. 28 4.3 Disease...... 29 4.3.1 Hemonhagic fever with renal syndrome.......... 29 4.3.2 Hantavirus pulmonary syndrome........ 31
Recommended publications
  • ABSTRACT Vector-Borne Viral Infections in South-West
    저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다: 저작자표시. 귀하는 원저작자를 표시하여야 합니다. 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다. l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다. 저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다. Disclaimer August 2016 Master’s Degree Thesis Vector-Borne Viral Infections in South-West Region of Korea Graduate School of Chosun University Department of Biomedical Sciences Babita Jha August 2016 Master’s Degree Thesis Vector-Borne Viral Infections in South-West Region of Korea Graduate School of Chosun University Department of Biomedical Sciences Babita Jha Vector-Borne Viral Infections in South-West Region of Korea 한국의 남서부 지역에서 매개체 관련 바이러스 질환 August, 2016 Graduate School of Chosun University Department of Biomedical Sciences Babita Jha Vector-Borne Viral Infections in South-West Region of Korea Advisor: Prof. Dong-Min Kim, MD, PhD THESIS SUBMITTED TO THE DEPARTMENT OF BIOMEDICAL SCIENCES, CHOSUN UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BIOMEDICAL SCIENCES April, 2016 Graduate School of Chosun University Department of Biomedical Sciences Submitted by Babita Jha August Master’s Vector-Borne Viral Infections in Babita Jha Degree 2016 Thesis South-West Region of Korea Table of Contents LIST OF TABLES……………………….................iv LIST OF FIGURES…………………………………v ABBREVIATIONS AND SYMBOLS…………….vi ABSTRACT…………………………………...…….ix 한 글 요 약……………………………………...…..xii I.
    [Show full text]
  • Hantavirus Disease Were HPS Is More Common in Late Spring and Early Summer in Seropositive in One Study in the U.K
    Hantavirus Importance Hantaviruses are a large group of viruses that circulate asymptomatically in Disease rodents, insectivores and bats, but sometimes cause illnesses in humans. Some of these agents can occur in laboratory rodents or pet rats. Clinical cases in humans vary in Hantavirus Fever, severity: some hantaviruses tend to cause mild disease, typically with complete recovery; others frequently cause serious illnesses with case fatality rates of 30% or Hemorrhagic Fever with Renal higher. Hantavirus infections in people are fairly common in parts of Asia, Europe and Syndrome (HFRS), Nephropathia South America, but they seem to be less frequent in North America. Hantaviruses may Epidemica (NE), Hantavirus occasionally infect animals other than their usual hosts; however, there is currently no Pulmonary Syndrome (HPS), evidence that they cause any illnesses in these animals, with the possible exception of Hantavirus Cardiopulmonary nonhuman primates. Syndrome, Hemorrhagic Nephrosonephritis, Epidemic Etiology Hemorrhagic Fever, Korean Hantaviruses are members of the genus Orthohantavirus in the family Hantaviridae Hemorrhagic Fever and order Bunyavirales. As of 2017, 41 species of hantaviruses had officially accepted names, but there is ongoing debate about which viruses should be considered discrete species, and additional viruses have been discovered but not yet classified. Different Last Updated: September 2018 viruses tend to be associated with the two major clinical syndromes in humans, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary (or cardiopulmonary) syndrome (HPS). However, this distinction is not absolute: viruses that are usually associated with HFRS have been infrequently linked to HPS and vice versa. A mild form of HFRS in Europe is commonly called nephropathia epidemica.
    [Show full text]
  • Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam
    viruses Article Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam Satoru Arai 1, Fuka Kikuchi 1,2, Saw Bawm 3 , Nguyễn Trường Sơn 4,5, Kyaw San Lin 6, Vương Tân Tú 4,5, Keita Aoki 1,7, Kimiyuki Tsuchiya 8, Keiko Tanaka-Taya 1, Shigeru Morikawa 9, Kazunori Oishi 1 and Richard Yanagihara 10,* 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] (S.A.); [email protected] (F.K.); [email protected] (K.A.); [email protected] (K.T.-T.); [email protected] (K.O.) 2 Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 3 Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 4 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam; [email protected] (N.T.S.); [email protected] (V.T.T.) 5 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam 6 Department of Aquaculture and Aquatic Disease, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 7 Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 8 Laboratory of Bioresources, Applied Biology Co., Ltd., Tokyo 107-0062, Japan; [email protected] 9 Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] 10 Pacific Center for Emerging Infectious Diseases Research, John A.
    [Show full text]
  • COMENIUS UNIVERSITY in BRATISLAVA Faculty of Natural Sciences
    COMENIUS UNIVERSITY IN BRATISLAVA Faculty of Natural Sciences UNIVERSITY OF CAGLIARI Department of Biomedical Sciences MOLECULAR EPIDEMIOLOGY OF HANTAVIRUSES IN CENTRAL EUROPE AND ANTIVIRAL SCREENING AGAINST ZOONOTIC VIRUSES CAUSING HEMORRHAGIC FEVERS DISSERTATION 2017 RNDr. PaedDr. Róbert SZABÓ COMENIUS UNIVERSITY IN BRATISLAVA Faculty of Natural Sciences UNIVERSITY OF CAGLIARI Department of Biomedical Sciences MOLECULAR EPIDEMIOLOGY OF HANTAVIRUSES IN CENTRAL EUROPE AND ANTIVIRAL SCREENING AGAINST ZOONOTIC VIRUSES CAUSING HEMORRHAGIC FEVERS Dissertation Study program: Virology Molecular and Translational Medicine Field of Study: Virology Place of the study: Biomedical Research Center, SAS in Bratislava, Slovakia Department of Biomedical Sciences, Cittadella Universitaria, Monserrato, Italy Supervisors: RNDr. Boris Klempa, DrSc. Prof. Alessandra Pani Bratislava, 2017 RNDr. PaedDr. Róbert SZABÓ 25276874 Univerzita Komenského v Bratislave Prírodovedecká fakulta ZADANIE ZÁVEREČNEJ PRÁCE Meno a priezvisko študenta: RNDr. PaedDr. Róbert Szabó Študijný program: virológia (Jednoodborové štúdium, doktorandské III. st., denná forma) Študijný odbor: virológia Typ záverečnej práce: dizertačná Jazyk záverečnej práce: anglický Sekundárny jazyk: slovenský Názov: Molecular epidemiology of hantaviruses in Central Europe and antiviral screening against zoonotic viruses causing hemorrhagic fevers Molekulárna epidemiológia hantavírusov v strednej Európe a antivírusový skríning proti zoonotickým vírusom spôsobujúcim hemoragické horúčky Cieľ: Main objectives
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • Immunogenicity and Serological Applications of Flavivirus Ed Iii Proteins and Multiplex Rt-Pcr for Detecting Novel Southern African Viruses
    IMMUNOGENICITY AND SEROLOGICAL APPLICATIONS OF FLAVIVIRUS ED III PROTEINS AND MULTIPLEX RT-PCR FOR DETECTING NOVEL SOUTHERN AFRICAN VIRUSES Lehlohonolo Mathengtheng Thesis submitted in fulfillment of the requirements for the degree Ph.D Virology in the Department of Medical Microbiology and Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein Promotor: Prof Felicity Burt, Department of Medical Microbiology and Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein January 2015 Table of contents Table of contents ................................................................................................................................................. 2 Declaration ............................................................................................................................................................ i Acknowledgements .............................................................................................................................................. ii Financial Support ................................................................................................................................................ iii Lehlohonolo Mathengtheng, An Obituary ........................................................................................................... v Publications and presentations........................................................................................................................... vii List of figures .......................................................................................................................................................
    [Show full text]
  • Taxonomy of the Family Arenaviridae and the Order Bunyavirales: Update 2018
    Archives of Virology https://doi.org/10.1007/s00705-018-3843-5 VIROLOGY DIVISION NEWS Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018 Piet Maes1 · Sergey V. Alkhovsky2 · Yīmíng Bào3 · Martin Beer4 · Monica Birkhead5 · Thomas Briese6 · Michael J. Buchmeier7 · Charles H. Calisher8 · Rémi N. Charrel9 · Il Ryong Choi10 · Christopher S. Clegg11 · Juan Carlos de la Torre12 · Eric Delwart13,14 · Joseph L. DeRisi15 · Patrick L. Di Bello16 · Francesco Di Serio17 · Michele Digiaro18 · Valerian V. Dolja19 · Christian Drosten20,21,22 · Tobiasz Z. Druciarek16 · Jiang Du23 · Hideki Ebihara24 · Toufc Elbeaino18 · Rose C. Gergerich16 · Amethyst N. Gillis25 · Jean‑Paul J. Gonzalez26 · Anne‑Lise Haenni27 · Jussi Hepojoki28,29 · Udo Hetzel29,30 · Thiện Hồ16 · Ní Hóng31 · Rakesh K. Jain32 · Petrus Jansen van Vuren5,33 · Qi Jin34,35 · Miranda Gilda Jonson36 · Sandra Junglen20,22 · Karen E. Keller37 · Alan Kemp5 · Anja Kipar29,30 · Nikola O. Kondov13 · Eugene V. Koonin38 · Richard Kormelink39 · Yegor Korzyukov28 · Mart Krupovic40 · Amy J. Lambert41 · Alma G. Laney42 · Matthew LeBreton43 · Igor S. Lukashevich44 · Marco Marklewitz20,22 · Wanda Markotter5,33 · Giovanni P. Martelli45 · Robert R. Martin37 · Nicole Mielke‑Ehret46 · Hans‑Peter Mühlbach46 · Beatriz Navarro17 · Terry Fei Fan Ng14 · Márcio Roberto Teixeira Nunes47,48 · Gustavo Palacios49 · Janusz T. Pawęska5,33 · Clarence J. Peters50 · Alexander Plyusnin28 · Sheli R. Radoshitzky49 · Víctor Romanowski51 · Pertteli Salmenperä28,52 · Maria S. Salvato53 · Hélène Sanfaçon54 · Takahide Sasaya55 · Connie Schmaljohn49 · Bradley S. Schneider25 · Yukio Shirako56 · Stuart Siddell57 · Tarja A. Sironen28 · Mark D. Stenglein58 · Nadia Storm5 · Harikishan Sudini59 · Robert B. Tesh48 · Ioannis E. Tzanetakis16 · Mangala Uppala59 · Olli Vapalahti28,30,60 · Nikos Vasilakis48 · Peter J. Walker61 · Guópíng Wáng31 · Lìpíng Wáng31 · Yànxiăng Wáng31 · Tàiyún Wèi62 · Michael R.
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Second Update 2018
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Virol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 March 01. Published in final edited form as: Arch Virol. 2019 March ; 164(3): 927–941. doi:10.1007/s00705-018-04127-3. TAXONOMY OF THE ORDER BUNYAVIRALES: SECOND UPDATE 2018 A full list of authors and affiliations appears at the end of the article. Abstract In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV). Keywords Arenaviridae; arenavirid; arenavirus; bunyavirad; Bunyavirales; bunyavirid; Bunyaviridae; bunyavirus; emaravirus; Feraviridae; feravirid, feravirus; fimovirid; Fimoviridae; fimovirus; goukovirus; hantavirid; Hantaviridae; hantavirus; hartmanivirus; herbevirus; ICTV; International Committee on Taxonomy of Viruses; jonvirid; Jonviridae; jonvirus; mammarenavirus; nairovirid; Nairoviridae; nairovirus; orthobunyavirus; orthoferavirus; orthohantavirus; orthojonvirus; orthonairovirus; orthophasmavirus; orthotospovirus; peribunyavirid; Peribunyaviridae; peribunyavirus; phasmavirid; phasivirus; Phasmaviridae; phasmavirus; phenuivirid; Phenuiviridae; phenuivirus; phlebovirus; reptarenavirus; tenuivirus; tospovirid; Tospoviridae; tospovirus; virus classification; virus nomenclature; virus taxonomy INTRODUCTION The virus order Bunyavirales was established in 2017 to accommodate related viruses with segmented, linear, single-stranded, negative-sense or ambisense RNA genomes classified into 9 families [2]. Here we present the changes that were proposed via an official ICTV taxonomic proposal (TaxoProp 2017.012M.A.v1.Bunyavirales_rev) at http:// www.ictvonline.org/ in 2017 and were accepted by the ICTV Executive Committee (EC) in [email protected].
    [Show full text]
  • Anti-Hantavirus Monoclonal Antibody, Clone S32 (DMAB6475) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-Hantavirus Monoclonal antibody, Clone S32 (DMAB6475) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Monoclonal Antibody to Hantavirus Seoul Serotype Specificity S32 reacts with an epitope present on the nucleocapsid protein of Hantavirus strain R22 (also called Seoul or SEO) Target Hantavirus Immunogen Nucleocapsid protein of Hantavirus R22 strain Isotype IgG1 Source/Host Mouse Species Reactivity Hantavirus Clone S32 Conjugate Unconjugated Applications ELISA, IF, IHC-Fr Format Hybridoma culture supernatant Size 1 ea Buffer Reconstitute with 1 ml dist. water Preservative None Storage At 2-8℃ BACKGROUND Introduction Hantaviruses are negative sense RNA viruses in the Bunyaviridae family. Humans may be infected with hantaviruses through rodent bites, urine, saliva or contact with rodent waste products. Some hantaviruses cause potentially fatal diseases in humans, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), but others have not been associated with human disease. Human infections of hantaviruses have almost entirely been 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved linked to human contact with rodent excrement, but recent human-to-human transmission has been reported with the Andes virus in South America. The name hantavirus is derived from the Hantan River area in South Korea, which provided the founding member of the group: Hantaan virus (HTNV), isolated in the late 1970s by Ho-Wang Lee and colleagues. HTNV is one of several hantaviruses that cause HFRS, formerly known as Korean hemorrhagic fever.
    [Show full text]
  • Zoonotické Viry U Volně Žijících Endotermních Obratlovců
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA Ústav experimentální biologie Oddělení mikrobiologie a molekulární biotechnologie Zoonotické viry u volně žijících endotermních obratlovců Dizertační práce Brno 2017 Petra Straková MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA Ústav experimentální biologie Oddělení mikrobiologie a molekulární biotechnologie Zoonotické viry u volně žijících endotermních obratlovců Dizertační práce Petra Straková Školitel: prof. RNDr. Zdeněk Hubálek, DrSc. Brno 2017 Bibliografický záznam Autor: Mgr. Petra Straková Ústav biologie obratlovců AV ČR v.v.i., Brno - detašované pracoviště Valtice a Ústav experimentální biologie, PřF MU, Brno Název práce: Zoonotické viry u volně žijících endotermních obratlovců Studijní program: Biologie Studijní obor: Mikrobiologie Školitel: prof. RNDr. Zdeněk Hubálek, DrSc. Ústav biologie obratlovců AV ČR v.v.i., Brno - detašované pracoviště Valtice a Ústav experimentální biologie, PřF MU, Brno Valtice Akademický rok: 2016/2017 Počet stran: 155 + publikace Klíčová slova: emergentní zoonózy, hantaviry, flaviviry, virus západonilské horečky, virus Usutu, virus hepatitidy E, Česká republika, Evropa Bibliographic entry Author: Mgr. Petra Straková Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno – laboratory Valtice, and Department of Experimental Biology, Faculty of Science, Masaryk University, Brno Title of Dissertation: Zoonotic viruses associated with free-living endotherm vertebrates Degree Programme: Biology Field of Study: Microbiology Supervisor: prof. RNDr.
    [Show full text]
  • Viruses 2014, 6, 1112-1134; Doi:10.3390/V6031112 OPEN ACCESS
    Viruses 2014, 6, 1112-1134; doi:10.3390/v6031112 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Article Changes in Diversification Patterns and Signatures of Selection during the Evolution of Murinae-Associated Hantaviruses Guillaume Castel *, Maria Razzauti, Emmanuelle Jousselin, Gael J. Kergoat and Jean-François Cosson INRA, UMR 1062 CBGP (INRA, IRD, Cirad, Montpellier SupAgro), Campus de Baillarguet, 34988 Montferrier-sur-Lez, France; E-Mails: [email protected] (M.R.); [email protected] (E.J.); [email protected] (G.J.K.); [email protected] (J.F.C.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-499-623-311; Fax: +33-499-623-345. Received: 29 November 2013; in revised form: 19 February 2014 / Accepted: 24 February 2014 / Published: 10 March 2014 Abstract: In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local).
    [Show full text]
  • Aus Dem Institut Für Medizinische Virologie Der Medizinischen Fakultät Charité – Universitätsmedizin Berlin
    Aus dem Institut für medizinische Virologie der Medizinischen Fakultät Charité – Universitätsmedizin Berlin DISSERTATION Genetic reassortment between members of different Dobrava-Belgrade virus lineages and allocation of innate immune response modulation to particular genome segments zur Erlangung des akademischen Grades Doctor rerum medicarum (Dr. rer. medic.) vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin von Sina Kirsanovs aus Bremen Gutachter/in: 1. Prof. Dr. med. D. H. Krüger 2. Prof. Dr. med. H.-W. Presber 3. Priv.-Doz. Dr. R. Ulrich Datum der Promotion: 03.09.2010 Abstract Hantaviruses possess a tri-segmented negative-stranded RNA genome with the potency of genetic reassortment. Reassortment processes between genome segments might cause dramatic changes in the virulence of viruses as has been shown for influenza viruses. The European Dobrava-Belgrade virus species (DOBV) forms distinct lineages associated with different Apodemus mice species and can cause hemorrhagic fever with renal syndrome of different clinical severities. In this study, virological and molecular tools to monitor RNA reassortment in cell culture between two genetic lineages of DOBV were established. Representatives of the DOBV-Af (associated with A. flavicollis) and DOBV-Aa (associated with A. agrarius) lineages were used for dual infection of Vero E6 cells. Two hundred and seven individual virus clones were isolated and screened for reassortment by a newly established strain- and segment-specific multiplex PCR (MP-PCR). After co-infection, as much as 31% of virus progeny population was represented by genetically stable reassortants. Reassortment was proven by sequence analyses of the complete S and M segments as well as L-ORF. Two stable reassortment patterns where identified.
    [Show full text]