Taxonomy of the Family Arenaviridae and the Order Bunyavirales: Update 2018

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy of the Family Arenaviridae and the Order Bunyavirales: Update 2018 Archives of Virology https://doi.org/10.1007/s00705-018-3843-5 VIROLOGY DIVISION NEWS Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018 Piet Maes1 · Sergey V. Alkhovsky2 · Yīmíng Bào3 · Martin Beer4 · Monica Birkhead5 · Thomas Briese6 · Michael J. Buchmeier7 · Charles H. Calisher8 · Rémi N. Charrel9 · Il Ryong Choi10 · Christopher S. Clegg11 · Juan Carlos de la Torre12 · Eric Delwart13,14 · Joseph L. DeRisi15 · Patrick L. Di Bello16 · Francesco Di Serio17 · Michele Digiaro18 · Valerian V. Dolja19 · Christian Drosten20,21,22 · Tobiasz Z. Druciarek16 · Jiang Du23 · Hideki Ebihara24 · Toufc Elbeaino18 · Rose C. Gergerich16 · Amethyst N. Gillis25 · Jean‑Paul J. Gonzalez26 · Anne‑Lise Haenni27 · Jussi Hepojoki28,29 · Udo Hetzel29,30 · Thiện Hồ16 · Ní Hóng31 · Rakesh K. Jain32 · Petrus Jansen van Vuren5,33 · Qi Jin34,35 · Miranda Gilda Jonson36 · Sandra Junglen20,22 · Karen E. Keller37 · Alan Kemp5 · Anja Kipar29,30 · Nikola O. Kondov13 · Eugene V. Koonin38 · Richard Kormelink39 · Yegor Korzyukov28 · Mart Krupovic40 · Amy J. Lambert41 · Alma G. Laney42 · Matthew LeBreton43 · Igor S. Lukashevich44 · Marco Marklewitz20,22 · Wanda Markotter5,33 · Giovanni P. Martelli45 · Robert R. Martin37 · Nicole Mielke‑Ehret46 · Hans‑Peter Mühlbach46 · Beatriz Navarro17 · Terry Fei Fan Ng14 · Márcio Roberto Teixeira Nunes47,48 · Gustavo Palacios49 · Janusz T. Pawęska5,33 · Clarence J. Peters50 · Alexander Plyusnin28 · Sheli R. Radoshitzky49 · Víctor Romanowski51 · Pertteli Salmenperä28,52 · Maria S. Salvato53 · Hélène Sanfaçon54 · Takahide Sasaya55 · Connie Schmaljohn49 · Bradley S. Schneider25 · Yukio Shirako56 · Stuart Siddell57 · Tarja A. Sironen28 · Mark D. Stenglein58 · Nadia Storm5 · Harikishan Sudini59 · Robert B. Tesh48 · Ioannis E. Tzanetakis16 · Mangala Uppala59 · Olli Vapalahti28,30,60 · Nikos Vasilakis48 · Peter J. Walker61 · Guópíng Wáng31 · Lìpíng Wáng31 · Yànxiăng Wáng31 · Tàiyún Wèi62 · Michael R. Wiley49,63 · Yuri I. Wolf38 · Nathan D. Wolfe25,64 · Zhìqiáng Wú23 · Wénxìng Xú31,65,66,67 · Li Yang68 · Zuòkūn Yāng31 · Shyi‑Dong Yeh69 · Yǒng‑Zhèn Zhāng70 · Yàzhōu Zhèng31 · Xueping Zhou71 · Chénxī Zhū31 · Florian Zirkel21 · Jens H. Kuhn72 Received: 16 March 2018 / Accepted: 2 April 2018 © This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018 Handling Editor: Sead Sabanadzovic. Michael J. Buchmeier, Rémi N. Charrel, Christopher S. Clegg, Juan Carlos de la Torre, Joseph L. DeRisi, Jean-Paul J. Gonzalez, S. Lukashevich, Clarence J. Peters, Sheli R. Radoshitzky, Víctor Romanowski, Maria S. Salvato and Jens H. Kuhn were the members of the 2014–2017 International Committee on Taxonomy of Viruses (ICTV) Arenaviridae Study Group. Piet Maes, Sergey V. Alkhovsky, Martin Beer, Thomas Briese, Charles H. Calisher, Rémi N. Charrel, Hideki Ebihara, Rakesh K. Jain, Amy J. Lambert, Márcio Roberto Teixeira Nunes, Alexander Plyusnin, Connie Schmaljohn, Robert B. Tesh, Shyi-Dong Yeh and Jens H. Kuhn were the members of the 2014–2017 ICTV Bunyaviridae Study Group. Michele Digiaro, Toufc Elbeaino, Giovanni P. Martelli, Nicole Mielke-Ehret and Hans-Peter Mühlbach were the members of the 2014–2017 ICTV Emaravirus Study Group. Il Ryong Choi, Anne-Lise Haenni, Miranda Gilda Jonson, Takahide Sasaya, Yukio Shirako, Tàiyún Wèi and Xueping Zhou were the members of the 2014–2017 ICTV Tenuivirus Study Group. Stuart Siddell was the Chair of the 2014–2017 ICTV Animal dsRNA and ssRNA-Viruses Subcommittee. Hélène Sanfaçon was the Chair of the 2014–2017 ICTV Plant Viruses Subcommittee. Extended author information available on the last page of the article Vol.:(0123456789)1 3 P. Maes et al. Abstract In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may afect the order in the near future. Introduction In addition, the family Fimoviridae was created to accom- modate the previously “free-foating” plant virus genus The family Arenaviridae was established in 1976 to accom- Emaravirus, which was expanded by three species for newly modate predominantly murid viruses with bisegmented, discovered plant viruses [5, 6, 26] (TaxoProps 2016.016aP, ambisense single-stranded RNA genomes that form envel- 2016.017aP, 2016.018aP, and 2016.030a-vM). Finally, a oped particles with a “sandy” appearance [7]. Until recently, non-Linnean binomial species nomenclature was adopted the family was monogeneric, including the single genus for the entire family (TaxoProps 2016.020aM, 2016.023a- Arenavirus, with a steadily increasing number of species. cM, 2016.026a,bM, 2016.029aM.A.v2.Tenuivirus_spren, The taxonomy of the family was substantially amended and 2016.030a-vM). and emended [22] following the discovery of several dis- After the establishment of the order Bunyavirales, the tinct arenaviruses in alethinophidian snakes [4, 10, 24]. In ICTV Study Groups responsible for the taxonomy of Are- particular, the genus Arenavirus was renamed Mammarena- naviridae and Bunyavirales assigned unclassifed viruses virus, and a second genus, Reptarenavirus, was established to existing or novel taxa and continued streamlining order in 2014 for several of the newly discovered snake viruses. nomenclature in collaboration with other virus experts. Here A non-Linnean binomial species nomenclature was adopted we present the changes to both taxa that were proposed via for the entire family Arenaviridae [22] (ICTV TaxoProps ofcial TaxoProps at http://www.ictvonline .org/ in 2017 and [taxonomic proposals] 2014.011a-dV and 2014.012aV). that were accepted by the ICTV Executive Committee. These Since then, the genus Mammarenavirus has been extended changes are ofcial ICTV taxonomy as of March 2018. by 8 species for novel murid viruses discovered in Africa and Asia [3, 8, 11, 15, 21, 25] (TaxoProps 2014.013aV.A.v3. Mammarenavirus_2sp, 2015.001aM, 2016.014aM and Family Arenaviridae 2016.019aM.A.v2.Mammarenavirus_sp). The order Bunyavirales was established in 2017 to Taxonomic changes at the family rank accommodate related viruses with segmented, linear, sin- gle-stranded, negative-sense or ambisense RNA genomes In 2018, the family was extended by addition of a novel distributed among nine families (TaxoProp 2016.030a- genus, Hartmanivirus, for Haartman Institute snake virus vM). In particular, the then existing family Bunyaviridae (HISV) isolated from a captive boa constrictor in Finland was elevated to the rank of order. The three established [9, 10] (TaxoProp 2017.001M.A.v1.Hartmanivirus.zip). bunyaviral genera Hantavirus, Nairovirus, and Tospovi- The genus Mammarenavirus was extended by addition of rus were renamed Orthohantavirus, Orthonairovirus, and two novel species for Ryukyo virus (RYKV) and souris Orthotospovirus and included in the newly established virus (SOUV) discovered in mice in China and Cameroon, families Hantaviridae, Nairoviridae, and Tospoviridae, respectively (TaxoProps 2017.002M.A.v2.Mammarenavi- respectively (TaxoProp 2016.030a-vM). The genus Ortho- rus_sp and 2017.003M.A.v1.Mammarenavirus_sp). Five nairovirus was expanded by fve species [13] (TaxoProp mammarenavirus species were renamed due to the ICTV 2016.026a,bM). The family Peribunyaviridae was created decision to disallow diacritic marks in taxon names (Taxo- to include the established bunyaviral genus Orthobunyavirus Prop 2017.001G.A.v2.43spren): Amaparí mammarena- and a new genus, Herbevirus, for bunyaviruses discovered virus, Junín mammarenavirus, Paraná mammarenavirus, in invertebrates [14, 17] (TaxoProps 2016.024a-dM and Pichindé mammarenavirus, and Sabiá mammarenavirus 2016.030a-vM). The family Phenuiviridae was created to were renamed Serra do Navio mammarenavirus, Argentinian accommodate the established bunyaviral genus Phlebovirus, mammarenavirus, Paraguayan mammarenavirus, Cali mam- the previously “free-foating” plant virus genus Tenuivirus, marenavirus, and Brazilian mammarenavirus, respectively, and two new genera, Goukovirus and Phasivirus, for novel whereas the member virus names remained unchanged invertebrate bunyaviruses [16] (TaxoProps 2016.022a-dM (TaxoProp 2017.001G.A.v2.43spren). Finally, the three rep- and 2016.027a-dM). Three new families, Feraviridae, Jon- tarenavirus species names Alethinophid 1 reptarenavirus, viridae, and Phasmaviridae, were established for newly Alethinophid 2 reptarenavirus, and Alethinophid 3 reptare- discovered invertebrate bunyaviruses [2, 14, 18] (Taxo- navirus were renamed Golden reptarenavirus, California Props 2016.021a-dM, 2016.025a-dM and 2016.028a-dM). reptarenavirus, and Rotterdam reptarenavirus. Two new 1 3 Arenaviridae and Bunyavirales taxonomy update reptarenavirus species were created for tavallinen suoma- Phasmaviridae lainen mies virus 2 (TSMV-2) and University of Giessen viruses 1–3 (UGV-1–3) discovered in captive boa con- In 2018, no changes were made at the family rank. strictors; several newly sequenced reptarenaviruses were assigned to existing species [9] (TaxoProp 2017.015M.A.v1. Phenuiviridae Reptarenavirus_2sp3ren). In 2018, no changes were made at the family rank. Tospoviridae Order Bunyavirales Taxonomic changes at the order rank In 2018, no changes were made at the family
Recommended publications
  • Geographic Distribution of Hantaviruses Associated with Neotomine and Sigmodontine Rodents, Mexico Mary L
    Geographic Distribution of Hantaviruses Associated with Neotomine and Sigmodontine Rodents, Mexico Mary L. Milazzo,1 Maria N.B. Cajimat,1 Hannah E. Romo, Jose G. Estrada-Franco, L. Ignacio Iñiguez-Dávalos, Robert D. Bradley, and Charles F. Fulhorst To increase our knowledge of the geographic on the North American continent are Bayou virus, Black distribution of hantaviruses associated with neotomine or Creek Canal virus (BCCV), Choclo virus (CHOV), New sigmodontine rodents in Mexico, we tested 876 cricetid York virus, and Sin Nombre virus (SNV) (3–7). Other rodents captured in 18 Mexican states (representing at hantaviruses that are principally associated with neotomine least 44 species in the subfamily Neotominae and 10 or North American sigmodontine rodents include Carrizal species in the subfamily Sigmodontinae) for anti-hantavirus virus (CARV), Catacamas virus, El Moro Canyon virus IgG. We found antibodies against hantavirus in 35 (4.0%) rodents. Nucleotide sequence data from 5 antibody-positive (ELMCV), Huitzilac virus (HUIV), Limestone Canyon rodents indicated that Sin Nombre virus (the major cause of virus (LSCV), Montano virus (MTNV), Muleshoe virus hantavirus pulmonary syndrome [HPS] in the United States) (MULV), Playa de Oro virus, and Rio Segundo virus is enzootic in the Mexican states of Nuevo León, San Luis (RIOSV) (8–14). Potosí, Tamaulipas, and Veracruz. However, HPS has not Specifi c rodents (usually 1 or 2 closely related been reported from these states, which suggests that in species) are the principal hosts of the hantaviruses, northeastern Mexico, HPS has been confused with other for which natural host relationships have been well rapidly progressive, life-threatening respiratory diseases.
    [Show full text]
  • Phleboviruses and the Type I Interferon Response
    viruses Review Phleboviruses and the Type I Interferon Response Jennifer Deborah Wuerth and Friedemann Weber * Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen 35392, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-641-99-383-50 Academic Editors: Jane Tao and Pierre-Yves Lozach Received: 8 May 2016; Accepted: 20 June 2016; Published: 22 June 2016 Abstract: The genus Phlebovirus of the family Bunyaviridae contains a number of emerging virus species which pose a threat to both human and animal health. Most prominent members include Rift Valley fever virus (RVFV), sandfly fever Naples virus (SFNV), sandfly fever Sicilian virus (SFSV), Toscana virus (TOSV), Punta Toro virus (PTV), and the two new members severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV). The nonstructural protein NSs is well established as the main phleboviral virulence factor in the mammalian host. NSs acts as antagonist of the antiviral type I interferon (IFN) system. Recent progress in the elucidation of the molecular functions of a growing list of NSs proteins highlights the astonishing variety of strategies employed by phleboviruses to evade the IFN system. Keywords: phlebovirus; NSs protein; interferon; RIG-I; PKR 1. Introduction The family Bunyaviridae contains five genera, among which the Orthobunyavirus, Phlebovirus, Nairovirus, and Hantavirus all contain species that are pathogenic to humans and animals, while the genus Tospovirus contains
    [Show full text]
  • ABSTRACT Vector-Borne Viral Infections in South-West
    저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다: 저작자표시. 귀하는 원저작자를 표시하여야 합니다. 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다. l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다. 저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다. Disclaimer August 2016 Master’s Degree Thesis Vector-Borne Viral Infections in South-West Region of Korea Graduate School of Chosun University Department of Biomedical Sciences Babita Jha August 2016 Master’s Degree Thesis Vector-Borne Viral Infections in South-West Region of Korea Graduate School of Chosun University Department of Biomedical Sciences Babita Jha Vector-Borne Viral Infections in South-West Region of Korea 한국의 남서부 지역에서 매개체 관련 바이러스 질환 August, 2016 Graduate School of Chosun University Department of Biomedical Sciences Babita Jha Vector-Borne Viral Infections in South-West Region of Korea Advisor: Prof. Dong-Min Kim, MD, PhD THESIS SUBMITTED TO THE DEPARTMENT OF BIOMEDICAL SCIENCES, CHOSUN UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BIOMEDICAL SCIENCES April, 2016 Graduate School of Chosun University Department of Biomedical Sciences Submitted by Babita Jha August Master’s Vector-Borne Viral Infections in Babita Jha Degree 2016 Thesis South-West Region of Korea Table of Contents LIST OF TABLES……………………….................iv LIST OF FIGURES…………………………………v ABBREVIATIONS AND SYMBOLS…………….vi ABSTRACT…………………………………...…….ix 한 글 요 약……………………………………...…..xii I.
    [Show full text]
  • Chapter 11. Phlebotomus Fever—Sandfly Fever
    Chapter 11 Phlebotomus Fever—Sandfly Fever Koray Ergunay Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara, Turkey CASE PRESENTATION During mid-August, a 27-year-old male was admitted to the emergency ward with high fever, chills, severe headache, joint pain, watery diarrhea, nausea and, vomiting, which had started the day before. The initial complete physical examination demonstrated a fever of 38.9C, generalized muscle tenderness, and multiple skin lesions suggesting insect bites on the upper left limb. Neurological examination was normal without meningeal signs. Medical his- tory revealed no previous disease of significance but an exposure to mosqui- toes during his stay at his cousin’s cottage 5 days ago. He had vomited three times during the last 24 hours. No apparent risk for infectious gastroenteritis could be identified. Laboratory evaluation demonstrated decreased leukocyte count (3.8 3 103/μL) with relative lymphocytosis, decreased platelet count (1.32 3 105/μL), elevated alanine aminotransferase (ALT, 101 U/L), aspartate aminotransferase (AST, 128 U/L), gamma glutamyl transpeptidase (GGT, 107 U/L), creatinine phosphokinase (CPK, 428 U/L), and lactate dehydroge- nase (LDH, 354 U/L) levels. Hemoglobulin, C-reactive protein, total protein, blood urea nitrogen (BUN), albumin, creatinine, prothrombin time (PT), acti- vated partial thromboplastin time (aPTT), international normalized ratio (INR), and the chest X-ray were within normal limits. The patient was trans- ferred to the infectious diseases department with the preliminary diagnosis of undifferentiated viral febrile condition, and blood and stool samples were sub- mitted for microbiological analyses. Symptomatic treatment with intravenous rehydration and anti-pyretics was initiated.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Hantavirus Disease Were HPS Is More Common in Late Spring and Early Summer in Seropositive in One Study in the U.K
    Hantavirus Importance Hantaviruses are a large group of viruses that circulate asymptomatically in Disease rodents, insectivores and bats, but sometimes cause illnesses in humans. Some of these agents can occur in laboratory rodents or pet rats. Clinical cases in humans vary in Hantavirus Fever, severity: some hantaviruses tend to cause mild disease, typically with complete recovery; others frequently cause serious illnesses with case fatality rates of 30% or Hemorrhagic Fever with Renal higher. Hantavirus infections in people are fairly common in parts of Asia, Europe and Syndrome (HFRS), Nephropathia South America, but they seem to be less frequent in North America. Hantaviruses may Epidemica (NE), Hantavirus occasionally infect animals other than their usual hosts; however, there is currently no Pulmonary Syndrome (HPS), evidence that they cause any illnesses in these animals, with the possible exception of Hantavirus Cardiopulmonary nonhuman primates. Syndrome, Hemorrhagic Nephrosonephritis, Epidemic Etiology Hemorrhagic Fever, Korean Hantaviruses are members of the genus Orthohantavirus in the family Hantaviridae Hemorrhagic Fever and order Bunyavirales. As of 2017, 41 species of hantaviruses had officially accepted names, but there is ongoing debate about which viruses should be considered discrete species, and additional viruses have been discovered but not yet classified. Different Last Updated: September 2018 viruses tend to be associated with the two major clinical syndromes in humans, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary (or cardiopulmonary) syndrome (HPS). However, this distinction is not absolute: viruses that are usually associated with HFRS have been infrequently linked to HPS and vice versa. A mild form of HFRS in Europe is commonly called nephropathia epidemica.
    [Show full text]
  • Emerging Viral Infections Phleboviruses
    Emerging viral infections Phleboviruses © by author Anna Papa National ReferenceESCMID Centre Online for Arboviruses Lecture and Hemorrhagic Library Fever viruses Aristotle University of Thessaloniki, Greece Main vectors of phleboviruses: phlebotomine sandflies © by author Etymologia. Phlebotomus: from the Greek words phleboESCMID + tomi=opening Online a vein Lecture Library TAXONOMY Phleboviruses: arthropod-borne RNA viruses Genus Phlebovirus - Family Bunyaviridae Cause to humans symptoms ranging from short self limiting fever to encephalitis and fatal hemorrhagic fever. 70 antigenically distinct serotypes: • Sandfly Fever group – 55 serotypes (most transmitted by sandflies, few by mosquitoes, e.g. Rift Valley fever) •Uukuniemi group – 13 serotypes (transmitted by ticks). • Severe fever and thrombocytopenia syndrome (SFTS) virus (transmitted by ticks). © by author 9 antigenic complexes including 37 classified viruses. Species differentiation based on a 4-fold difference in neutralization tests. High rate of genetic reassortment of the M segment: relying only on neutralizationESCMID or hemagglutination Online Lectureinhibition assays Library is not enough. VIRION Enveloped, spherical. Diameter 80-120 nm. Glycoproteins serve as neutralizing and hemagglutinin-inhibiting antibody targets and are exposed to selective pressure. GENOME Segmented negative- stranded RNA genome. Encodes for © by author 6 proteins. S : N protein and a NSs. Uses an ambisense coding strategy ESCMIDM Online : precursor of Lecturethe viral glycoproteins Library Gn and Gc , and NSm. L : viral RNA polymerase. Phlebotomine sandflies (Psychodidae) • > 500 different species • Widely distributed in Med countries from May to September. The number increases after rainy season. • Abundant in peri-urban and rural environments, close to domestic animals and human populations. • A cool, shaded, slightly damp The sandfly becomes infected environment is ideal for the sandfly life.
    [Show full text]
  • Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
    研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS.
    [Show full text]
  • The Structure and Functions of Hantavirus
    Helsinki University Biomedical Dissertations No. 143 THE STRUCTURE AND FUNCTIONS OF HANTAVIRUS NUCLEOCAPSID PROTEIN AGNƠ ALMINAITƠ Infection Biology Research Program, The Research Program Unit Department of Virology, Haartman Institute Faculty of Medicine, University of Helsinki Finland ACADEMIC DISSERTATION To be presented for the public examination, with the permission of the Faculty of Medicine of the University of Helsinki, in Lecture Hall 2, Haartman institute (Haartmaninkatu 3) on December the 29th 2010, at 12 o’clock noon Helsinki, 2010 Supervisors: Docent Alexander Plyusnin Department of Virology Haartman Institute University of Helsinki ƕ Professor emeritus Antti Vaheri Department of Virology Haartman Institute University of Helsinki Reviewers: Professor Dennis Bamford Department Biological and Environmental Sciences University of Helsinki ƕ Dr. Denis Kainov Institute for Molecular Medicine Finland FIMM University of Helsinki Opponent: Dr. Noël Tordo Pasteur Institute, Department of Virology Lyon/Paris, France ISBN 978-952-92-8407-8 (Paperback) ISBN 978-952-10-6745-7 (PDF) Yliopistopaino, http://ethesis.helsinki.fi © Agnơ Alminaitơ, Helsinki 2010 2 Be practical, study, work… but I like long walks & rain --- - from the film by Jonas Mekas ‘He stands in a Desert Counting the Seconds of His Life’ (1985) 3 Original Publications The present thesis is based on the following papers, which will be referred to by their Roman numerals: I. Alminaite, A., Halttunen, V., Kumar, V., Vaheri, A., Holm, L., and Plyusnin, A. 2006. Oligomerization of hantavirus N protein: analysis of the N-terminal coiled- coil domains. Journal of Virology, 80:9073-81. II. Alminaite, A., Backström, V., Vaheri, A., and Plyusnin, A. 2008. Oligomerization of hantavirus N protein: Charged residues in the N-terminal coiled-coil domain contribute to intermolecular interaction.
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • Notification Requirements
    Protocol for Public Health Agencies to Notify CDC about the Occurrence of Nationally Notifiable Conditions, 2021 Categorized by Notification Timeliness IMMEDIATELY NOTIFIABLE, EXTREMELY URGENT: Call the CDC ROUTINELY NOTIFIABLE: Submit electronic case notification Emergency Operations Center (EOC) at 770.488.7100 within 4 hours of within the next reporting cycle. a case meeting the notification criteria, followed by submission of an electronic case notification to CDC by the next business day. IMMEDIATELY NOTIFIABLE, URGENT: Call the CDC EOC at 770.488.7100 Approved by CSTE: June 2019 within 24 hours of a case meeting the notification criteria, followed by Interim Update Approved by CSTE: April 5, 2020 submission of an electronic case notification in next regularly scheduled Implemented: January 1, 2020 electronic transmission. Updated: May 28, 2020 Condition Notification Timeliness Cases Requiring Notification Anthrax Immediately notifiable, Confirmed and probable cases - Source of infection not recognized extremely urgent - Recognized BT exposure/potential mass exposure - Serious illness of naturally-occurring anthrax Botulism Immediately notifiable, All cases prior to classification - Foodborne (except endemic to Alaska) extremely urgent - Intentional or suspected intentional release - Infant botulism (clusters or outbreaks) - Cases of unknown etiology/not meeting standard notification criteria Page 1 of 5 Plague Immediately notifiable, All cases prior to classification - Suspected intentional release extremely urgent Paralytic poliomyelitis
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Second Update 2018
    Archives of Virology (2019) 164:927–941 https://doi.org/10.1007/s00705-018-04127-3 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: second update 2018 Piet Maes1 · Scott Adkins2 · Sergey V. Alkhovsky3 · Tatjana Avšič‑Županc4 · Matthew J. Ballinger5 · Dennis A. Bente6 · Martin Beer7 · Éric Bergeron8 · Carol D. Blair9 · Thomas Briese10 · Michael J. Buchmeier11 · Felicity J. Burt12,13 · Charles H. Calisher9 · Rémi N. Charrel14 · Il Ryong Choi15 · J. Christopher S. Clegg16 · Juan Carlos de la Torre17 · Xavier de Lamballerie14 · Joseph L. DeRisi18,19,20 · Michele Digiaro21 · Mike Drebot22 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst6 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28,29 · Stephan Günther30 · Anne‑Lise Haenni31 · Roy A. Hall32 · Roger Hewson33 · Holly R. Hughes34 · Rakesh K. Jain35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa37,39 · Jonas Klingström40 · Richard Kormelink41 · Amy J. Lambert34 · Stanley A. Langevin42 · Igor S. Lukashevich43 · Marco Marklewitz37,38 · Giovanni P. Martelli44 · Nicole Mielke‑Ehret45 · Ali Mirazimi46 · Hans‑Peter Mühlbach45 · Rayapati Naidu47 · Márcio Roberto Teixeira Nunes48 · Gustavo Palacios25 · Anna Papa49 · Janusz T. Pawęska50,51 · Clarence J. Peters6 · Alexander Plyusnin52 · Sheli R. Radoshitzky25 · Renato O. Resende53 · Víctor Romanowski54 · Amadou Alpha Sall55 · Maria S. Salvato56 · Takahide Sasaya57 · Connie Schmaljohn25 · Xiǎohóng Shí58 · Yukio Shirako59 · Peter Simmonds60 · Manuela Sironi61 ·
    [Show full text]