Eagleson Et Al. Supplement Proteomic and Mitochondrial

Total Page:16

File Type:pdf, Size:1020Kb

Eagleson Et Al. Supplement Proteomic and Mitochondrial Eagleson et al. Supplement Proteomic and mitochondrial adaptations to early-life stress differ in juveniles and adults Supplemental Results There was no difference in dam and pup body weight at P2, the start of the ELS period (Supplemental Figures S2A, D; Supplemental Tables S1, S2). Rearing had no effect on body weight gain in dams over the stress period (Supplemental Figure S2B; Supplemental Table S1). In contrast, there was a large effect of rearing (F(1,188) = 49.91, p < .001, 2 = .191), but no effect of sex or sex*rearing interaction, on weight gain in pups over the same period (Supplemental Figure S2E; Supplemental Table S2). ELS pups weighed ~7% less than control pups at P9 (Supplemental Figure S2F; Supplemental Table S2). We also measured offspring weight at P21 and adults, the ages at which our analyses were performed. There was a small effect of rearing (F(1,188) = 8.67, p = .004, 2 = .038), but no effect of sex or sex*rearing interaction, on weight gain between P9 and P21 (Supplemental Figure S2G; Supplemental Table S2); thus ELS pups still weighed ~7% less than control pups at P21 (Supplemental Figure S2H; Supplemental Table S2). By adulthood, there is a large effect of sex (F(1,92) = 305.426, p < .001, 2 = .763), but no effect of rearing or sex*rearing interaction, on offspring weight (Supplemental Figure S2I; Supplemental Table S2), consistent with previous reports (1-4). Eagleson S1 Figure S1. Characterization of the isolated mitochondrial preparation in pilot studies. (A) Western blot analysis confirms enrichment of OXPHOS complexes in isolated mitochondria (Mito) compared to non-nuclear homogenates (Hom) of hippocampus and liver. (B) Mitochondrial integrity was confirmed by measuring citrate synthase activity in the presence and absence of CellLytic M, which lyses the mitochondria. Only lysed mitochondria display CS activity. Eagleson S2 Figure S2. Effects of ELS on body weight gain and total body weight during the stress period and at the age of analysis. For dams, there is no difference in (A) body weight at the start of the ELS period, (B) body weight gain over the ELS period, or (C) body weight at the end of the ELS period. For offspring, there is no difference in body weight at the start of the ELS period (D). Body weight gain over the ELS period is reduced in ELS males and females (E), but returns to control-reared levels after the stress period ends (G). Male and female ELS pups weigh less than control-reared pups at the end of the ELS period (D) and at weaning (E). Weights have normalized by adulthood (F). Eagleson S3 Data are presented as box and whisker plots. The box represents the 25th and 75 percentiles, the whiskers denote the 10th and 90th percentiles, and the dots represent the 5th and 95th percentiles. The line bisecting each box is the median. *Significantly different from control-reared mice of the same sex. Raw data and statistical details are provided in Supplementary Tables S1, S2. Eagleson S4 Supplemental References 1. Rice CJ, Sandman CA, Lenjavi MR, Baram TZ (2008): A novel mouse model for acute and long- lasting consequences of early life stress. Endocrinology. 149:4892-4900. 2. Naninck EF, Hoeijmakers L, Kakava-Georgiadou N, Meesters A, Lazic SE, Lucassen PJ, et al. (2015): Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus. 25:309-328. 3. Yam KY, Naninck EF, Abbink MR, la Fleur SE, Schipper L, van den Beukel JC, et al. (2017): Exposure to chronic early-life stress lastingly alters the adipose tissue, the leptin system and changes the vulnerability to western-style diet later in life in mice. Psychoneuroendocrinology. 77:186-195. 4. Kanatsou S, Karst H, Kortesidou D, van den Akker RA, den Blaauwen J, Harris AP, et al. (2017): Overexpression of mineralcorticoid receptors in the mouse forebrain partly alleviates the effects of chronic early life stress on spatial memory, neurogenesis and synaptic function in the dentate gyrus. Front Cell Neurosci. 11:132. Eagleson S5 Table S1. Body weight (g) of control and ELS dams Control (n=48) ELS (n=48) P2 P9 P9-P2 P2 P9 P9-P2 30.4 31.4 1.0 31.0 32.8 1.8 30.8 32.9 2.1 33.1 34.6 1.5 29.9 32.8 2.9 29.7 32.4 2.7 31.6 33.4 1.8 28.7 32.0 3.3 27.1 30.3 3.2 32.3 34.8 2.5 30.9 33.5 2.6 28.4 32.1 3.7 28.9 31.3 2.4 29.2 30.4 1.2 28.8 30.7 1.9 30.4 33.5 3.1 32.4 33.0 0.6 30.0 33.4 3.4 30.6 31.6 1.0 31.8 33.1 1.3 32.0 32.5 0.5 30.7 33.3 2.6 27.6 28.1 0.5 32.9 34.7 1.8 31.5 31.8 0.3 30.4 34.9 4.5 25.1 26.2 1.1 30.2 31.8 1.6 32.5 34.7 2.2 29.2 29.2 0.0 28.9 32.6 3.7 33.2 35.4 2.2 31.1 33.6 2.5 33.6 33.1 -0.5 33.2 35.4 2.2 30.8 32.7 1.9 29.9 30.3 0.4 28.8 30.3 1.5 28.0 30.1 2.1 31.8 35.2 3.4 33.6 34.6 1.0 31.3 33.2 1.9 31.5 33.4 1.9 31.8 31.5 -0.3 30.8 33.7 2.9 33.3 34.9 1.6 30.1 32.9 2.8 29.2 32.1 2.9 32.3 33.9 1.6 31.8 34.2 2.4 30.3 31.3 1.0 29.4 32.1 2.7 30.3 31.5 1.2 30.3 32.9 2.6 33.7 34.6 0.9 29.2 32.1 2.9 30.8 32.2 1.4 28.8 32.8 4.0 31.1 33.2 2.1 31.3 33.3 2.0 32.4 34.3 1.9 31.2 31.3 0.1 29.3 31.9 2.6 30.3 33.5 3.2 29.8 32.1 2.3 31.2 32.2 1.0 29.9 31.9 2.0 30.7 31.7 1.0 31.3 32.9 1.6 29.9 31.9 2.0 29.7 32.5 2.8 31.9 32.8 0.9 30.3 31.0 0.7 30.9 33.1 2.2 34.9 35.7 0.8 32.5 33.0 0.5 32.2 34.8 2.6 28.6 30.8 2.2 30.6 31.7 1.1 28.5 31.0 2.5 30.6 31.3 0.7 30.0 31.7 1.7 35.4 39.8 4.4 28.1 30.2 2.1 28.5 30.7 2.2 29.5 31.6 2.1 30.5 33.3 2.8 29.0 31.3 2.3 28.7 31.1 2.4 28.3 32.5 4.2 30.2 32.6 2.4 30.6 34.2 3.6 30.1 31.2 1.1 29.4 32.7 3.3 29.3 33.6 4.3 30.8 33.6 2.8 Mean 30.61 32.50 1.89 30.50 32.66 2.16 Standard deviation 1.91 2.07 0.99 1.47 1.40 1.14 95% CI 30.07, 31.15 32.01, 33.19 1.61, 2.17 30.08, 30.92 32.26, 33.06 1.84, 2.48 Two-tailed unpaired t -test P2 Mean Difference DF t-Value P-Value C, ELS 0.113 94 0.324 0.747 P9 Mean Difference DF t-Value P-Value C, ELS 0.167 94 -0.462 0.645 P9-P2 Mean Difference DF t-Value P-Value C, ELS 0.279 94 -1.283 0.203 Table S2. Body weight (g) of control and ELS offspring ND, not determined because litter used for P21 studies Control ELS Male Female Male Female P2 P9 P9-P2 P21 P21-P9 Adult P2 P9 P9-P2 P21 P21-P9 Adult P2 P9 P9-P2 P21 P21-P9 Adult P2 P9 P9-P2 P21 P21-P9 Adult 1.73 5.44 3.71 10.20 4.76 ND 1.72 5.40 3.68 9.00 3.60 ND 1.88 4.88 3.00 6.57 1.69 ND 1.98 5.21 3.23 7.80 2.59 ND 1.59 4.83 3.24 9.23 4.40 ND 1.65 5.07 3.42 8.60 3.53 ND 2.07 5.74 3.67 8.73 2.99 ND 1.89 5.52 3.63 8.30 2.78 ND 2.00 5.71 3.71 9.59 3.88 ND 2.07 5.92 3.85 9.78 3.86 ND 1.66 5.33 3.67 8.75 3.42 ND 1.52 4.85 3.33 8.8 3.95 ND 1.54 4.73 3.19 9.38 4.65 28.73 1.56 4.70 3.14 9.25 4.55 23.59 1.49 4.30 2.81 8.80 4.50 31.29 1.45 4.05 2.60 8.70 4.65 23.56 1.57 3.87 2.30 7.83 3.96 31.63 1.60 3.80 2.20 7.97 4.17 24.23 1.61 4.67 3.06 8.87 4.20 28.28 1.51 4.45 2.94 9.15 4.70 19.80 1.56 5.44 3.88 10.00 4.56 28.59 1.43 5.19 3.76 9.52 4.33 20.98 1.38 4.06 2.68 9.85 5.79 28.18 1.37 4.06 2.69 9.48 5.42 23.38 1.70 5.43 3.73 9.65 4.22 ND 1.62 5.13 3.51 9.36 4.23 ND 2.34 5.40 3.06 8.81 3.41 ND 2.31 5.10 2.79 8.89 3.79 ND 1.69 5.35 3.66 9.87 4.52 ND 1.71 5.37 3.66 8.68 3.31 ND 1.57 4.54 2.97 9.76 5.22 ND 1.53 4.60 3.07 9.69 5.09 ND 1.73 5.28 3.55 10.10 4.82 28.82 1.69 5.70 4.01 9.65 3.95 20.83 1.74 4.78 3.04 8.93 4.15 27.39 1.62 4.89 3.27 9.10 4.21 23.53 1.71 5.26 3.55 9.73 4.47 31.31 1.69 5.26 3.57 9.35 4.09 23.51 1.77 5.44 3.67 9.93 4.49 29.01 1.68 5.29 3.61 9.35 4.06 21.23 2.01 6.60 4.59 9.53 2.93 ND 1.82 7.09 5.27 8.05 0.96 ND 1.51 4.44 2.93 8.07 3.63 ND 1.57 4.90 3.33 8.40 3.50 ND 1.69 5.08 3.39 11.63 6.55 ND 1.63 5.15 3.52 10.80 5.65 ND 1.75 5.15 3.40 8.53 3.38 ND 1.79 5.18 3.39 8.40 3.22 ND 2.09 5.37 3.28 9.97 4.60 36.38 1.97 5.53 3.56 10.10 4.57 23.19 1.84 4.37 2.53 7.90 3.53 28.00 2.06 5.70 3.64 8.55 2.85 22.97 1.44 4.35 2.91 10.06 5.71 32.00 1.59 4.60 3.01 9.90 5.30 24.44 1.64 4.39 2.75 8.92 4.53 32.56 1.57 4.98 3.41 8.71 3.73 24.89 1.65 5.58 3.93 8.92 3.34 28.49 1.58 5.53 3.95 9.11 3.58 25.31 1.51 4.31 2.80 8.72 4.41 28.12 1.62 5.09 3.47 9.19 4.10 25.17 1.59 4.53 2.94 9.60 5.07 ND 1.59 4.54 2.95 9.51 4.97 ND 1.54 4.71 3.17 8.64 3.93 ND 1.32 4.40 3.08 8.54 4.14 ND 1.51 4.88 3.37 9.19 4.31 ND 1.50 5.05 3.55 9.29 4.24 ND 1.61 5.54 3.93 9.22 3.68 ND 1.62 5.59 3.97 8.42 2.83 ND 1.73 5.60 3.87 10.03 4.43 27.76 1.67 5.50 3.83 9.50 4.00 22.47 1.79 5.40 3.61 10.03 4.63 27.69 1.73 5.38 3.65 9.63 4.25 23.55 1.70 5.68 3.98 10.00 4.32 32.09 1.73 5.66 3.93 9.47 3.81 24.46 1.76 5.07 3.31 9.73 4.66 27.22 1.72 5.20 3.48 10.23 5.03 23.98 1.66 5.14 3.48 9.33 4.19 ND 1.63 5.24 3.61 9.17 3.93 ND 1.85 5.70 3.85 8.97 3.27 ND 1.99 5.27 3.28 9.40 4.13 ND 1.93 6.47 4.54 9.33 2.86 ND 1.79 5.65 3.86 9.35 3.70 ND 1.76 4.74 2.98 8.40 3.66 ND 1.69 4.56 2.87 8.50 3.94 ND 1.92 5.78 3.86 10.63 4.85 29.01 1.81 5.79 3.98 10.73 4.94 21.12 1.72 4.94 3.22 9.03 4.09 30.31 1.77 5.12 3.35 8.90 3.78 23.45 1.71 5.54 3.83 9.47 3.93 29.76 1.57 5.38 3.81 9.95 4.57 22.45 1.72 5.19 3.47 9.03 3.84 26.93 1.70 5.05 3.35 9.20 4.15 20.81 1.68 5.58 3.90 9.37 3.79 29.95 1.59 5.61 4.02 9.55 3.94 23.82 1.71 4.62 2.91 8.07 3.45 32.80 1.58 4.52 2.94 7.77 3.25 22.68 1.66 5.60 3.94 10.63 5.03 26.43 1.68 5.51 3.83 9.03 3.52 22.95 1.91 4.64 2.73 9.07 4.43 26.67 1.86 4.47 2.61 8.27 3.80 21.64 1.59 5.17 3.58 9.37 4.20 25.88 1.59 5.30 3.71 9.13 3.83 20.41 1.70 4.78 3.08 8.03 3.25 32.39 1.62 4.37 2.75 8.03 3.66 22.33 1.29 4.57 3.28 9.43 4.86 ND 1.20 4.21 3.01 9.46 5.25 ND 1.71 4.73 3.02 9.40 4.67 ND 1.75 4.78 3.03 9.10 4.32 ND 1.61 5.68 4.07 9.67 3.99 ND 1.62 5.66 4.04 10.00 4.34 ND 1.52 5.00 3.48 8.54 3.54 ND 1.44 4.69 3.25 8.60 3.91 ND 1.50 5.09 3.59 9.43 4.34 ND 1.52 5.15 3.63 10.97 5.82 ND 1.66 4.46 2.80 9.20 4.74 ND 1.50 4.41 2.91 9.15 4.74
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Ran Activation Assay Kit
    Product Manual Ran Activation Assay Kit Catalog Number STA-409 20 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Small GTP-binding proteins (or GTPases) are a family of proteins that serve as molecular regulators in signaling transduction pathways. Ran, a 25 kDa protein of the Ras superfamily, regulates a variety of biological response pathways that include DNA synthesis, cell cycle progression, and translocation of RNA/proteins through the nuclear pore complex. Like other small GTPases, Ran regulates molecular events by cycling between an inactive GDP-bound form and an active GTP-bound form. In its active (GTP-bound) state, Ran binds specifically to RanBP1 to control downstream signaling cascades. Cell Biolabs’ Ran Activation Assay Kit utilizes RanBP1 Agarose beads to selectively isolate and pull- down the active form of Ran from purified samples or endogenous lysates. Subsequently, the precipitated GTP-Ran is detected by western blot analysis using an anti-Ran antibody. Cell Biolabs’ Ran Activation Assay Kit provides a simple and fast tool to monitor the activation of Ran. The kit includes easily identifiable RanBP1 Agarose beads (see Figure 1), pink in color, and a GTPase Immunoblot Positive Control for quick Ran identification. Each kit provides sufficient quantities to perform 20 assays. Figure 1: RanBP1 Agarose beads, in color, are easy to visualize, minimizing potential loss during washes and aspirations. 2 Assay Principle Related Products 1. STA-400: Pan-Ras Activation Assay Kit 2. STA-400-H: H-Ras Activation Assay Kit 3. STA-400-K: K-Ras Activation Assay Kit 4. STA-400-N: N-Ras Activation Assay Kit 5.
    [Show full text]
  • Table 1. Identified Proteins with Expression Significantly Altered in the Hippocampus of Rats of Exposed Group (Pb) Vs
    Table 1. Identified proteins with expression significantly altered in the hippocampus of rats of exposed group (Pb) vs. Control. Fold Change Accession Id a Protein Description Score Pb P35213 14-3-3 protein beta/alpha 85420 −0.835 P62260 14-3-3 protein epsilon 96570 −0.878 P68511 14-3-3 protein eta 85420 −0.844 P68255 14-3-3 protein theta 85420 −0.835 P63102 14-3-3 protein zeta/delta 105051 −0.803 P13233 2',3'-cyclic-nucleotide 3'-phosphodiesterase 151400 1.405 P68035 Actin, alpha cardiac muscle 1 442584 −0.942 P68136 Actin, alpha skeletal muscle 441060 −0.970 P62738 Actin, aortic smooth muscle 438270 −0.970 P60711 Actin, cytoplasmic 1 630104 −0.942 P63259 Actin, cytoplasmic 2 630104 −0.942 P63269 Actin, gamma-enteric smooth muscle 438270 −0.951 Q05962 ADP/ATP translocase 1 60100 −0.554 Q09073 ADP/ATP translocase 2 49102 −0.482 P84079 ADP-ribosylation factor 1 34675 −0.644 P84082 ADP-ribosylation factor 2 22412 −0.644 P61206 ADP-ribosylation factor 3 34675 −0.619 P61751 ADP-ribosylation factor 4 22412 −0.670 P84083 ADP-ribosylation factor 5 22412 −0.625 P04764 Alpha-enolase 46219 −0.951 P23565 Alpha-internexin 9478 1.062 P37377 Alpha-synuclein 89619 −0.771 P13221 Aspartate aminotransferase, cytoplasmic 23661 1.083 P00507 Aspartate aminotransferase, mitochondrial 46049 1.116 P10719 ATP synthase subunit beta, mitochondrial 232442 −0.835 P85969 Beta-soluble NSF attachment protein 9638 1.419 Q63754 Beta-synuclein 66842 −0.779 P11275 Calcium/calmodulin-dependent protein kinase type II subunit alpha 181954 1.105 P08413 Calcium/calmodulin-dependent protein kinase type II subunit beta 80840 1.127 P15791 Calcium/calmodulin-dependent protein kinase type II subunit delta 62682 1.105 Int.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Gene Targeting Therapies (Roy Alcalay)
    Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • University of Groningen the Human HSP70/HSP40 Chaperone Family
    University of Groningen The human HSP70/HSP40 chaperone family Hageman, Jurre IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hageman, J. (2008). The human HSP70/HSP40 chaperone family: a study on its capacity to combat proteotoxic stress. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 CHAPTER 1 Introduction - Structural and functional diversities between members of the human HSPH, HSPA and DNAJ chaperone families Jurre Hageman and Harm H.
    [Show full text]
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence After Radical Prostatectomy
    Int. J. Mol. Sci. 2015, 16, 3856-3869; doi:10.3390/ijms16023856 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence after Radical Prostatectomy Chinyere Ibeawuchi 1, Hartmut Schmidt 2, Reinhard Voss 3, Ulf Titze 4, Mahmoud Abbas 5, Joerg Neumann 6, Elke Eltze 7, Agnes Marije Hoogland 8, Guido Jenster 9, Burkhard Brandt 10 and Axel Semjonow 1,* 1 Prostate Center, Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 2 Center for Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 3 Interdisciplinary Center for Clinical Research, University of Muenster, Albert-Schweitzer-Campus 1, Gebaeude D3, Domagkstrasse 3, Muenster D-48149, Germany; E-Mail: [email protected] 4 Pathology, Lippe Hospital Detmold, Röntgenstrasse 18, Detmold D-32756, Germany; E-Mail: [email protected] 5 Institute of Pathology, Mathias-Spital-Rheine, Frankenburg Street 31, Rheine D-48431, Germany; E-Mail: [email protected] 6 Institute of Pathology, Klinikum Osnabrueck, Am Finkenhuegel 1, Osnabrueck D-49076, Germany; E-Mail: [email protected] 7 Institute of Pathology, Saarbrücken-Rastpfuhl, Rheinstrasse 2, Saarbrücken D-66113, Germany; E-Mail: [email protected] 8 Department
    [Show full text]