United States Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office 3,674,428 United States Patent Office Patented July 4, 1972 2 mercury polysulfide to insoluble mercury sulfide, and the 3,674,428 MERCURY REMOVAL resultant precipitate recovered. The process is effective Warren E. Dean and Charles M. Dorsett, New Martins to such an extent that less than 1 part per million or pref ville, W. Va., assignors to PPG Industries, Inc., Pitts erably less than 50 parts per billion mercury is present burgh, Pa. in solution. Moreover, by the process of the invention SSWing. Filed Dec. 22, 1970, Ser. No. 100,833 there is no liberation of hydrogen sulfide into the atmos Int. C. C01g 1/12, 13/00 phere. In addition, it is not necessary to adjust the pH of U.S. C. 23-134 7 Claims an alkaline Solution, i.e., having a pH or 7 or above to an acid pH such as about 4 or 5 in order to decompose 10. the excess polysulfide, and then adjust the acid pH to a ABSTRACT OF THE DISCLOSURE highly alkaline solution preferably at least 9 in order to flocculate the insoluble mercury sulfide. Moreover, it has A process for removing mercury from an alkaline solu been found that an excess of sulfide ion of up to 500 per tion having a pH of at least 7 is provided comprising cent or more can be employed and the control required intermixing with said solution a sulfur compound in an 5 by the prior art processes obviated. Further, results equiv amount sufficient to provide sulfide ion in an amount alent or Superior to prior art methods can be achieved greater than the stoichiometric equivalent of mercury, Without the employment of flocculents and Settling agents. oxidizing the soluble mercury polysulfide and recovering The Solution to be treated can be entirely composed of the insoluble mercury sulfide. Water and mercury or it can comprise only a minor 20 -easam amount of water. It is only necessary that the mercury and sulfide ion be soluble or sparingly soluble in the This invention relates to a process for removing mer Solution and that the mercury sulfide formed be insoluble, cury from alkaline solutions and particularly removing and recoverable therefrom. mercury from mercury electrolytic cell effluent and waste The process of the invention is particularly efficacious streams containing mercury. 25 for alkaline brines from mercury electrolytic cells which Several methods are known for recovering mercury. comprise an aqueous solution of sodium chloride or For example, British Pat. 916,866 adds sulfide ions to a potassium chloride generally containing from 50 grams to chlorine-containing brine until the redox potential relative 100 grams per liter of sodium chloride or potassium chlo to the saturated KC-Calomel electrode is in the range ride. Effluents from said cells and cell operations (i.e., --0.85 volt to --0.93 volt, raising the pH in the range 30 Wash waters, Spills, seal waters, etc.), however, can con 7-9 by the addition of alkali and then continuing the in tain as little as 5 grams to as much as 300 grams per liter troduction of sulfide ions into the brine until the redox of Salt. The brines are normally complex solutions, how potential is in the range of 0 to -0.2 volt, flocculating ever, and contain in addition such elements as magnesium, the precipitate obtained, settling the precipitate and sep mercury, silicon, calcium, barium, strontium, zinc, iron, arating the substantially mercury-free brine. manganese, boron, aluminum, lead, tin, chromium, cop U.S. Pat. 2,860,952 (Bergeron et al.) adds at least a per, nickel, silver, vanadium, and germanium. In addi stoichiometric amount of sulfide to react with the soluble tion, dissolved chlorine or hypochlorite and chlorate ions mercury present in a slightly acidic brine and preferably are normally present. These brines are substantially sulfide a stoichiometric excess in the range of 20 to 100 percent, free as any sulfide ion reacts with the dissolved chlorine, adding thereto a soluble ferric compound and starch or 40 hypochlorite or chlorate ions. The term "substantially sul gum arabic, and adjusting the pH of the brine to between fide free' is intended to define any solution in which the 8 and 10 by the addition of sodium hydroxide. Thus, these materials which react with sulfide ion (e.g., hypochlorite references describe adding sulfide ion to the acidic brine ion) are present in excess, as well as solutions having no and then raising the pH to the alkaline side and optionally sulfide ion. adding flocculating agents in order to flocculate the mer 45 Although the invention is particularly suited for brines cury sulfide. The difficulty with adding sulfide to an and industrial effluents which are initially alkaline, such alkaline brine is noted in the British patent in that sulfur as are produced in modern mercury electrolytic cells, the separates due to the reaction between hypochlorite and invention is equally applicable to any alkaline solution sulfide. Further soluble mercury polysulfides are formed containing mercury or even to acid solutions which can in alkaline solution when an excess of sulfide is added 50 be made alkaline by the addition of sodium hydroxide, so that the mercury is not completely recovered. The carbonate, or other alkaline materials. disadvantage with both of the aforesaid patented proce The sulfur compound employed can be any soluble or dures is that when an excess of sulfide is added to an acid sparingly soluble sulfur compound which will provide solution, hydrogen sulfide is formed and liberated into Sulfide ion in the solution. Exemplary of suitable com the atmosphere. 55 pounds are the alkali metal sulfides such as sodium sulfide, Although the methods taught by the references are use potassium sulfide, and lithium sulfide; the alkaline earth ful for acidic brines, many industrial effluents from mer metal sulfides such as magnesium sulfide, calcium sulfide, cury cells and other mercury-containing waste streams strontium sulfide, or beryllium sulfide; a hydrosulfied such are alkaline when discharged from the manufacturing as Sodium hydrosulfide or hydrogen sulfide can be bubbled operation. For these streams, it would not be efficacious 60 directly into the solution. Generally the sulfide is added as to lower the alkaline stream to a neutral or acidic pH in an aqueous solution but flake materials such as sodium order to add sulfide ions since it would then be necessary sulfide or sodium hydrosulfide can be used. to raise the pH back to the alkaline side in order to floc The term "mercury sulfide' as used herein means culate the formed mercury sulfide. mercuric sulfide, mercurous sulfide, or a mixture thereof. It has now been discovered that an aqueous solution 65 Normally the mercury sulfide is present as mercuric sul having a pH of at least 7, and preferably 9 or above, can fide and thus one mole of sulfide ion per mole of mercury be treated with an excess of sulfide ion over that required ion would provide a stoichiometric equivalent. to react or combine with the mercury present to form Inasmuch as the solution and particularly brines from insoluble mercury sulfide, and that said excess sulfide ion 70 a mercury electrolytic cell can contain a number of other which is reported to result in the formation of soluble materials which are reacted with sulfide ion such as the mercury polysulfide can be oxidized to decompose the aforesaid metals, elemental chlorine, hypochlorite, or 3,674,428 3. 4. chlorate ion, the sulfur compound must be added in an cell operation (800 and 3800 milliliters, respectively) con amount sufficient to combine or react with said materials taining 4,675 and 468 parts per billion mercury, respec and still have an excess of sulfide ion over that required tively, and having a pH of 12.8 and 12.9, respectively, to combine with the mercury present in solution. were treated at ambient temperature with air by passing The sulfide ion can be present in excess over the stoi air through the solutions by means of a fritted glass tube chiometric equivalent of mercury by as much as 500 per at a rate of 5 liters per minute for a period of 24 hours. cent, or more. It is not necessary, however, that the excess The samples were then filtered through a 0.3 micron milli be that high and because the excess sulfide present as pore filter and the soluble mercury in the filtrate deter mercury polysulfide must be oxidized to the insoluble mined. The results are reported in the following Table 2 mercury sulfide, it is normally preferable and quite simple O where it can be seen that in both cases the soluble mer to provide an excess of about 100 percent or less. An ex cury present in the filtrate was less than 50 parts per cess of at least 1 percent should be employed, however, in billion. order to insure complete reaction. The amount of sulfur compound added will also depend upon its particular solu bility in the solution. Thus, where the solution contains a TABLE 2.--THE DECOMPOSITION OF MERCURY POLY SULFIDE IN AQUEOUS SOLUTIONS FROM THE SETTLING large amount of organic materials and/or the sulfur com POND pound is only sparingly soluble in the solution, a large Air oxidation (24 hrs.) amount of sulfur compound may be necessary to obtain Soluble mercury (p.p.b.) the desired excess of sulfide ion. This can easily be de P. p.m. sulfide termined, however, and is no problem in brines and sub Prior to oxidation ion Before After stantially aqueous solutions when sodium sulfide, sodium 6 14,675 35 hydrosulfide or one of the other highly water sulfides is 2 2 468 34 employed.
Recommended publications
  • Operation Permit Application
    Un; iy^\ tea 0 9 o Operation Permit Application Located at: 2002 North Orient Road Tampa, Florida 33619 (813) 623-5302 o Training Program TRAINING PROGRAM for Universal Waste & Transit Orient Road Tampa, Florida m ^^^^ HAZARDOUS WAb 1 P.ER^AlTTlNG TRAINING PROGRAM MASTER INDEX CHAPTER 1: Introduction Tab A CHAPTER 2: General Safety Manual Tab B CHAPTER 3: Protective Clothing Guide Tab C CHAPTER 4: Respiratory Training Program Tab D APPENDIX 1: Respiratory Training Program II Tab E CHAPTER 5: Basic Emergency Training Guide Tab F CHAPTER 6: Facility Operations Manual Tab G CHAPTER 7: Land Ban Certificates Tab H CHAPTER 8: Employee Certification Statement Tab. I CHAPTER ONE INTRODUCTION prepared by Universal Waste & Transit Orient Road Tampa Florida Introducti on STORAGE/TREATMENT PERSONNEL TRAINING PROGRAM All personnel involved in any handling, transportation, storage or treatment of hazardous wastes are required to start the enclosed training program within one-week after the initiation of employment at Universal Waste & Transit. This training program includes the following: Safety Equipment Personnel Protective Equipment First Aid & CPR Waste Handling Procedures Release Prevention & Response Decontamination Procedures Facility Operations Facility Maintenance Transportation Requirements Recordkeeping We highly recommend that all personnel involved in the handling, transportation, storage or treatment of hazardous wastes actively pursue additional technical courses at either the University of South Florida, or Tampa Junior College. Recommended courses would include general chemistry; analytical chemistry; environmental chemistry; toxicology; and additional safety and health related topics. Universal Waste & Transit will pay all registration, tuition and book fees for any courses which are job related. The only requirement is the successful completion of that course.
    [Show full text]
  • Standard Thermodynamic Properties of Chemical
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES ∆ ° –1 ∆ ° –1 ° –1 –1 –1 –1 Molecular fH /kJ mol fG /kJ mol S /J mol K Cp/J mol K formula Name Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Ac Actinium 0.0 406.0 366.0 56.5 188.1 27.2 20.8 Ag Silver 0.0 284.9 246.0 42.6 173.0 25.4 20.8 AgBr Silver(I) bromide -100.4 -96.9 107.1 52.4 AgBrO3 Silver(I) bromate -10.5 71.3 151.9 AgCl Silver(I) chloride -127.0 -109.8 96.3 50.8 AgClO3 Silver(I) chlorate -30.3 64.5 142.0 AgClO4 Silver(I) perchlorate -31.1 AgF Silver(I) fluoride -204.6 AgF2 Silver(II) fluoride -360.0 AgI Silver(I) iodide -61.8 -66.2 115.5 56.8 AgIO3 Silver(I) iodate -171.1 -93.7 149.4 102.9 AgNO3 Silver(I) nitrate -124.4 -33.4 140.9 93.1 Ag2 Disilver 410.0 358.8 257.1 37.0 Ag2CrO4 Silver(I) chromate -731.7 -641.8 217.6 142.3 Ag2O Silver(I) oxide -31.1 -11.2 121.3 65.9 Ag2O2 Silver(II) oxide -24.3 27.6 117.0 88.0 Ag2O3 Silver(III) oxide 33.9 121.4 100.0 Ag2O4S Silver(I) sulfate -715.9 -618.4 200.4 131.4 Ag2S Silver(I) sulfide (argentite) -32.6 -40.7 144.0 76.5 Al Aluminum 0.0 330.0 289.4 28.3 164.6 24.4 21.4 AlB3H12 Aluminum borohydride -16.3 13.0 145.0 147.0 289.1 379.2 194.6 AlBr Aluminum monobromide -4.0 -42.0 239.5 35.6 AlBr3 Aluminum tribromide -527.2 -425.1 180.2 100.6 AlCl Aluminum monochloride -47.7 -74.1 228.1 35.0 AlCl2 Aluminum dichloride -331.0 AlCl3 Aluminum trichloride -704.2 -583.2 -628.8 109.3 91.1 AlF Aluminum monofluoride -258.2 -283.7 215.0 31.9 AlF3 Aluminum trifluoride -1510.4 -1204.6 -1431.1 -1188.2 66.5 277.1 75.1 62.6 AlF4Na Sodium tetrafluoroaluminate
    [Show full text]
  • Wo 2008/040002 A9
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) CORRECTED VERSION (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 3 April 2008 (03.04.2008) PCT WO 2008/040002 A9 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/095 (2006.01) A61P 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 33/04 (2006.01) A61P 11/00 (2006.01) AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, AOlN 1/00 (2006.01) A61P 41/00 (2006.01) CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, A61P 7/00 (2006.01) A61P 43/00 (2006.01) ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KR KR, KZ, LA, LC, LK, (21) International Application Number: LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, PCT/US2007/079948 MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, (22) International Filing Date: TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 28 September 2007 (28.09.2007) ZM, ZW (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (30) Priority Data: ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 60/827,337 28 September 2006 (28.09.2006) US European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, PL, (71) US): Applicant (for all designated States except FRED PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, HUTCHINSON CANCER RESEARCH CENTER GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,381,492 B2 Turbeville Et Al
    USOO9381492B2 (12) United States Patent (10) Patent No.: US 9,381,492 B2 Turbeville et al. (45) Date of Patent: Jul. 5, 2016 (54) COMPOSITION AND PROCESS FOR (56) References Cited MERCURY REMOVAL U.S. PATENT DOCUMENTS (71) Applicant: Sud-Chemie Inc., Louisville, KY (US) 4,094,777 A 6/1978 Sugier et al. 4.474,896 A 10, 1984 Chao (72) Inventors: Wayne Turbeville, Crestwood, KY 4,911,825 A * 3/1990 Roussel ................. C10G 45.04 (US);: Gregregisorynia, Korynta, Louisville, KY 5,409,522 A 4/1995. Durham et al. 208,251 R. (US); Todd Cole, Louisville, KY (US); 5,505,766 A 4/1996 Chang Jeffery L. Braden, New Albany, IN 5,607,496 A 3, 1997 Brooks (US) 5,827,352 A 10, 1998 Altman et al. 5,900,042 A 5/1999 Mendelsohn et al. 6,027,551 A 2/2000 Hwang et al. (73) Assignee: Clariant Corporation, Louisville, KY 6,136,281. A 10/2000 Meischen et al. (US) 6,451,094 B1 9/2002 Chang et al. 6,521,021 B1 2/2003 Pennline et al. c 6,699,440 B1 3/2004 Vermeulen (*) Notice: Subject to any disclaimer, the term of this 6,719,828 B1 4/2004 Lovellet al. patent is extended or adjusted under 35 6,770,119 B2 8/2004 Harada et al. U.S.C. 154(b) by 180 days. 6,890,507 B2 5/2005 Chen et al. 6,962,617 B2 11/2005 Simpson 7,040,891 B1 5/2006 Giuliani (21) Appl. No.: 13/691.977 7,081,434 B2 7/2006 Sinha 7,238,223 B2 7/2007 Meegan, Jr.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0078113 A1 Roth Et Al
    US 20070078113A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0078113 A1 Roth et al. (43) Pub. Date: Apr. 5, 2007 (54) METHODS, COMPOSITIONS AND Publication Classification ARTICLES OF MANUFACTURE FOR ENHANCING SURVIVABILITY OF CELLS, (51) Int. Cl. TISSUES, ORGANS, AND ORGANISMS A6II 3/66 (2006.01) A 6LX 3/555 (2006.01) (76) Inventors: Mark B. Roth, Seattle, WA (US); Mike A6II 3/85 (2006.01) Morrison, Seattle, WA (US); Eric A6II 3 L/65 (2006.01) Blackstone, Seattle, WA (US); Dana A 6LX 3L/275 (2006.01) Miller, Seattle, WA (US) A6II 3L/26 (2006.01) A 6LX 3L/095 (2006.01) Correspondence Address: A6II 3L/21 (2006.01) FULBRIGHT & UAWORSK LLP. (52) U.S. Cl. .......................... 514/114: 514/184: 514/706; 6OO CONGRESS AVE. 514/126; 514/553: 514/514; SUTE 24 OO 514/526; 514/621 AUSTIN, TX 78701 (US) (57) ABSTRACT (21) Appl. No.: 11/408,734 The present invention concerns the use of oxygen antago (22) Filed: Apr. 20, 2006 nists and other active compounds for inducing stasis or pre-stasis in cells, tissues, and/or organs in vivo or in an organism overall, in addition to enhancing their Survivabil Related U.S. Application Data ity. It includes compositions, methods, articles of manufac ture and apparatuses for enhancing Survivability and for (60) Provisional application No. 60/673,037, filed on Apr. achieving stasis or pre-stasis in any of these biological 20, 2005. Provisional application No. 60/673,295, materials, so as to preserve and/or protect them. In specific filed on Apr.
    [Show full text]
  • "Sony Mobile Critical Substance List" At
    Sony Mobile Communications Public 1(16) DIRECTIVE Document number Revision 6/034 01-LXE 110 1408 Uen C Prepared by Date SEM/CGQS JOHAN K HOLMQVIST 2014-02-20 Contents responsible if other than preparer Remarks This document is managed in metaDoc. Approved by SEM/CGQS (PER HÖKFELT) Sony Mobile Critical Substances Second Edition Contents 1 Revision history.............................................................................................3 2 Purpose.........................................................................................................3 3 Directive ........................................................................................................4 4 Application ....................................................................................................4 4.1 Terms and Definitions ...................................................................................4 5 Comply to Sony Technical Standard SS-00259............................................6 6 The Sony Mobile list of Critical substances in products................................6 7 The Sony Mobile list of Restricted substances in products...........................7 8 The Sony Mobile list of Monitored substances .............................................8 It is the responsibility of the user to ensure that they have a correct and valid version. Any outdated hard copy is invalid and must be removed from possible use. Public 2(16) DIRECTIVE Document number Revision 6/034 01-LXE 110 1408 Uen C Substance control Sustainability is the backbone
    [Show full text]
  • Printed Copies for Reference Only
    Supplier Environmental Health and Safety Number:CHI-EHS30-000 Revision:A Specification 1 APPROVERS INFORMATION PREPARED BY: Jennilyn Rivera Dinglasan Title: EHS DATE: 5/3/2017 2:35:30 AM APPROVED BY: Jennilyn DATE: 8/10/2017 7:00:05 Rivera Dinglasan Title: EHS PM DATE: 7/21/2017 2:43:17 APPROVED BY: Aline Zeng Title: Purchasing AM APPROVED BY: Bill Hemrich Title: Purchasing DATE: 6/1/2017 3:28:35 PM DATE: 6/11/2017 11:05:48 APPROVED BY: Jade Yuan Title: Purchasing PM APPROVED BY: Matthew DATE: 5/26/2017 6:54:14 Briggs Title: Purchasing AM DATE: 5/26/2017 3:56:07 APPROVED BY: Michael Ji Title: Purchasing AM DATE: 8/31/2017 4:24:35 APPROVED BY: Olga Chen Title: Purchasing AM APPROVED BY: Alfredo DATE: 6/2/2017 11:54:20 Heredia Title: Supplier Quality AM APPROVED BY: Audrius DATE: 5/31/2017 1:20:01 Sutkus Title: Supplier Quality AM DATE: 5/26/2017 2:03:53 APPROVED BY: Sam Peng Title: Supplier Quality AM APPROVED BY: Arsenio DATE: 6/28/2017 2:43:49 Mabao Cesista Jr. Title: EHS Manager AM Printed copies for reference only Printed copies for reference only Supplier Environmental Health and Safety Number:CHI-EHS30-000 Revision:A Specification 1 1.0 Purpose and Scope 1.1 This specification provides general requirements to suppliers regarding Littelfuse Inc’s EHS specification with regards to regulatory compliance, EHS management systems, banned and restricted substances, packaging, and product environmental content reporting. 1.2 This specification applies to all equipment, materials, parts, components, packaging, or products supplied to Littelfuse, Inc.
    [Show full text]
  • This Table Gives the Standard State Chemical Thermodynamic Properties of About 2500 Individual Substances in the Crystalline, Liquid, and Gaseous States
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES This table gives the standard state chemical thermodynamic properties of about 2500 individual substances in the crystalline, liquid, and gaseous states. Substances are listed by molecular formula in a modified Hill order; all substances not containing carbon appear first, followed by those that contain carbon. The properties tabulated are: DfH° Standard molar enthalpy (heat) of formation at 298.15 K in kJ/mol DfG° Standard molar Gibbs energy of formation at 298.15 K in kJ/mol S° Standard molar entropy at 298.15 K in J/mol K Cp Molar heat capacity at constant pressure at 298.15 K in J/mol K The standard state pressure is 100 kPa (1 bar). The standard states are defined for different phases by: • The standard state of a pure gaseous substance is that of the substance as a (hypothetical) ideal gas at the standard state pressure. • The standard state of a pure liquid substance is that of the liquid under the standard state pressure. • The standard state of a pure crystalline substance is that of the crystalline substance under the standard state pressure. An entry of 0.0 for DfH° for an element indicates the reference state of that element. See References 1 and 2 for further information on reference states. A blank means no value is available. The data are derived from the sources listed in the references, from other papers appearing in the Journal of Physical and Chemical Reference Data, and from the primary research literature. We are indebted to M. V. Korobov for providing data on fullerene compounds.
    [Show full text]
  • Binary Ionic Compounds Name: ______Per: ______
    Binary Ionic Compounds Name: ___________________ Per: ______ Directions: First quickly scan the worksheet and circle any metals (as a symbol or as a name) that is a transition metal. Then either give the same or chemical formula as necessary for each problem below. Remember that transition metals can have multiple oxidation states, so you are required to indicate the appropriate oxidation state in parenthesis when naming them. You must use the subscript and oxidation state of the anion to help determine the oxidation state of the transition metal. 1. LiF _____________________ 2. lithium chloride ____________ 3. Li2O _____________________ 4. lithium nitride ____________ 5. Li3P _____________________ 6. beryllium fluoride ____________ 7. BeO _____________________ 8. beryllium sulfide ____________ 9. BF3 _____________________ 10. boron chloride ____________ 11. BBr3 _____________________ 12. boron oxide ____________ 13. BN _____________________ 14. sodium fluoride ____________ 15. CuF _____________________ 16. copper (II) chloride ____________ 17. Cu2O _____________________ 18. copper (II) oxide ____________ 19. Cu3N _____________________ 20. copper (II) nitride ____________ 21. Na2O _____________________ 22. sodium nitride ____________ 23. PbF2 _____________________ 24. lead (IV) fluoride ____________ 25. PbS _____________________ 26. lead (IV) sulfide ____________ 27. Pb3N4 _____________________ 28. lead (IV) oxide ____________ 29. FeF3 _____________________ 30. iron (II) bromide ____________ 31. Fe2O3 _____________________ 32. chromium (VI) phosphide ____________ 33. FeP _____________________ 34. aluminum fluoride ____________ 35. AlI3 _____________________ 36. aluminum oxide ____________ 37. Mn2O7 _____________________ 38. manganese (IV) bromide ____________ 39. SnSe _____________________ 40. tin (IV) oxide ____________ Jasmann 08 Binary Ionic Compounds ANSWER KEY Directions: First quickly scan the worksheet and circle any metals (as a symbol or as a name) that is a transition metal.
    [Show full text]
  • Annex 1. Management Criteria for Substances of Environmental Concern (Automobile Products)
    Annex 1. Management Criteria for Substances of Environmental Concern (Automobile Products) 1. Substances subject to management and management classifications We have adopted GADSL for our Management Criteria for Substances of Environmental Concern (Automobile Products). The management classifications and definitions for "prohibited substances" and "declarable substances" are shown in Table 1. [Precautions for use] The specific chemical substances within GADSL only enumerate some of the chemical substances that fall under their class of chemical substances. It does not regulate every chemical substance that falls under said class of chemical substances. The Japanese translation has been included for reference purposes, but there are some substances which do not have official Japanese names. The latest information on GADSL must be obtained and confirmed from the following website. [GADSL] The Global Automotive Declarable Substance List (GADSL) released by the Global Automotive Stakeholder Group (GASG) http://www.gadsl.org/ Table 1. Stanley's management classifications and definitions The reported substances contained within vehicle materials and parts have been indicated as either "P" or "D" via the following definitions. Classification Definition Target substances Response Substances that fall under Category P and those that fall under P of Category Promptly prohibit. Substances prohibited D/P of the substances of environmental from inclusion in the concern stipulated by GADSL Prohibited products, parts, materials, Four substances stipulated in the and secondary materials Prohibit all except for exempt parts European End of Life Vehicles (ELV) used at Stanley Electric stipulated in the European ELV Directive (lead, mercury, hexavalent Directive. chromium, and cadmium) Substances that must be reported to the company Substances that fall under Category D when they are used in the and those that fall under D of Category The supplier must promptly report to Declarable products, parts, materials, D/P of the substances of environmental Stanley.
    [Show full text]
  • WORKBOOK in CHEMISTRY (I) (Inorganic & Bioinorganic)
    1 UKRAINE NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE Department of Analytical and Bioinorganic Chemistry & Water Quality WORKBOOK in CHEMISTRY (I) (Inorganic & Bioinorganic) of student______________________________________ (Name, Surname) (group, year of study) Branch of knowledge – 10 Natural Sciences Speciality – 101 Ecology Kyiv-2019 2 УДК 546 (07) Робочий зошит призначено для виконання лабораторного практикуму з неорганічної і біонеорганічної хімії. Включає методики виконання експериментальних задач, форми протоколів аналізу, питання для самоперевірки. Рекомендовано методичною радою факультету захисту рослин, біотехнологій та екології Національного університету біоресурсів і природокористування України для спеціальності 101 – Екологія, для яких викладання ряду дисциплін проводиться англійською мовою (протокол № ___ від ________ 2020 р.). Рецензенти: д.х.н., проф. Максін В.І., НУБіП України; к.х.н., доц. Бухтіяров В.К., НУБіП України. Voitenko, L.V. Workbook in chemistry I (inorganic and bioinorganic) (Speciality 101- Ecology) / Kyiv : DDP ―Expo-druk‖. – 2020. – 241 p. Відповідальний за випуск: к.х.н., доц. Войтенко Л.В. UDC 546 (07) The workbook is intended to train in lab course of Chemistry I (Inorganic and Bioinorganic). It contains the description of experimental strategies, lab techniques, the templates of lab reports, test questions for own training. Recommended for publication by the by the Methodical board of the Plant Protection, the Biotechnologies & Ecology faculty of National University of Life and Environmental Sciences, for Speciality 101 – Ecology. Report # ___, Data ________2020. Reviewers: Doctor of Chem. Sci., Prof. Maksin V.I., NUBiP of Ukraine; Candidate of Chem. Sci., Ass. Prof. Buchtiyarov V.K., NUBiP of Ukraine. Responsible for the edition: Cand. of Chem. Sci., Ass. Prof. Voitenko L.V.
    [Show full text]