Ferminews November 4, 1988 Vol

Total Page:16

File Type:pdf, Size:1020Kb

Ferminews November 4, 1988 Vol FermiNews November 4, 1988 Vol. XI, No. 19 Fermi National Accelerator Laboratory Lederman is a "Nobel Guy"!! "When the phone rang "It is also a great day for at 5 :45 this morning," the field of elementary- Leon Lederman told a particle physics and for press conference on Oc- Fermilab, because this tober 19, 1988, "I turned award recognizes exactly to my wife [Ellen] and the type of work that we're joked, 'It's probably the doing here today. I think Nobel Prize committee.'" this is just the first of a It was. large number of Nobels Dr. Leon M. Leder- that will be won at Fer- man, Fermilab's Director, milab. Be patient! has been named one of "In the case of this par- three 1988 Nobel Laur- ticular discovery, finding eates in Physics for the the second neutrino was Columbia University Neu- the first step in organizing trino Group's discovery, the fundamental particles in 1962, of the muon neutrino at the Brookhaven Na- into a picture which we sometimes call the Standard tional Laboratory AGS accelerator. Lederman Model. The other important thing is that the shares the $390,000 award with his two co-leaders neutrinos themselves became a tool that has been on that experiment, Melvin Schwartz and Jack Stein- used for subsequent research. Hot and cold running berger. All three will receive their awards on neutrinos became a standard in big laboratories for December 10, 1988, in Stockholm, Sweden. learning about the fundamental structure of matter. Lederman's first reaction to the call from Stock- Continued on page 3 holm was laughter; he then began calling family members with the news. The day's festivities began in earnest when a small group of well-wishers, in- Director to Retire cluding Accelerator Division Head Helen Edwards and Alvin Tollestrup, Co-spokeman for CDF, arrived on July 1, 1989 at the Lederman home at 7:00 a.m. with champagne. Leon M. Lederman, Fermilab's Director since Once at work, the Director fielded phone calls in June 1, 1979, has notified the Universities Research his office from the press and colleagues while a cele- Association, Inc., Board of Trustees that he will bratory crowd of Fermilab staffers filled all the retire effective July 1, 1989, upon completion of his available space on the east side of Wilson Hall's sec- second five-year term. Lederman has accepted a po- ond floor. At about 10:00 a.m., Lederman faced the sition as Frank B. Sulzberger Professor of Physics at press in 1 West. the University of Chicago, where he will return to "Of all the recognitions one can get," he began, teaching and research, with an emphasis on creating "there's something very spooky about the Nobel science-education programs that will address this Prize. It has its own special aura, because people country's declining aptitude in the sciences. like Albert Einstein and Enrico Fermi and so many At the press conference on the morning Leder- others who we venerate so much and who are our man was awarded the Nobel Prize in Physics, he told intellectual heritage are all part of this group [of reporters, "I was offered another five-year hitch here Nobel Laureates]. Clearly it's a sobering experience. Continued on page 3 2 A Standing Ovation for the Director An overflow crowd of Fermilab staff and users in In 1960, Leon Lederman, Melvin Schwarttz, and the Ramsey Auditorium greeted Leon Lederman, Jack Steinberger calculated that the AGS might pro- 1988 Nobel Laureate in Physics, with a sustained vide high-energy neutrinos in the quantity needed to standing ovation at 4:00 p.m. on the afternoon of Oc- carry out a search for the second neutrino, and to ob- tober 19. serve the rates of weak interactions at high energies. Wearing a large brass medallion inscribed "Nobel In a 1963 article in Scientific American, Lederman Guy," a token of esteem from his colleagues, and writes that, "The [experiment] proposal was received looking up from the stage, Lederman said, "The big- enthusiastically by the Brookhaven staff, and in col- gest thrill of alJ is standing in front of you and seeing laboration our two groups began setting up the experi- how we all share in this truly tremendous event. ment with the support of the Atomic Energy Commis- "The rewards of a life in physics are ample. It's sion [precursor to today's Department of Energy]. true that back then, when we recorded our data with Associated with Schwartz, Steinberger, and me in the quill pens and used slide rules, it was easier [to do experiment were Gordon T. Danby [then] of the physics] than it is now, but I don't think the fun of Brookhaven accelerator department, two [then] doing physics has changed." Columbia University graduate assistants, Konstantin Lederman then launched into an anecdotal recol- Goulianos and Nariman Mistry, and Jean-Marc Gail- lection of the Neutrino Group's exploration for the lard, [then] a visitor from the French high-energy second neutrino (see the upcoming September/ physics laboratory at Saclay. October issue of Fermi/ab Report for the full text). "The search for the second neutrino was based on "Getting a reward like this is really a lot of fun," the ... reasoning [that] the AGS produces large num- he concluded. "It made my whole day. I recommend bers of high-energy pions. The neutrinos arising from it. But the nice thing is that recognition of [high- pion decay would be born with muons; therefore, energy physics] is implicit in this [award]; the field of they would be of the muon type, if there really were high-energy physics is appreciated globally, and the two types. The neutrinos would collide with neutrons U. S. is still in the game of high-energy physics. I (and protons), with two possible consequences. If hope it will bring a lot of attention to the TEVA- neutrinos were of only one type, they should react TRON and to our Collider program." with neutrons to produce equal numbers of electrons and negative muons. If there were two kinds of neu- trinos, the kind generated in our experiment should be The Experiment unable to produce electrons and we should observe That Won the Prize only muons." This supposition was borne out by the team's detector, a 10-ton spark chamber and 45 feet In an ingenious experiment at the Brookhaven Na- of armor plate (trivial in size by comparison with tional Laboratory AGS (alternating gradient synch- rotron) accelerator, the seven-member Columbia Uni- some of the apparatus used in today's experiments) versity Neutrino Group discovered that there is not designed to exploit the energies delivered by Brook- one kind of neutrino, but two, the second kind being haven's 30-billion-volt AGS. emitted in the decay of the pion. (In the last 10 years, "Without an understanding of neutrinos," Leder- man told FermiNews, "there would be no understand- particle-physics researchers have come to believe that there is also a third kind of neutrino awaiting dis- ing of the patterns of elementary particles and no un- covery.) Ever since the Neutrino Group's pioneering derstanding of the way stars and galaxies evolve. It work, neutrinos have been used as a kind of pen- may be that neutrinos (depending on whether or not they carry a tiny mass) account for 90% of the mass etrating X-ray in the search for quarks, the inner of the Universe, also called Dark Matter." structure of the nuclei. Today, particle physicists be- lieve that the three kinds of neutrinos, together with (Material for this article came from Chuck Brown six quarks and three charged particles called leptons, [Physics Dept.], Chris Hill [Theory Dept.}, and constitute the basic system of elementary particles Drasko Jovanovic [Research Div.]) that make up the Universe. 3 Butler, White Appointed Computing Dept. Associate Heads The Computing Department has been growing in concentrating on Communications, Systems, and size and responsibilities. Moreover, the complexity Operations. of issues and opportunities have increased as well. In the Online and Data Acquisition area, Vicky These changes are evident in the Laboratory's ongo- White will concentrate on Software and User Group ing computer operations. In this environment, the Liaison. Peter Cooper continues as Associate Head, need for more and better communications and plan- concentrating on Hardware and Vendor Liaison. ning has gone up dramatically. In response to these We hope that these changes will lead to increased developments, Joel Butler and Vicky White have been department responsiveness, planning, and flexibility. appointed as additional Associate Heads in the Com- After all, it is our support of you, our users, which puting Department. measures our success. - Jeffrey A. Appel Joel Butler will concentrate on Central Computing Applications. Jack Pfister continues as Associate Head, A Superconducting Supercolliding Supernatural Scary Story Presented for your consideration: a drawing of a speed of light! It was coming towards the bubble jack-o-lantem. Appropriate to the season and to the chamber it missed it smashed in to the wall! The dark holiday just passed, lovingly colored (trust us) protons, atoms, nucleus, electron and quarks collided! and delivered to one Leon Lederman the week before A kind of beam flowed out and hit a pumpkin seed. Halloween by a certain mysterious Philip S. Doctor. Chapter 2. The seed somehow got planted and grew a Attached to this grinning figment of a small child's pumpkin that looked like no other. A boy found it imagination is a story of nuclear horticulture, a story and made it in to a jack-o-lantem.
Recommended publications
  • The Physical Tourist Physics and New York City
    Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place.
    [Show full text]
  • Download This Article in PDF Format
    The Second Lepton Family Klaus Winter, CERN The Nobel Prize for Physics for 1988 was awarded to L. Lederman, M. Schwartz and J. Steinberger for work on neutrinos in the early 1960s. In a letter [1] addressed to the "dear radioactive ladies and gentlemen", writ­ ten in December 1930, Wolfgang Pauli proposed, as a "desperate remedy" to save the principle of conservation of energy in beta-decay, the idea of the neutrino, a neutral particle of spin 1/2 and with a mass not larger than 0.01 proton mass. "The continuous beta-spectrum [2] would then become understandable by the assumption that in beta-decay a neutrino is emitted together with the electron, in such a way that the sum of the energies of the neutrino and electron is constant." Pauli did not specify at that time Fig. 1 — A recent photograph taken at CERN of Leon Lederman (left), whether the neutrino was to be ejected Jack Steinberger (centre) and Melvin Schwartz. or created. In his famous paper "An attempt of a theory of beta-decay" [3] the muon not decay into e + at the rate ween 1 and 2 GeV should be achievable. E. Fermi used the neutrino concept of predicted if such a non-locality exis­ Would these synchrotrons though, deli­ Pauli together with the concept of the ted ? ". On this view the muon would vir­ ver enough neutrinos? According to nucleon of Heisenberg. He assumed tually dissociate into W + v, the charged their specifications they should accele­ that in beta-decay a pair comprising an W would radiate a and W + v would rate 1011 protons per second, an unpre­ electron and a neutrino is created, analo­ recombine to an electron.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • Scientific and Related Works of Chen Ning Yang
    Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C.
    [Show full text]
  • The Nobel Prize in Physics: Four Historical Case Studies
    The Nobel Prize in Physics: Four Historical Case Studies By: Hannah Pell, Research Assistant November 2019 From left: Arnold Sommerfeld, Lise Meitner, Chien-Shiung Wu, Satyendra Nath Bose. Images courtesy of the AIP Emilio Segré Visual Archives. Grade Level(s): 11-12, College Subject(s): History, Physics In-Class Time: 50 - 60 minutes Prep Time: 15 – 20 minutes Materials • Photocopies of case studies (found in the Supplemental Materials) • Student internet access Objective Students will investigate four historical case studies of physicists who some physicists and historians have argued should have won a Nobel Prize in physics: Arnold Sommerfeld, Lise Meitner, Chien-Shiung Wu, and Satyendra Nath Bose. With each Case Study, students examine the historical context surrounding the prize that year (if applicable) as well as potential biases inherent in the structure of the Nobel Prize committee and its selection process. Students will summarize arguments for why these four physicists should have been awarded a Nobel Prize, as well as potential explanations for why they were not awarded the honor. Introduction Introduction to the Nobel Prize In 1895, Alfred Nobel—a Swedish chemist and engineer who invented dynamite—signed into his will that a large portion of his vast fortune should be used to create a series of annual prizes awarded to those who “confer the greatest benefit on mankind” in physics, chemistry, physiology or medicine, 1 literature, and peace.1 (The Nobel Prize in economics was added later to the collection of disciplines in 1968). Thus, the Nobel Foundation was founded as a private organization in 1900 and the first Nobel Prizes were awarded in 1901.
    [Show full text]
  • Melvin Schwartz 1932-2006
    MELVIN SCHWARTZ 1932-2006 A Biographical Memoir by N. P. SAMIOS AND P. YAMIN © 2012 The National Academy of Sciences Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. MELVIN SCHWARTZ Courtesy of Brookhaven National Laboratories. November 2, 1932–August 28, 2006 BY N. P. SAMIOS AND P. YAMIN MEL SCHWARTZ DIED ON August 28, 2006, in Twin Falls, Idaho. He was born on 1 November 2, 1932, in New York City. He grew up in the Great Depression, but with a sense of optimism and desire to use his mind for the betterment of human- kind. He entered the Bronx High School of Science in the fall of 1945. It was there that his interest in physics began and that he recognized the importance of interactions with peers in determining his sense of direction in life. One of his classmates and future colleagues recalled that “even then” he wanted a Nobel Prize. Mel noted: My interest in physics began at the age of 12 when I entered the Bronx High School of Science. The four years I spent there were certainly among the most exciting and stimulating in my life, mostly because of the interaction with the other students of similar background, interest, and ability. MELVIN SCHWARTZ MELVIN On Sunday afternoons he attended a school run by the secular and Zionist Yiddish and many others. As Mel commented, “This faculty [was] at this time unmatched by any in the world, largely Nationaler Arbeter Farband (Jewish National Workers Alliance).
    [Show full text]
  • Dzhelepov Laboratory of Nuclear Problems
    Dzhelepov Laboratory of Nuclear Problems Dmitry V.Naumov Presented by O.Smirnov Dubna JINR New elements 102, {103, 104, 105(Db), 107}, 114, 115, 116, 117, 118 are synthesized Hypothesis of neutrino oscillations (1957г.) New particles: anti-sigma- minus hyperon And many other discoveries JINR Employed ~ 5000: 1200 - scientists, 2000 - engineers 7 labs. Each lab is as a big research institute 18 member-states and 6 associated members 1500 scientific publications Collaboration with 700 scientific centers and universities in 64 countries Expected budget in 2017-2023 1, 472 billion USD History ● May, 7 1946. First discussion of «construction of a power cyclotron» at special committee of the government ● 18 August 1946. Soviet government approved the proposal of Academician Igor Kurchatov to construct in USSR „the installation M” for fundamental studies in nuclear physics. ● 14 December 1949. The 480 MeV proton synchrocyclotron started operation at the Hydrotechnical Laboratory in Dubna, the most powerful accelerator in the world at that time. ● 26 March 1956. Laboratory of Nuclear Problems of JINR has been founded. M.G.Meshcheryakov Synchrocyclotron 680 MeV (1953) Discoveries Half of discoveries (37) in physics recorded in Soviet Union belongs to JINR 15 of these belongs to LNP Nowadays DLNP researchers are also awarded for important discoveries. Discoveries → New Technologies→ Discoveries LNP a laboratory with largest diversity → origin of most of laboratories in JINR Institute of Nuclear Problems (now DLNP) + Electrophysical laboratory (now
    [Show full text]
  • Muonium Gravity Seminar Wichita-6-17
    Antimatter Gravity MICE-U.S. Plans withDaniel Muons M. Kaplan US Spokesperson, MICE Collaboration Daniel M. Kaplan Physics Seminar WichitaMuTAC State Review Univ. June Fermilab16, 2017 16–17 March, 2006 Outline • Dramatis Personae • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Required R&D • Conclusions Our story’s a bit complicated, so please bear with me! ...and stop me if you have a question! D. M. Kaplan, IIT An#ma&er Gravity Seminar 2/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae Baryons & antibaryons : p== uud & p uud ΛΛ==uds & uds ... Mesons : K00== ds & K ds B00== db & B db B+ == ub & B− ub ... ∓ ∓ ∓ Leptons : e , µ , τ , ν’s D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae “Imperfect mirror” Baryons & antibaryons : Antip== uud & p uud ΛΛ==uds & uds ... Mesons : Anti K00== ds & K ds B00== db & B db Anti B+ == ub & B− ub ... Antimatter Leptons : e∓, µ∓, τ∓, ν’s • And, don’t forget: antimatter and matter annihilate on contact D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Outline • Dramatis Personae ➡ • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Muonium Gravity Experiment • Required R&D • Conclusions D. M. Kaplan, IIT An#ma&er Gravity Seminar 4/41 Our story begins with..
    [Show full text]
  • Its Selflessness,Friendliness, Statesmanship, Helped to Establish
    Leonard I. Schiff died on January 19, 1971 in the midst of a full life, which was unusual for its selflessness, friendliness, statesmanship, and remarkable scientific productivity. He was a teacherand scholar of extraordinary breadth. In his memory and to affirm the high standards in lecturing and research that he so greatly helped to establish, it is most fitting to bring to Stanford a diverse group of outstanding physicists. The Physics Department is establishing a memorial fund, which will be used to support an annual Distinguished Lectureship for physicists of great distinction who will be invited to give a memorial lecture open to the public. Ii is hoped that sufficient funds will be raised to enable the Distinguished Lecturer on occasion to remain in the Department for an extensive stay so that he can interact with students and faculty. Contributions and pledges to the Leonard I. Schiff Memorial Fund should be mailed to the Departmentof Physics, Stanford University, California 94305. Felix Bloch David Ritson Marvin Chodorow Arthur Schawlow William Fairbank Melvin Schwartz Alexander Fetter Alan Schwettman Stanley Hanna Dirk Walecka Robert Hofstadter Stanley Wojcicki William Little Mason Yearian Walter Meyerhof A Distinguished Lectureship in memory of Leonard I. Schiff Professor of Physics Stanford University DistinguishedLectures in memory An invitation to attend the of Leonard I. Schiff: 1976DistinguishedLectures inmemoryof 1972 "HadronStructure and High Energy Collisions" LEONARD I. SCHIFF by Chen Ning Yang Professor of Physics Stanford University 1973 "The Approachto Thermal Equilibrium and Other Steady States" by Willis EugeneLamb, Jr. 1974 "The Evolution of a Nuclear Reaction" by Herman Feshbach 1975 "The World as Quarks, Leptons and Bosons" by Murray Gell-Mann Leonard I.
    [Show full text]
  • People and Things
    People and things Leon Van Hove - 65 in February Planck Institute for Physics and eminent particle theorist at the Astrophysics. Van Hove's eventful Stanford Linear Accelerator Centre five-year mandate as Research Di­ until 1977, Berman receives the rector General saw the first fruits award 'for his pioneering and crea­ of experiments at the then new tive contributions to the application SPS proton synchrotron, the monu­ of scientific methods in the areas mental decision to go for the pro- of heat and light transfers in win­ ton-antiproton collider, which was dow materials and in the conver­ to bring unprecedented honours to sion of electricity to visible light; CERN, the careful grooming of the and for his contributions to the proposal for the LEP electron-posi­ translation of these insights to the tron collider and the start of prepa­ development of practical, economi­ rations for its experimental pro­ cally viable products with the po­ gramme. tential to save significant amounts Not covered by the speakers but of energy by reducing losses in no less important for that have windows and lighting'. been his widespread interests away from the front line of re­ The Prix Paul Doistau/Emile Blutet search, including his role in organiz­ of the Institut de France, Academie ing the joint CERN/European Sou­ des Sciences, goes to Jean-Marc thern Observatory Symposia on Gaillard, currently continuing an Astronomy, Cosmology and Funda­ important role in the UA2 experi­ Leon Van Hove 65 mental Physics, his work in pan-Eu­ ment at CERN's proton-antiproton ropean research committees, and collider.
    [Show full text]
  • Congressional Record—Senate S6593
    July 13, 2000 CONGRESSIONAL RECORD Ð SENATE S6593 E. J. Corey, Harvard University, 1990 Nobel The PRESIDING OFFICER. The Sen- AMENDMENT NO. 3753 Prize in chemistry. ator from Mississippi. Mr. ROCKEFELLER. Mr. President, I James W. Cronin, University of Chicago, Mr. COCHRAN. Mr. President, the am pleased that the Senate has taken 1980 Nobel Prize in physics. an important step toward protecting Renato Dulbecco, The Salk Institute, 1975 Durbin amendment is unnecessary. It Nobel Prize in medicine. purports to direct the manner and de- the lives and property of all Americans Edmond H. Fischer, Univ. of Washington, tails of a missile testing program that with the passage of the Firefighter In- 1992 Nobel Prize in medicine. the Secretary of Defense is committed vestment and Response Enhancement Val L. Fitch, Princeton University, 1980 to conduct already. Act. I am proud today to join with Sen- Nobel Prize in physics. This amendment is an unprecedented ators DODD and DEWINE as a cosponsor Robert F. Furchgott, Suny Health Science effort by the Senate to micromanage a of this legislation. I wish to thank Sen- Ctr., 1998 Nobel Prize in medicine. ator DODD and Senator DEWINE for the Murray Gell-Mann, Santa Fe Institute, weapons system testing program. In no 1969 Nobel Prize in physics. other program has the Senate tried to leadership and effort they have shown Ivar Giaever, Rensselaer Polytechnic Insti- legislate in this way to dictate to DOD on behalf of the men and women serv- tute, 1973 Nobel Prize in physics. how a classified national security test- ing as firefighters across the nation.
    [Show full text]