Embedded Bluetooth™ Protocol Stack

Total Page:16

File Type:pdf, Size:1020Kb

Embedded Bluetooth™ Protocol Stack programming micros Spring 2002 From Idea to Target Editorial Why it’s normally not a good idea to pull your own teeth! Why then is it that many high-ranking an impressive 28%. We managed to com- managers and really smart engineers plete numerous development projects for develop their own software development our customers, which always resulted in tools? It can hardly be because they have the delivery of either a standardized soft- a lot of time to kill, nor can it be that ware development tool or a customized money isn’t important to them. solution for special needs. I don’t have the real answer to this Perhaps you didn’t know that IAR can question, but I see it happening repeated- build the tools you need. We can produce ly in our market…in big companies with a very cost efficient solution for you by considerable resources and mature devel- drawing on our long experience, together Tomas Wolf, President Wolf, Tomas opment processes as well as in smaller with a standard product portfolio that Most of us wouldn’t even dream of ones with less resources and less mature lends itself to a virtually unlimited num- trying to pull our own teeth when we processes. They’re everywhere…compa- ber of combinations. Our motto ”From have a toothache. And how many of nies that believe they need to develop idea to target in half the time” isn’t just a us have done the plumbing in our their own dental practice or plumbing promise we continue to fulfill for count- business to boot! less embedded systems developers. It’s own homes? The same goes for a lot One could argue that this tendency is something we can offer you too. of other things. Why? We don’t do due to a lack of adequate development Let IAR build your new development these things simply because we’re not tools. In some cases it might be true, but environment – there is no other company experts in these fields. And we may in most cases it’s not. More than likely, it that can offer such a unique combination have learned the hard way that it’s has do to with a lack of awareness about of products and services. Read all about both cheaper and smarter to leave available tools and expertise. Fortunately what we have to offer in this issue of some things to an expert. there are global companies, such as IAR Programming Micros. Systems, who have focused on the task of What? Are you afraid of the dentist customizing and standardizing software too? Ooops! development tools for embedded develop- Last but not least, take care of yourself ment. and thanks for doing business with us. In 2001 when many of our competi- tors downsized due to diminishing sales, Sincerely, IAR’s license business actually grew by Tomas Wolf, CEO New employees/New positions Created with IAR tools? Are you working on something cool that was created with tools from IAR Systems? Have you brought an idea to life? Want to share your success with other embedded systems Margareta Eriksson-Hörling, Jan Hedin, Product Nacera Rahmani, Technical engineers (the only ones who Product Marketing Manager. Development Manager. Support. really appreciate what you do)? Send us your success stories along with a picture of whatever it is you created to [email protected], we'll take the best of them and show it off for you - to 40,000 of your colleagues in a future issue of Programming Micros! Lars Sjöberg, Sales Manager Mats Mariedahl, Technical David Feng, Area Sales Bluetooth products. Support. Manager, Asia. 2 The Viking conquers Japan News Major Asian tele- Bluetooth™ is expected to take off this year with worldwide sales of more than 80 communications million devices, compared to 10 million in company licenses 2001. As the market for Bluetooth devices Bluetooth™ protocol soars, IAR is focusing its efforts on the stack Japanese market, where a number of com- panies are leading technology development One of the largest telecommuni- in terms of application development. Many cations companies in Asia Japanese companies have shown that they recently licensed the Bluetooth are quick to integrate the latest and grea- protocol stack technology from test technology into consumer products and IAR Systems. Our technology launch them in the marketplace. Bluetooth wireless technology makes IAR will be used in new products Companies such as Toshiba, Sony, Sharp, an ideal partner. being developed in Taiwan. The Seiko Epson are some good examples. In January 2002, IAR and our Japanese highly compact Bluetooth partners, Softboat and Taiyo Yuden, held a protocol stack along with the IAR Japan is expanding its Bluetooth seminar tour in Tokyo and Osaka with 126 IAR MakeApp stack configura- business and services quickly and success- participants. Participants learned about the tion and optimization tool fully in Japan, having already launched its latest developments within the Bluetooth reduces development time as new Bluetooth products and created co- field and about the qualification process. well as production cost. The operation agreements with several leading IAR and Taiyo Yuden also performed pop- selection of stack supplier was Japanese Bluetooth wireless technology ular demonstrations of their Bluetooth made after a thorough evaluation suppliers. In so doing, IAR has become products. IAR also announced that we of available products, and under- the only supplier capable of offering a now support the Taiyo Yuden Bluetooth lines the strength of the IAR one-stop solution, from evaluation of modules with our Bluetooth protocol product portfolio. Bluetooth wireless technology to develop- stack, and Taiyo Yuden proudly reported ment, debugging, testing, verification, and that it is the first company in Japan, and qualification. No other supplier knows the the 5th in the world, to be accredited as a IAR and Toshiba demands on embedded systems develop- Bluetooth Qualification Test Facility announce a partner- ment like IAR. Our unique expertise with (BQTF). ship on Bluetooth wireless technology for the automotive Application Development industry IAR Systems and Toshiba Services at your service! Electronics Europe have announced a partnership regard- The professional Application Develop- the development of safety systems for ing Bluetooth wireless techno- ment Services organization within IAR some of the world's most important auto- logy for the automotive industry. Systems is ready to assist you in any motive companies. Our list of customers IAR Systems has adapted and phase of the development process—from include companies such as Combitech optimized the Bluetooth hardware design to software development Traffic Systems and Autoliv. protocol stack product for and Bluetooth qualification and testing. The Bluetooth consultants at IAR Toshiba’s high-performance Systems are the most qualified on the TLCS900-H2 series of 32-bit IAR Systems in Sweden offers vast expe- market; among their achievements is one CISC microcontroller devices rience and expert skills in both hardware of the most compact Bluetooth protocol and the OSEK operating system, development (design of ASICs and elec- stacks in the world, the IAR Embedded which are mainly targeted for tronic boards) and embedded software Bluetooth Protocol Stack. automotive customers and ve- development. Our areas of expertise Contact IAR Systems at [email protected] hicle applications. The compact include microcontroller and Microsoft before your next embedded development, IAR stack will help reduce pro- Windows device driver development, whether you need expert consultants or duction costs of automotive WindowsCE development, automotive want to commission a complete embedded applications that use the Toshiba (OSEK/CAN) and Bluetooth product systems development project including device. development. both hardware and software development, The IAR consultants are involved in with or without Bluetooth capabilities! 3 EP2002 Show New M16C toolset in Stockholm 15-18 January with Embedded C++ in the pipeline Later this year, a new version of the IAR Embedded Workbench IDE will be avail- able for all developers of embedded systems who have Bluetooth™ crosses the chosen the M16C microcon- threshold to real embedded troller from Mitsubishi as projects their target chip. The new The overall impression of the tools use the very latest IAR EP2002, the biggest electronics technology and include a com- trade fair in the Nordic countries plete range of features for effi- held in Stockholm on 15-18 cient application development. January was that embedded New Integrated Develop- IAR Embedded Workbench Graphical User developers, at least in Sweden, Interface are no longer just keeping up to ment Environment (IDE) date with Bluetooth wireless The new IDE rests on an entirely new technology, but have actually technology platform that includes many Real-time debugging decided to begin to develop with improvements and new features such as: In addition to the C-SPY simulator, there Bluetooth wireless technology. • Seamless integration of code develop- is also a ROM-monitor version that sup- Many company representa- ment and debugging for a truly itera- ports Mitsubishi’s ROM-monitor and its tives described Bluetooth pro- tive work process. program. The ROM-monitor version can jects which they had already bud- • Support for real backtracking. be used with several Mitsubishi boards geted for, such as strategic plans • The finest stepping granularity in an (MSA0654, MEU2001, MDECE0201 and to incorporate Bluetooth wireless embedded debugger. MDECE0222) and with Glyn’s technology in their existing • True “edit-while-debugging” EVBM16C/6x evaluation board. The product portfolio. This is a sig- capabilities for interactive correction ROM-monitor includes the C-SPY simu- nificant change from a year or so of errors. lator features, and gives enables you to run your application on real hardware. ago when interest in Bluetooth The new IDE has a modular and exten- was more general, and relatively sible architecture that allows plug-in Graphical XLINK setup tool superficial.
Recommended publications
  • Reconfigurable Embedded Control Systems: Problems and Solutions
    RECONFIGURABLE EMBEDDED CONTROL SYSTEMS: PROBLEMS AND SOLUTIONS By Dr.rer.nat.Habil. Mohamed Khalgui ⃝c Copyright by Dr.rer.nat.Habil. Mohamed Khalgui, 2012 v Martin Luther University, Germany Research Manuscript for Habilitation Diploma in Computer Science 1. Reviewer: Prof.Dr. Hans-Michael Hanisch, Martin Luther University, Germany, 2. Reviewer: Prof.Dr. Georg Frey, Saarland University, Germany, 3. Reviewer: Prof.Dr. Wolf Zimmermann, Martin Luther University, Germany, Day of the defense: Monday January 23rd 2012, Table of Contents Table of Contents vi English Abstract x German Abstract xi English Keywords xii German Keywords xiii Acknowledgements xiv Dedicate xv 1 General Introduction 1 2 Embedded Architectures: Overview on Hardware and Operating Systems 3 2.1 Embedded Hardware Components . 3 2.1.1 Microcontrollers . 3 2.1.2 Digital Signal Processors (DSP): . 4 2.1.3 System on Chip (SoC): . 5 2.1.4 Programmable Logic Controllers (PLC): . 6 2.2 Real-Time Embedded Operating Systems (RTOS) . 8 2.2.1 QNX . 9 2.2.2 RTLinux . 9 2.2.3 VxWorks . 9 2.2.4 Windows CE . 10 2.3 Known Embedded Software Solutions . 11 2.3.1 Simple Control Loop . 12 2.3.2 Interrupt Controlled System . 12 2.3.3 Cooperative Multitasking . 12 2.3.4 Preemptive Multitasking or Multi-Threading . 12 2.3.5 Microkernels . 13 2.3.6 Monolithic Kernels . 13 2.3.7 Additional Software Components: . 13 2.4 Conclusion . 14 3 Embedded Systems: Overview on Software Components 15 3.1 Basic Concepts of Components . 15 3.2 Architecture Description Languages . 17 3.2.1 Acme Language .
    [Show full text]
  • Zilog’S Ez80acclaim!™ Product Family, Which Offers On-Chip Flash Versions of Zilog’S Ez80® • 3.0–3.6 V Supply Voltage with 5 V Tolerant Inputs Processor Core
    eZ80Acclaim!™ Flash Microcontrollers eZ80F91 Product Brief PB013502-0104 Product Block Diagram • I2C with independent clock rate generator • SPI with independent clock rate generator eZ80F91 MCU • Four Counter/Timers with prescalers supporting event counting, input capture, output compare, and 256 KB Flash + 32-Bit GPIO PWM modes 512 B Flash • Watch-Dog Timer with internal RC clocking 10/100 Mbps option 8KB SRAM Ethernet MAC • Real-time clock with on-chip 32kHz oscillator, 8KB Frame Buffer selectable 50/60Hz input, and separate RTC_VDD pin for battery backup. Infrared 2 • Glueless external memory interface with 4 Chip- Encoder/ 2 UART I C SPI Selects/Wait-State Generators and external WAIT Decoder input pin. Supports Intel and Motorola buses. Real-Time • JTAG Interface supporting emulation features 4 PRT WDT Clock • Low-power PLL and on-chip oscillator • Programmable-priority vectored interrupts, non- 4 CS JTAG ZDI PLL maskable interrupts, and interrupt controller +WSG • New DMA-like eZ80® CPU instructions • Power management features supporting HALT/ Features SLEEP modes and selective peripheral power- down controls The eZ80F91 microcontroller is a member of • 144-pin BGA or 144-pin LQFP package ZiLOG’s eZ80Acclaim!™ product family, which offers on-chip Flash versions of ZiLOG’s eZ80® • 3.0–3.6 V supply voltage with 5 V tolerant inputs processor core. The eZ80F91 offers the following • Operating Temperature Ranges: features: – Standard: 0ºC to +70ºC • 50MHz High-Performance eZ80® CPU – Extended: –40ºC to +105ºC • 256 KB Flash Program Memory plus extra 512B device configuration Flash memory General Description • 32 bits of General-Purpose I/O The eZ80F91 device is an industry first, featuring a • 16K B total on-chip high-speed SRAM: high-performance 8-bit microcontroller with an integrated 10/100 BaseT Ethernet Media Access – 8KB for general-purpose use controller (EMAC).
    [Show full text]
  • ZILOG Z8 OTP Microcontrollers MCU / MPU / DSP This Product Is Rohs Compliant
    ZILOG Z8 OTP Microcontrollers DSP MPU / MCU / This product is RoHS compliant. ZILOG EZ80 MICROPROCESSORS ♦ Surface Mount Device For quantities greater than listed, call for quote. MOUSER Zilog Core CPU Voltage Speed Price Each Package Communications Controller I/O WDT Timers STOCK NO. Part No. Used (V) (MHz) 1 25 100 ♦ 692-EZ80L92AZ020EG EZ80L92AZ020EC LQFP-100 DMA, I2C, SPI, UART EZ80 24 Yes 6 3.3 20 9.29 9.10 8.63 ♦ 692-EZ80L92AZ020SG EZ80L92AZ020SC LQFP-100 DMA, I2C, SPI, UART EZ80 24 Yes 6 3.3 20 8.08 7.78 7.50 ♦ 692-EZ80L92AZ050EG EZ80L92AZ050EC LQFP-100 DMA, I2C, SPI, UART EZ80 24 Yes 6 3.3 50 10.21 9.75 9.49 ♦ 692-EZ80L92AZ050SG EZ80L92AZ050SC LQFP-100 DMA, I2C, SPI, UART EZ80 24 Yes 6 3.3 50 8.89 8.54 8.26 ♦ 692-EZ80190AZ050SG EZ80190AZ050SC LQFP-100 DMA, I2C, SPI, UART EZ80 32 Yes 6 3.3 50 12.03 11.59 11.17 ♦ 692-EZ80190AZ050EG EZ80190AZ050EC LQFP-100 DMA, I2C, SPI, UART EZ80 32 Yes 6 3.3 50 13.82 13.28 12.84 ZILOG Z180 MICROPROCESSORS Zilog ♦Surface Mount Device *See above for development tools. For quantities greater than listed, call for quote. MOUSER STOCK NO. Speed Communications Core CPU Voltage Development Price Each Package I/O WDT Timers Mfr. Mfr. Part No. (MHz) Controller Used (V) Tools Available 1 25 100 ♦ 692-Z8018006VSG PLCC-68 6 CPU Z180 - No 2 5 - 8.40 7.36 6.01 ♦ 692-Z8018006VEG PLCC-68 6 CPU Z180 - No 2 5 - 10.00 8.55 7.14 692-Z8018006PSG DIP-64 6 CPU Z180 - No 2 5 - 8.40 7.36 6.01 692-Z8018006PEG DIP-64 6 CPU Z180 - No 2 5 - 10.00 8.55 7.14 692-Z8018008PSG DIP-64 8 CPU Z180 - No 2 5 - 8.75 7.38 6.25 ♦ 692-Z8018008VSG
    [Show full text]
  • The Birth, Evolution and Future of Microprocessor
    The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four.
    [Show full text]
  • Embedded Systeme 11
    B 13908 Elektronik-Magazin für Chip-, Board- & System-Design www.systeme-online.de 11/00 Ausgabe November DM 14,– ÖS 110,– Embedded SFR 14,– Systeme Optimierte Software- Entwicklung Telekom-Strategie übernehmen HA-Systeme für Telekom 99,999 Prozent Verfügbarkeit Echtzeit- Steuerungssysteme Deterministisch im ns-Bereich Besuchen Sie uns auf der Electronica Halle A3, Stand 228 Electronic Embedded Systeme Editorial Embedded-(R-)Evolution Charles Darwin erkannte bei seinen Unter- werden Software, Echtzeitbetriebssysteme suchungen zur Abstammungslehre, die er im und die Weiterentwicklung von Windows CE, 19. Jahrhundert durchführte, dass sich die Embedded NT und Embedded Linux Natur evolutionär weiterentwickelt. Revolu- beschrieben. Der Elektronik-Focus wird zu tionäre Entwicklungssprünge sind in der einem zweiten Schwerpunkt ausgeweitet und Natur selten. Parallelen zur technischen enthält jetzt branchenbezogene Themen zu Weiterentwicklung sind dabei unübersehbar. Embedded-Systemen aus allen Marktberei- So entwickelt sich auch die Technik evolu- chen. Die Rubriken »Markt«, jetzt mit der tionär weiter, das bedeutet, dass neue Pro- regelmäßigen Unterrubrik »Forschung & dukte, Systeme und Verfahren meist verbes- Technologie«, »Titelstory« und »Schwer- serte Varianten ihrer Vorgänger sind. Selbst punkt«, bleiben bestehen. technische »Revolutionen« wie z.B. die Sie als Leser unserer Zeitschrift sind jetzt Erfindung der Planartechnik, des Mikropro- gefragt: Sagen Sie uns Ihre Meinung. Dazu zessors und des Internets sind genau betrach- ist dieser und der nächsten Ausgabe ein Fra- tet Weiterentwicklungen, die allerdings gebogen beigelegt. Sollten Sie diesen Frage- »revolutionäre« Auswirkungen auf die In- bogen nicht mehr in den Heften finden, dustrie haben und völlig neue Chancen und können Sie auch ganz bequem via Internet Märkte eröffnen. An diese neuen Bedingun- (http://www.service-awi.de/leserumfrage) gen müssen sich die beteiligten Firmen – an der Leserumfrage mit Gewinnspiel teil- analog zu den Arten in der Natur – anpassen.
    [Show full text]
  • Architecture of 8051 & Their Pin Details
    SESHASAYEE INSTITUTE OF TECHNOLOGY ARIYAMANGALAM , TRICHY – 620 010 ARCHITECTURE OF 8051 & THEIR PIN DETAILS UNIT I WELCOME ARCHITECTURE OF 8051 & THEIR PIN DETAILS U1.1 : Introduction to microprocessor & microcontroller : Architecture of 8085 -Functions of each block. Comparison of Microprocessor & Microcontroller - Features of microcontroller -Advantages of microcontroller -Applications Of microcontroller -Manufactures of microcontroller. U1.2 : Architecture of 8051 : Block diagram of Microcontroller – Functions of each block. Pin details of 8051 -Oscillator and Clock -Clock Cycle -State - Machine Cycle -Instruction cycle –Reset - Power on Reset - Special function registers :Program Counter -PSW register -Stack - I/O Ports . U1.3 : Memory Organisation & I/O port configuration: ROM RAM - Memory Organization of 8051,Interfacing external memory to 8051 Microcontroller vs. Microprocessors 1. CPU for Computers 1. A smaller computer 2. No RAM, ROM, I/O on CPU chip 2. On-chip RAM, ROM, I/O itself ports... 3. Example:Intel’s x86, Motorola’s 3. Example:Motorola’s 6811, 680x0 Intel’s 8051, Zilog’s Z8 and PIC Microcontroller vs. Microprocessors Microprocessor Microcontroller 1. CPU is stand-alone, RAM, ROM, I/O, timer are separate 1. CPU, RAM, ROM, I/O and timer are all on a single 2. designer can decide on the chip amount of ROM, RAM and I/O ports. 2. fix amount of on-chip ROM, RAM, I/O ports 3. expansive 3. for applications in which 4. versatility cost, power and space are 5. general-purpose critical 4. single-purpose uP vs. uC – cont. Applications – uCs are suitable to control of I/O devices in designs requiring a minimum component – uPs are suitable to processing information in computer systems.
    [Show full text]
  • Microprocessor Training
    Microprocessors and Microcontrollers © 1999 Altera Corporation 1 Altera Confidential Agenda New Products - MicroController products (1 hour) n Microprocessor Systems n The Embedded Microprocessor Market n Altera Solutions n System Design Considerations n Uncovering Sales Opportunities © 2000 Altera Corporation 2 Altera Confidential Embedding microprocessors inside programmable logic opens the door to a multi-billion dollar market. Altera has solutions for this market today. © 2000 Altera Corporation 3 Altera Confidential Microprocessor Systems © 1999 Altera Corporation 4 Altera Confidential Processor Terminology n Microprocessor: The implementation of a computer’s central processor unit functions on a single LSI device. n Microcontroller: A self-contained system with a microprocessor, memory and peripherals on a single chip. “Just add software.” © 2000 Altera Corporation 5 Altera Confidential Examples Microprocessor: Motorola PowerPC 600 Microcontroller: Motorola 68HC16 © 2000 Altera Corporation 6 Altera Confidential Two Types of Processors Computational Embedded n Programmable by the end-user to n Performs a fixed set of functions that accomplish a wide range of define the product. User may applications configure but not reprogram. n Runs an operating system n May or may not use an operating system n Program exists on mass storage n Program usually exists in ROM or or network Flash n Tend to be: n Tend to be: – Microprocessors – Microcontrollers – More expensive (ASP $193) – Less expensive (ASP $12) n Examples n Examples – Work Station
    [Show full text]
  • Data Acquisition
    #147 October 2002 www.circuitcellar.com CIRCUIT CELLAR® THE MAGAZINE FOR COMPUTER APPLICATIONS DATA ACQUISITION 2-D Or Not 2-D Solar-Powered Robot The LED Alternative Mad DashWWW.GiURUMELE.Hi2.RO For Flash Cash Contest Primer 10> 7925274 75349 $4.95 U.S. ($5.95 Canada) WWW.GiURUMELE.Hi2.RO WWW.GiURUMELE.Hi2.RO Digital Oscilloscopes • 2 Channel Digital Oscilloscope DSO-2102S $525 • 100 MSa/s max single shot rate DSO-2102M $650 • 32K samples per channel Each includes Oscilloscope, • Advanced Triggering Probes, Interface Cable, Power • Only 9 oz and 6.3” x 3.75” x 1.25” Adapter, and software for • Small, Lightweight, and Portable Win95/98, WinNT, Win2000 • Parallel Port interface to PC and DOS. • Advanced Math options • FFT Spectrum Analyzer options Logic Analyzers • 40 to 160 channels • 24 Channel Logic Analyzer • up to 500 MSa/s • 100MSa/S max sample rate • Variable Threshold • Variable Threshold Voltage • 8 External Clocks • Large 128k Buffer • 16 Level Triggering • Small, Lightweight and Portable • up to 512KWWW.GiURUMELE.Hi2.RO samples/ch • Only 4 oz and 4.75” x 2.75” x 1” • Optional Parallel Interface • Parallel Port Interface to PC • Optional 100 MSa/s Pattern Generator • Trigger Out • Windows 95/98 Software LA4240-32K (200MHz, 40CH) $1350 LA4280-32K (200MHz, 80CH) $2000 LA2124-128K (100MSa/s, 24CH) LA4540-128K (500MHz, 40CH) $1900 Clips, Wires, Interface Cable, AC LA4580-128K (500MHz, 80CH) $2800 Adapter and Software $800 LA45160-128K (500MHz, 160CH) $7000 All prices include Pods and Software www.LinkIns4.com Link Instruments • 369 Passaic Ave • Suite 100 • Fairfield, NJ 07004 • (973) 808-8990 • Fax (973) 808-8786 WWW.GiURUMELE.Hi2.RO TASK MANAGER EDITORIAL DIRECTOR/FOUNDER CHIEF FINANCIAL OFFICER Be a Contender Steve Ciarcia Jeannette Ciarcia MANAGING EDITOR Jennifer Huber CUSTOMER SERVICE Elaine Johnston TECHNICAL EDITOR C.J.
    [Show full text]
  • Programmable Digital Microcircuits - a Survey with Examples of Use
    - 237 - PROGRAMMABLE DIGITAL MICROCIRCUITS - A SURVEY WITH EXAMPLES OF USE C. Verkerk CERN, Geneva, Switzerland 1. Introduction For most readers the title of these lecture notes will evoke microprocessors. The fixed instruction set microprocessors are however not the only programmable digital mi• crocircuits and, although a number of pages will be dedicated to them, the aim of these notes is also to draw attention to other useful microcircuits. A complete survey of programmable circuits would fill several books and a selection had therefore to be made. The choice has rather been to treat a variety of devices than to give an in- depth treatment of a particular circuit. The selected devices have all found useful ap• plications in high-energy physics, or hold promise for future use. The microprocessor is very young : just over eleven years. An advertisement, an• nouncing a new era of integrated electronics, and which appeared in the November 15, 1971 issue of Electronics News, is generally considered its birth-certificate. The adver• tisement was for the Intel 4004 and its three support chips. The history leading to this announcement merits to be recalled. Intel, then a very young company, was working on the design of a chip-set for a high-performance calculator, for and in collaboration with a Japanese firm, Busicom. One of the Intel engineers found the Busicom design of 9 different chips too complicated and tried to find a more general and programmable solu• tion. His design, the 4004 microprocessor, was finally adapted by Busicom, and after further négociation, Intel acquired marketing rights for its new invention.
    [Show full text]
  • Natalia Nikolaevna Shusharina Maxin.Pmd
    BIOSCIENCES BIOTECHNOLOGY RESEARCH ASIA, September 2016. Vol. 13(3), 1523-1536 Development of the Brain-computer Interface Based on the Biometric Control Channels and Multi-modal Feedback to Provide A Human with Neuro-electronic Systems and Exoskeleton Structures to Compensate the Motor Functions Natalia Nikolaevna Shusharina1, Evgeny Anatolyevich Bogdanov1, Stepan Aleksandrovich Botman1, Ekaterina Vladimirovna Silina2, Victor Aleksandrovich Stupin3 and Maksim Vladimirovich Patrushev1 1Immanuel Kant Baltic Federal University (IKBFU), Nevskogo Str., 14, Kaliningrad, 236041, Russia 2I.M. Sechenov First Moscow State Medical University (First MSMU), Trubetskaya str, 8, Moscow, 119991, Russia 3Pirogov´s Russian National Research Medical University (RNRMU), Ostrovityanova str, 1, Moscow, 117997, Russia http://dx.doi.org/10.13005/bbra/2295 (Received: 15 June 2016; accepted: 05 August 2016) The aim of this paper is to create a multi-functional neuro-device and to study the possibilities of long-term monitoring of several physiological parameters of an organism controlled by brain activity with transmitting the data to the exoskeleton. To achieve this goal, analytical review of modern scientific-and-technical, normative, technical, and medical literature involving scientific and technical problems has been performed; the research area has been chosen and justified, including the definition of optimal electrodes and their affixing to the body of the patient, the definition of the best suitable power source and its operation mode, the definition of the best suitable useful signal amplifiers, and a system of filtering off external noises. A neuro-device mock-up has been made for recognizing electrophysiological signals and transmitting them to the exoskeleton, also the software has been written.
    [Show full text]
  • Introduction to Cpu
    microprocessors and microcontrollers - sadri 1 INTRODUCTION TO CPU Mohammad Sadegh Sadri Session 2 Microprocessor Course Isfahan University of Technology Sep., Oct., 2010 microprocessors and microcontrollers - sadri 2 Agenda • Review of the first session • A tour of silicon world! • Basic definition of CPU • Von Neumann Architecture • Example: Basic ARM7 Architecture • A brief detailed explanation of ARM7 Architecture • Hardvard Architecture • Example: TMS320C25 DSP microprocessors and microcontrollers - sadri 3 Agenda (2) • History of CPUs • 4004 • TMS1000 • 8080 • Z80 • Am2901 • 8051 • PIC16 microprocessors and microcontrollers - sadri 4 Von Neumann Architecture • Same Memory • Program • Data • Single Bus microprocessors and microcontrollers - sadri 5 Sample : ARM7T CPU microprocessors and microcontrollers - sadri 6 Harvard Architecture • Separate memories for program and data microprocessors and microcontrollers - sadri 7 TMS320C25 DSP microprocessors and microcontrollers - sadri 8 Silicon Market Revenue Rank Rank Country of 2009/2008 Company (million Market share 2009 2008 origin changes $ USD) Intel 11 USA 32 410 -4.0% 14.1% Corporation Samsung 22 South Korea 17 496 +3.5% 7.6% Electronics Toshiba 33Semiconduc Japan 10 319 -6.9% 4.5% tors Texas 44 USA 9 617 -12.6% 4.2% Instruments STMicroelec 55 FranceItaly 8 510 -17.6% 3.7% tronics 68Qualcomm USA 6 409 -1.1% 2.8% 79Hynix South Korea 6 246 +3.7% 2.7% 812AMD USA 5 207 -4.6% 2.3% Renesas 96 Japan 5 153 -26.6% 2.2% Technology 10 7 Sony Japan 4 468 -35.7% 1.9% microprocessors and microcontrollers
    [Show full text]
  • How to Make Ez80 Code Execute Faster with Copy To
    Application Note How to Make eZ80® Code Execute Faster with Copy To RAM AN015103-1208 Abstract Two popular versions of the eZ80 offered by Zilog® are the eZ80 General-Purpose MPU This Application Note discusses how Zilog’s (eZ80L92) and the eZ80Acclaim! Family of Flash eZ80® code can execute faster by executing from MCUs, which includes the eZ80F91, eZ80F92, and RAM instead of Flash Memory, and be able to eZ80F93 devices. store the eZ80 code in Flash. With Zilog Develop- ment Studio II (ZDS II) code development tools, a eZ80L92 Features few simple changes to the project settings and the project link file are required for speedy code exe- The key features of eZ80L92 include: cution. The leddemo project that is included with the eZ80L92 device, which uses the ZDS II toolset • Single-cycle instruction fetch, high-performance, for eZ80 microprocessor unit (MPU), is used in pipelined eZ80 CPU core this Application Note as an example. However, the • Low power features including SLEEP mode, information in this document is also applicable to HALT mode, and selective peripheral power- the ZDS II toolset for eZ80Acclaim!® microcon- down control trollers unit (MCU). • Two Universal Asynchronous Receiver/Trans- Note: The source code file associated with mitters (UART) with independent baud rate gen- this application note, AN0151- erators SC01.zip is available for down- • Serial Peripheral Interface (SPI) with indepen- load at www.zilog.com. dent clock rate generator • Inter-Integrated Circuit (I2C) with independent eZ80 Overview clock rate generator eZ80 has revolutionized the communication indus- • Infrared Data Association (IrDA)-compliant try. It executes Zilog’s Z80® code four times faster infrared encoder/decoder at the same clock speed of traditional Z80s and can • New DMA-like eZ80 instructions for efficient operate at frequencies up to 50 MHz.
    [Show full text]