STUDIES of COLD CHROMIUM ATOMS in MAGNETIC and OPTICAL TRAPS: Steps Towards Bose-Einstein Condensation Radu Chicireanu
Total Page:16
File Type:pdf, Size:1020Kb
STUDIES OF COLD CHROMIUM ATOMS IN MAGNETIC AND OPTICAL TRAPS: steps towards Bose-Einstein Condensation Radu Chicireanu To cite this version: Radu Chicireanu. STUDIES OF COLD CHROMIUM ATOMS IN MAGNETIC AND OPTICAL TRAPS: steps towards Bose-Einstein Condensation. Atomic Physics [physics.atom-ph]. Université Paris-Nord - Paris XIII, 2007. English. tel-00288354 HAL Id: tel-00288354 https://tel.archives-ouvertes.fr/tel-00288354 Submitted on 16 Jun 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LABORATOIRE DE PHYSIQUE DES LASERS UNIVERSITÉ PARIS-NORD INSTITUT GALILÉE DOCTORAL THESIS OF THE UNIVERSITÉ PARIS-NORD presented by Radu CHICIREANU for the degree of: Doctor of Philosophy specialty : physics STUDIES OF COLD CHROMIUM ATOMS IN MAGNETIC AND OPTICAL TRAPS: steps towards Bose-Einstein Condensation – ATOMES FROIDS DE CHROME PIEGÉS MAGNÉTIQUEMENT ET OPTIQUEMENT: premières étapes vers la condensation Defended the 25th October 2007, in front of the commission consisting of: M. Tilman PFAU Président M. Jean DALIBARD Rapporteur M. Christoph WESTBROOK Rapporteur M. Christian CHARDONNET Examinateur M. Bruno LABURTHE-TOLRA Examinateur M. Olivier GORCEIX Directeur de thèse Familiei mele Contents Acknowledgements i Introduction iii 1 Chromium 1 2 Experimental setup 5 2.1 The atomic source ............................. 5 2.2 The vacuum system ............................. 9 2.3 The laser sources .............................. 11 2.3.1 The cooling lasers .......................... 12 2.3.2 The ’red’ diodes ........................... 17 2.3.3 The optical pumping system .................... 19 2.4 The magnetic fields............................. 20 2.4.1 The Zeeman slower ......................... 20 2.4.2 The MOT coils ........................... 25 2.5 The imaging system ............................ 25 2.6 The control system ............................. 28 2.7 Image acquisition and analysis ....................... 29 3 Magneto-optical trapping of fermionic and bosonic chromium iso- topes 31 3.1 Fluorescence imaging system ........................ 31 3.2 Magneto-optical trapping of 52Cr atoms .................. 32 3.2.1 Study of a 52CrMOT........................ 32 3.2.2 Loading dynamics of a Cr MOT .................. 35 3.2.3 Density saturation ......................... 40 3.2.4 52Cr Zeeman slower ......................... 43 5 3.3 Magneto-optical trapping of 53Cr atoms .................. 46 3.3.1 53Cr Zeeman slower ......................... 46 3.3.2 The 53CrMOT........................... 51 3.3.3 Oven temperature-dependence of the MOT loading rates .... 53 3.4 Accumulation of metastable Cr atoms in a magnetic trap ........ 55 3.4.1 Magnetic trapping of 52Cr..................... 55 3.4.2 Magnetic trapping of 53Cr..................... 56 3.5 Resonance frequency measurements and isotopic shift determination . 56 3.6 Magneto-optical trapping of a cold mixture of 52Cr and 53Cr atoms . 58 4 Light-assisted inelastic collisions in Chromium MOTs 63 4.1 Measurement of inelastic collision parameters of Cr ........... 64 4.1.1 Inelastic collision parameters in a single-species Cr MOT .... 64 4.1.2 Inelastic collision parameters in a double-species MOT ..... 68 4.2 General considerations . ........................ 70 4.2.1 Loss mechanisms in light assisted collisions ............ 70 4.2.2 Temperature dependence ...................... 73 4.3 Considerations about Chromium ...................... 74 4.3.1 The case of Chromium ....................... 74 4.3.2 Qualitative comparison with other atoms ............. 75 4.4 Chromium temperature dependence .................... 76 4.4.1 Julienne – Vigué model ....................... 77 4.4.2 Results for Cr ............................ 79 5 Continuous loading of a finite-depth magnetic trap with 52Cr metastable atoms 85 5.1 Magnetic trapping ............................. 86 5.2 Collisional properties of metastable 52Cr atoms .............. 91 5.2.1 Inelastic D-D collisions ....................... 91 5 5.2.2 Elastic collision cross-section of the D4 state .......... 93 5.3 Continuous accumulation in a RF-truncated magnetic trap ....... 95 5.4 Theoretical model .............................. 98 5.4.1 Theoretical model for Cr ...................... 100 5.4.2 Numerical results .......................... 106 5.5 Boltzmann equation and the issue of thermal equilibrium ........ 109 5.6 RF-dressed magnetic potentials ...................... 115 5.6.1 Accumulation at low RF frequencies ............... 115 5.6.2 Magnetic+RF adiabatic potentials ................ 117 5.6.3 Landau-Zener crossings and lifetime ................ 119 5.6.4 Experiments ............................. 122 6 Accumulation of 52Cr metastable atoms into an optical trap 125 6.1 Optical trapping .............................. 126 6.1.1 Classical model ........................... 126 6.1.2 Theoretical evaluation of the light shifts ............. 129 6.2 Experimental setup ............................. 132 6.3 Accumulation of metastable 52Cr in a mixed optical+magnetic trap . 137 6.3.1 Optical trap and mixed trap geometries . ........... 138 6.3.2 Experimental results ........................ 141 6.3.3 Diagnostic techniques ........................ 143 6.3.4 Experimental issues ......................... 146 6.4 Measurement of the trap properties .................... 148 6.4.1 Parametric excitation spectra ................... 148 6.4.2 Simulation of the parametric excitation spectra ......... 150 6.5 ODT loading dynamics ........................... 153 6.5.1 Experimental results ........................ 153 6.5.2 Majorana and two-body inelastic collision loss rates ....... 154 6.5.3 RF-deformation of the mixed trap ................. 157 6.5.4 Trap characteristics dependence on IR laser power ........ 161 6.6 Other experiments and perspectives .................... 163 6.6.1 Accumulation in two separate horizontal ODT beams ...... 163 6.6.2 Other experiments for loading a single beam ODT ........ 164 6.6.3 Direct loading of metastable atoms in a crossed ODT ...... 166 7 Evaporation experiments in the ODT 169 7.1 Optical pumping .............................. 169 7.1.1 Introduction ............................. 169 7.1.2 Optical pumping in presence of a magnetic field ......... 170 7.1.3 Polarization experiments ...................... 171 7.1.4 Transfer to the lowest energy state ................ 174 7.2 Single-beam lifetime experiments ..................... 175 7.2.1 Compensation of the residual magnetic field gradient ...... 175 7.2.2 Compensation of the longitudinal magnetic field curvature . 178 7.2.3 Plain evaporation and lifetime ................... 181 7.2.4 Adiabatic recompression of the ODT ............... 183 7.3 Preliminary optimization procedures for evaporative cooling ...... 184 A Hyperfine splitting and nonlinear Zeeman effect 195 A.1 Hyperfine splitting ............................. 195 A.2 Non-linear Zeeman effect .......................... 196 B Chromium light assisted collisions 197 B.1 Survival probability ............................. 197 B.2 Excitation rate ............................... 198 B.3 Partial waves ................................ 199 Acknowledgements The experimental work described in this thesis is the product of a collaboration of many people to whom I am deeply grateful. I want to thank them for all their support and encouragement through out my Ph.D. years. I thank my supervisor, Olivier Gorceix, who made possible the realization of this project by creating this new experiment and finding resources to sustain its develop- ment. He managed to create a wonderful environment to work in, and I can say I have learned a lot during the three years I spent in his group. By joining the Chromium project from its very beginning and helping to build the experiment piece by piece I have discovered also the importance of working as part of a team. I thus learned that building a team is not only putting together a bunch of people with different backgrounds – it takes time and a lot of work together to create synergies among them. For showing me the delights of experimental physics, I am deeply grateful to all the members of this team: Bruno, especially for his availability and for his ideas that always made us advance in times of despair; Laurent, especially for insisting in his determination that every odd experimental observation must have a logical answer; Etienne, specially for his optimism and patient explanations, and last, but not least, Arnaud, my co-Ph.D. student, for his continuous hard work and commitment. Of course, I want to thank the two older members of the group, Rene and Jean-Claude, whom I have had the pleasure to know and cherish, who have inspired me and from whom I have learned a great deal. However, our experiment would not have been possible without the support of the technical and administrative services. Thus, I would like to thank the technical staff of the laboratory (Julien, Fabrice, Olivier, Michel, Gerard, Albert, Thierry) who provided a great deal of help, with tons of electronic, mechanical or optical components, and the