45024017.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Ain Shams University Faculty of Science Radiochemical Study on the Separation of Chromium-51 from the Irradiated Target by Using Commercial and/or Synthesized Ion Exchanger A thesis Submitted by Mohamed Ismail Mohamed Mohamed Aydia (M. Sc. Inorganic and Physical Chemistry 2007) Chemist\ Radioisotopes Production Facility Egyptian Second Research Reactor Atomic Energy Authority For the Degree of Doctor of Philosophy in Science (Chemistry). Department of Chemistry Faculty of Science Ain Shams University (2012) Ain Shams University Faculty of Science Approval Sheet The Thesis entitled Radiochemical Study on the Separation of Chromium-51 from the Irradiated Target by Using Commercial and/or Synthesized Ion Exchanger Submitted by/ Mohamed Ismail Mohamed Aydia (M. Sc. Inorganic and Physical Chemistry 2007) For the Degree of Doctor of Philosophy in Science (Chemistry). This thesis has been approved by supervisor committee SUPERVISORS • Prof. Dr. M.S. Abdel-Mottaleb ….……………… Professor of Inorganic Chemistry Faculty of Science-Ain Shams University • Prof. Dr. Salah Soliman ….……………… Ex-Chairman of Hot Labs Center Supervisor of Radioisotopes Production Facility Atomic Energy Authority • Prof. Dr. A. A. El-Mohty ….……………… Professor of Radiochemistry Radioactive Isotopes and Generator Dep. Atomic Energy Authority • Prof. K.M. El-Azony ….……………… Associate Professor of Radiochemistry Radioactive Isotopes and Generator Dep. Atomic Energy Authority. Prof. Dr. Maged Shafik Antonious Head of Chemistry Department Faculty of Science - Ain Shams University CHAPTER (I) INTRODUCTION CHAPTER (II) EXPERIMENTAL CHAPTER (III) RESULTS AND DISCUSSION REFERENCES ] SUMMARY ARABIC SUMMARY ACKNOWLEDGEMENT I would like to express my gratitude to Prof. Dr. Mohamed Sabry Abdel-Mottaleb, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University for his supervision and his sponsorship for this work. I would like to express my gratitude to Prof. Dr. Salah Soliman, Supervisor of Radioisotopes Production Facility, Atomic Energy Authority for his supervision and his interest for this work. I am greatly indebted to Prof. Dr. Ahmed Abd El-Mohty, Professor of Radiochemistry, Dept. of Radioactive Isotopes and Generators, Atomic Energy Authority, for his help and his guidance during complete this work. I also would like to thank Prof. Dr. Khaled El-Azony, Assistant Professor of Radiochemistry, Dept. of Radioactive Isotopes and Generators, Atomic Energy Authority, for his suggestion the research point, interest, guidance and encouragement during complete this work. My thanks Prof. Dr. Mostafa Darwish Nuclear Materials Authority, El-Katamia-Cairo for his cooperation during the work. My grateful and appreciation are directed to all members of Radioactive Isotopes and Generator Dept., Atomic Energy Authority for their help. Mohamed Ismail Mohamed Aydia Chemist/ Radioisotopes Production Facility Second Research Reactor LIST OF CONTENT Page List of Contents. ..………………..…………..… I List of Tables …….…………………………….. V List of Figures… ……………………….…….… VI List of Abbreviations ………………….……….. VIII Aim and Plan of The Work……….….……….… X CHAPTER (I) INTRODUCTION………… 1 I.1. Radioisotopes in Medicine (general)…………… 1 I.2. Choice Criteria of Radionuclide for Medical Applications…………………………….………. 4 I.2.1. The Diagnostic Radionuclide…………………… 4 I.2.1.1. Imaging…………………………………………. 6 I.2.1.2. Gamma Imaging……………………………….... 6 I.2.1.3. Positron Emission Tomography (PET)………… 6 I.2.1.4. Internal Radiation Dose Calculation ………..…. 7 I.2.2. Therapeutic Radionuclides ...…………………… 7 I.2.2.1 Radioactive decay data ………………………… 10 I.2.2.2. External Beam Radiotherapy …………..……… 10 I.2.2.3. Brachytherapy…………………………..……… 11 I.2.2.4. Immunotherapy……………………………..….. 12 I.2.2.5. Ion Beam Therapy …………….………….……. 12 I.2.2.6. Boron Neutron Capture Therapy……………..… 13 I.2.2.7. Radioactive “Bullets”-Alpha-Immunotherapy…. 13 I.3. Radionuclides Production………………………. 14 I.3.1. Radionuclides Production Modes………………. 14 I.3.1.1. Reactor-Produced Radionuclides…………….… 15 I.3.1.1.1. Fission or(n, f) Reaction……………………….. 17 I.3.1.1.2. Neutron Capture or (n, γ )Reaction………..…… 18 I.3.1.2. Cyclotron-Produced Radionuclides………….…. 18 I.4. Chromium Chemistry…………………….…….. 21 I.4.1. History……………………………………….…. 21 I I.4.2. Abundance…………………………………….... 22 I.4.3. Preparation………………………………….….. 22 I.4.4. Applications…………………………….………. 23 I.4.5. Chemical Reactivity and Properties…….……… 24 I.4.6. Biological Role of Chromium……………….…. 25 I.4.7. Chromium Toxicity and Precautions………….... 26 I.4.8. Chromium Isotopes……………………………... 27 I.7.9. Cr-51 Decay……………………………………. 29 I.4.10. Chromuim-51 Applications…………………..… 30 51 I.4.12. Production Methods of Cr………………….… 32 I.4.13. Separation Studies of Cr(III) and Cr(VI)………. 34 I.5. Ion Exchanger and Surfactants……………….… 39 I.6. High Performance Liquid Chromatography …… 43 I.7. Organophosphorous Compounds and Separation. 43 CHAPTER (II) EXPERIMENTAL…........ 45 II.1 Materials and Methods……………………....… 45 II.1.1 Chemicals and Reagents……………………..…. 45 Acids and Liquids…………………………..…... 45 Solid Materials…………………………….…… 46 II.2 Instruments ……………………………………. 46 II.3. Preparation of Reagent Solutions……………… 47 II.3.1. Preparation of Solutions for Synthesis of TX-100CeP Ion Exchanger…………………..… 47 II.3.2. Preparation of Standard Solutions of Cr(III), Cr(VI) and Ce(IV)……………………………… 48 II.3.3. Target Irradiation………………………………. 48 II.3.4. Preparation of 51Cr Tracer solution………….… 49 II.4. HPLC Analysis……………………………. 50 II.5. Chemical Stability………………………….. 50 II.6. Batch Experiment……………………………….. 53 II.7. Optimization Studies on Separation of 51Cr(III) from Cr(VI)via Ion-Exchanger……….. 54 II.7.1. Effect of Equilibrium Time………………..…… 54 II.7.2. Effect of HCl Concentrations on the Adsorption of Cr(III) and Cr(VI) on Ion Exchanger………… 54 II.7.3. Determination of Ion Exchange Capacity……… 54 II II.7.4. Effect of HCl-Acetone on the Adsorption of Cr(III) on TX-100Ce(IV)P Ion Exchanger…….. 55 II.7.5. Elution of the Adsorbed Cr(III) from Ion Exchange………………………………….…….. 55 II.8. Separation of 51Cr from the Radioactive Tracer Solution ………………………….…………..…. 55 II.9. Quality Control…………………………………. 56 II.9.1. Radionuclidic Purity……………………............. 56 II.9.2. Radiochemical Purity……………………….….. 56 CHAPTER (III) RESULTS AND DICUSSION ……………………………….. 58 III.1 Infrared Analysis on TX-100CeP …………….. 58 III.2 Thermogravimetric Analysis on TX-100CeP…. 58 III.3 X-Ray and Elemental Analysis……………….... 61 III.4 HPLC Analysis…………………………..……... 67 III.5 Chemical Stability of TX-100CeP……….…….. 72 III.6. Ion Exchange Capacity for Cr(III)………..……. 72 51 III.7. Optimization Studies on Separation of Cr(III) from Cr(VI) via Ion-Exchange …………………. 74 III.7.1 Determination of Equilibration Time ……….... 74 III.7.2. Effect of HCl on the distribution coefficients of Cr(III) and Cr(VI) by usingTX-100CeP or Permutit ion exchanger……………..………….. 74 III.7.3. Effect of the Adsorption of Cr(III) from HCl- Acetone Medium on TX-100CeP Ion Exchanger……………….……………..………. 81 III.7.4. Elution of Cr(III) from TX-100CeP or Permutit Ion Exchanger …………………………….…... 83 III.7.5. Separation of 51Cr from the Irradiated Cr Target via the Optimized TX-100CeP Method…………. 86 III.7.6. Separation of 51Cr from the Irradiated Cr Target via the Optimized Permutit Method……….…… 88 III.8. Comparison of the Optimized Separation Methods…………………………………..……. 89 III.9. Exchange and Coprecipitation Method of 51 Cr Separation…………….…………………... 90 III 51 III.10. Quality Control Investigation of Cr……............ 90 III.10.1. Chemical Purity…………………………….…… 90 III.10.2. Radionuclidic Purity………………………….… 91 III.10.3. Radiochemical Purity……………………….….. 91 III.11. Conclusion………………………………….….. 91 REFFERENCES………………………….... 93 Summary…………. ………………..……… 105 IV LIST OF TABLES Page Table 1.1. Nuclear properties of selected SPECT radionuclides ………………………………. 5 Table 1.2. Positron energy and range of selected PET radionuclides ……………………..……….... 5 Table 1.3. Nuclear properties of selected therapeutic radionuclides……………………………..…. 9 Table 1.4. Chromium isotopes and their nuclear properties………………………..………..… 28 Table 1.5. Nuclear reactions of Cr-51 and yields……. 33 Table 2.1. Isotopic composition of natural chromium and neutron capture cross sections…………. 57 Table 3.1. Chemical stability of T X-100Ce(IV)P in various HCl concentration solutions before and after exposed to radiation dose 30 K.Gray……………………………………… 73 Table 3.2. Separation factor for Cr(III) and Cr(VI) +3 +6 {α=Kd Cr /KdCr } in HCl solutions on TX-100CeP and Permutit ion Exchanger…. 80 Table 3.3. Comparison of chemical separations of 51Cr under optimized conditions …………….… 89 V LIST OF FIGURES Page Figure 1.1. The correlation between type and energy of corpuscular radiation and the range in tissue……………………………………... 11 Figure 1.2. Schematics of a cyclotron……………….. 19 51 Figure 1.3. Characteristics decay curve of Cr…........ 29 Figure 2.1 HPLC elution profile of (a)Cr(VI), (b) Cr(III) and (c)mixture of Cr(III) and Cr(VI) at a flow rate of 0.5 ml/min………. 51 Figure 2.2. HPLC elution profile of Ce(IV) at a flow rate of 0.5 ml/min…………….…….…… 52 Figure 3.1. The Infrared of TX-100CeP…………….... 59 Figure 3.2. The TGA/DTA curves of TX-100CeP…..... 60 Figure 3.3. The X-ray diffraction patterns of TX-100 CeP before heating to 1000 ºC…... 62 Figure 3.3. (b) The X-ray diffraction patterns of TX-100 CeP after heating to 1000 ºC…….. 63 Figure 3.4. (a) (a). X-ray fluorescence of TX-100CeP scanned with (Rh-anode) target tube and lithium fluoride (LiF-220) analyzing crystal 64 Figure 3.4. (b) X-ray fluorescence of TX-100CeP scanned with (Rh-anode) target tube and Penta- erythretol (PE-001) analyzing crystal…… 65 Figure 3.5. Elemental analysis of TX-100CeP (carbon, hydrogen, nitrogen)…………….. 66 Figure 3.6. (a) Standard curve of Cr(III) in 1.0 M HCl….. 68 Figure 3.6. (b) Standard curve of Cr(VI) in H2O…………. 68 Figure 3.6. (c) Standard curve of Cr(VI) in 0.1M HCl…... 69 Figure 3.6. (d) Standard curve of Cr(VI) in 10-2 M HCl... 69 Figure 3.6. (e) Standard curve of Cr(VI) in 10-3 M HCl…. 70 VI Figure 3.6. (f) Standard curve of Cr(VI) in 10-4 M HCl….