Cyclotron Production and Biomedical Imaging Applications of the PET Isotope Manganese-52 Andrew Lake Wooten Washington University in St
Total Page:16
File Type:pdf, Size:1020Kb
Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & McKelvey School of Engineering Dissertations Spring 5-15-2016 Cyclotron Production and Biomedical Imaging Applications of the PET Isotope Manganese-52 Andrew Lake Wooten Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds Part of the Nuclear Engineering Commons, Other Chemistry Commons, and the Radiochemistry Commons Recommended Citation Wooten, Andrew Lake, "Cyclotron Production and Biomedical Imaging Applications of the PET Isotope Manganese-52" (2016). Engineering and Applied Science Theses & Dissertations. 174. https://openscholarship.wustl.edu/eng_etds/174 This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS School of Engineering & Applied Sciences Department of Biomedical Engineering Dissertation Examination Committee: Suzanne E. Lapi, Chair Mark A. Anastasio, Co-Chair Parag Banerjee Joseph P. Culver Jason S. Lewis Samuel A. Wickline Cyclotron Production and Biomedical Imaging Applications of the PET Isotope Manganese-52 by Andrew Lake Wooten A dissertation presented to the Graduate School of Arts & Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2016 Saint Louis, Missouri © 2016, Andrew Lake Wooten Table of Contents List of Figures ................................................................................................................................. iv List of Tables ................................................................................................................................ vii Research Acknowledgments ....................................................................................................... viii Funding Acknowledgments ............................................................................................................. x Personal Acknowledgments ........................................................................................................... xi Disclaimers .................................................................................................................................. xiii Abstract of the Dissertation ........................................................................................................... xv Chapter 1. Introduction .................................................................................................................... 1 1.1. The Paradigm of Molecular Imaging ................................................................................. 1 1.2. Motivations for Studying Manganese ................................................................................ 3 1.3. Radioactive Decay, Detection, and In Vivo Imaging ......................................................... 8 1.4. Selection of 52Mn as a Radiotracer ................................................................................... 20 1.5. Thesis and Scope of this Dissertation ............................................................................... 27 1.6. References ........................................................................................................................ 27 Chapter 2. Nuclear Cross-Sections and Chemical Separation of 52Mn,,, ....................................... 35 2.1. Background ....................................................................................................................... 35 2.2. Experimental ..................................................................................................................... 37 2.3. Results .............................................................................................................................. 56 2.4. Discussion ......................................................................................................................... 62 2.5. Conclusions and Recommendations ................................................................................. 63 2.6. References ........................................................................................................................ 64 Chapter 3. Biodistribution and PET Imaging of 52Mn,,, ................................................................ 68 3.1. Background ....................................................................................................................... 68 3.2. Experimental ..................................................................................................................... 70 3.3. Results .............................................................................................................................. 74 3.4. Discussion ......................................................................................................................... 79 3.5. Conclusions and Recommendations ................................................................................. 86 3.6. References ........................................................................................................................ 87 Chapter 4. Applications for 52Mn in PET/MR Imaging,, ............................................................... 91 4.1. Background ....................................................................................................................... 91 4.2. Experimental ..................................................................................................................... 92 ii Table of Contents (continued) 4.3. Results .............................................................................................................................. 94 4.4. Discussion ......................................................................................................................... 97 4.5. Conclusions and Recommendations ................................................................................. 98 4.6. References ........................................................................................................................ 98 Chapter 5. Remotely-Controlled Modules for the Isolation of PET Radiometals,,, .................... 100 5.1. Background ..................................................................................................................... 101 5.2. Experimental ................................................................................................................... 111 5.3. Results ............................................................................................................................ 130 5.4. Discussion ....................................................................................................................... 134 5.5. Conclusions and Recommendations ............................................................................... 139 5.6. References ...................................................................................................................... 140 Chapter 6. Compiled Conclusions and Recommendations ......................................................... 144 Appendix A. Calibration Setting Numbers for Selected PET Radioisotopes in Ionization Dose Calibrators iii List of Figures Figure 1.1. Illustration of the mechanism behind ionization chambers. ....................................... 11 Figure 1.2. Illustration of the mechanism underlying scintillation radiation detectors. ................................................................................................................ 12 Figure 1.3. Illustration of the mechanism underlying semiconductor radiation detectors. ................................................................................................................ 12 Figure 1.4. Illustration of the physics of positron emission tomography. ..................................... 17 Figure 1.5. Photograph of a General Electric (GE) Optima PET/CT 560 human scanner. .................................................................................................................. 18 Figure 1.6. Lesion from multiple myeloma viewed with FDG-PET, CT, and MR. ...................... 19 Figure 1.7. Simplified level decay scheme for 52,52mMn. .............................................................. 25 Figure 2.1. Photographs illustrating the process for the fabrication of thin Cr foil discs. ...................................................................................................................... 39 Figure 2.2. Photograph of one style of target holder used in this dissertation. ............................. 40 Figure 2.3. Plot showing the activity ratios calculated using tb=120 sec and recommended cross-section data from the IAEA for the natCu(p,x)63,65Zn monitor reactions. ....................................................................... 48 Figure 2.4: Cumulative cross-section results for the natCr(p,x)52Mn reaction. .............................. 57 Figure 2.5. Cross-section results for the natCr(p,x)52mMn reaction. ............................................... 59 Figure 2.6. Cross-section results for the natCr(p,x)54Mn reaction. ................................................