Wallrock Alteration and Geochemistry of the Randsburg Mining District, Kern and San Bernardino Counties, California

Total Page:16

File Type:pdf, Size:1020Kb

Wallrock Alteration and Geochemistry of the Randsburg Mining District, Kern and San Bernardino Counties, California Wallrock alteration and geochemistry of the Randsburg mining district, Kern and San Bernardino Counties, California Item Type text; Thesis-Reproduction (electronic) Authors Wiggins, Martin Robert, 1951- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 05:36:46 Link to Item http://hdl.handle.net/10150/558201 WALLROCK ALTERATION AND GEOCHEMISTRY OF THE RANDSBURG MINING DISTRICT, KERN AND SAN BERNARDINO COUNTIES, CALIFORNIA by Martin Robert Wiggins A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCES In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 9 2 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED i Z j * d r APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: 3 ACKNOWLEDGEMENTS Among the many people who contributed in various ways to this thesis I would like to extend special recognition to the members of my committee: John Guilbert, my thesis director, for his inspiration, his constant willingness to talk shop, and for introducing me to my field area; David Hendricks for his patient instruction in X-ray diffraction techniques for clay minerals and for letting me have the run of his laboratory; and Joaquin Ruiz for pinch-hitting at the last moment when I needed a substitute committee member. In addition I would like to acknowledge a great debt to Jim Briscoe of JAB A Inc., who not only shared his knowledge of the Randsburg district with me but also graciously allowed me access to his files, had his office staff make base maps for me, and let me stay in JABA's mobile exploration headquarters while I was doing my field work. His probing questions were of great use in focusing my work in the district. A special thanks is due Warren Hinks, of Westland Minerals, who funded my research. It is safe to say that the thesis would never have been started without his financial support. I would also like to thank Casey Danielson of Echo Bay Inc. who generously shared Randsburg district drill core with me, thereby affording me a three-dimensional look at the district. DEDICATION To my wife and partner, Cyndy Wiggins, without whose support and understanding this thesis could never have been completed. 5 TABLE OF CONTENTS I. LIST OF FIGURES oooooooooo II. LIST OF TABLES oooooooooooooooooooooooooooooo x] VO III. ABSTRACT..», 0606 0000000 000000000000 10 IV. INTRODUCTION...................OOO OOOOOOOO 0 00 000000000 oil Loc&t 00 ........oo........ 0000060000000 o o e e o 1 1 Previous Work.............. 0000000000000 o o o o o 1 1 Statement of the Problem... 0000 000000000 o e e o o 1 4 V. DISTRICT DESCRIPTION........... 00 00000000000 o o e c o 1 6 Physiography 000000. 0000000 0000016 General Geology.. 000000 o o o o o 1 6 Rock Types... oooooooooo o o o o o 2 2 Johannesburg Gneiss.... 0000000000000 o o o o o 2 2 Atolia Quartz Monzonite o o o o o 2 3 Rand Schist............ 0000000. 00000 o o o © o 2 5 Hypabyssal Intrusives . ............27 Structure and Tectonics.... 0000000 ©oo©©29 Ore Deposit Types.... Tungsten ......... o o o o o 3 1 Gold. Silver................. ............32 Mineralizing Episodes...... o o o o o 3 3 VI. METHODS OF STUDY___ ........... o o o o o 3 5 Clay Mineral Structure..... Illite-Sericite-Hydromica............ X-ray Diffractometry....... o o o o o 4 2 Sample Preparation......... e o o o o 4 3 Mineral Identification.... o o o e o 4 5 Quantitative Alteration.... e o o o o 4 9 Geochemical Analysis....... o o o © ©50 Geostatistical Analysis.... o o o O o 5 0 Petrographic Analysis...... ............52 Ultraviolet Light Examination .......... .. 00000 5 2 VII. MINERALIZATION, ALTERATION, AND GEOCHEMISTRY. _______53 Mineralization........................... 00000 5 3 01C G 2j O n 6S 00000000 0 OO OOOO OOOOOOO O O OO 00 00000 5 3 Tungsten Episode Veins..... ......... o o o o o 5 3 Gold Episode Veins ........ ..... 00000 5 3 Silver Episode Veins........... ............56 Clay Mineral Descriptions»000000000 o o o o o 5 8 Tungsten Episode Veins......... ............58 Gold Episode Veins»000000000000 o o o o o 5 8 ■ Silver Episode Veins 00000000000 o o o o o 6 0 Intersection of Different Vein Types ____©60 Vein Scale Alteration .......... .......... ____©60 Tungsten Episode Veins ............... o ... .60 Gold Episode Veins»»» ................ 0000064 Silver Episode Veins*« 0000069 6 TABLE OF CONTENTS - Continued District Scale Alteration .74 Intermediate Argillie Alteration.. .74 Silicification opoooooo oooooooo .74 Phyllic Alteration. o o o o o o o oooooooo .74 Propylitic Alteration........ o o o o o o o .74 Vein Scale Geochemical Zoning..... .76 Tungsten Episode Veins........ .76 Gold Episode Veins. ........ oooooooo .81 Silver Episode Veins................ .81 VIII. INTERPRETATION. oooooooo oooooooo .83 Hydrothermal AlterationLooo o oooooooo .83 Tungsten Episode Veins oooooooooooo . .83 Gold Episode Veins.... .85 Silver Episode Veins............ ............86 Supergene Alteration...........................86 Geochemical Zoning.............................87 Quantitative Alteration. ....................... 88 IX. SUMMARY AND CONCLUSIONS ................... ... .94 Age Relationships Among Mineralizing Episodes..94 Vein Set Characteristics..... .94 Tungsten Episode Veins......... .94 Gold Episode Veins......... .96 Silver Episode Veins........... .97 Study Techniques .............. .98 , Clay Mineral X-ray Diffraction. .98 Geochemistry .................... .98 Quantitative Alteration.... .99 Petrographic Analysis.......... .99 Geostatistical Analysis........ .99 Ultraviolet Light Examination.. .100 Conclusions.. oooooooooooo© .100 APPENDIX A: CLAY SAMPLE XRD RESULTS BY VEIN TYPE..102 APPENDIX B: ELEMENTARY STATISTICS ON RAW GEOCHEMICAL DATA......................106 APPENDIX C: ANALYTICAL RESULTS............. ....... 107 REFERENCES................................@^[email protected] 7 LIST OF FIGURES FIGURE 1, Study Area Location .............................. 12 FIGURE 2, Tectonic Setting of the Rand Mountains ................1717 FIGURE 3a, Physiographic Setting.........................18 FIGURE 3b, Panorama of Randsburg district................19 FIGURE 4, Geology of the Eastern Rand Mountains......... 21 FIGURE 5, Distribution of the Pelona, Rand, and Orocopia Schists.......o......................28 FIGURE 6 , Sample Locations..........o...................36 FIGURE 7, Phyllosilicate Structure............. 39 FIGURE 8 , Phyllosilicate Structure.... .40 FIGURE 9, Tungsten Vein ......................... 54 I'lOiTJ^^E 10, Gold Vein...........o.........................55 FI CURE 11, S i lx^ er XZ e i n...................................57 FIGURE 12, Phy111c Alteration............................61 FIGURE 13, Argil lie Alteration. .......... 62 FIGURE 14, Clay Mineral Assemblages and Alteration Zones.............................. 6 FIGURE 15, Argillic Alteration. ................. .......... 67 FIGURE 16, Silicification. ................................. 68 FIGURE 17, Phyllic Alteration............................. 70 ) FIGURE 18, Phyllic Alteration. ............. 71 FIGURE 19, Propylitic Alteration. ............ 72 FIGURE 20, Propylitic Alteration. ................ .......... 73 FIGURE 21, District Scale Alteration Patterns............ 75 8 LIST OF FIGURES - Continued FIGURE 22, Log Values for Tungsten Vein, Wallrock, and Background Element Abundance Levels...... 78 FIGURE 23, Log Values for Gold Vein, Wallrock, and Background Element Abundance Levels...........79 FIGURE 24, Log Values for Silver Vein, Wallrock, and Background Element Abundance Levels...........80 9 LIST OF TABLES TABLE 1, Classification of Phyllosilicates Related to Clay Minerals ....................... 37 TABLE 2, d-Spacing for Clay Mineral Identification.......44 TABLE 3, Effects of Diagnostic Treatments on d-Spacing...47 TABLE 4, Quantitative Estimation of Clay Fractions....... 48 TABLE 5, Quantitative Alteration......................... 51 TABLE 6 , Relative Clay Abundances in Randsburg........... 59 District Veins TABLE 7, Randsburg Mining District Vein and Alteration Envelope Widths...................... .............65 TABLE 8 , Maximum Values for Randsburg Mining District Veins, Greenschist, and Wallrocks............... 77 TABLE 9a, Tabulation of Quantitative Alteration - Tungsten Episode Vein Sets - Randsburg Mining District, California. ......... ............... 89 TABLE 9b, Tabulation of Quantitative Alteration - Tungsten Episode Vein Sets - Randsburg Mining District, California....0.0.000.................90 TABLE
Recommended publications
  • Download the Scanned
    American Mineralogist, Volume 77, pages 670475, 1992 NEW MINERAL NAMES* JonN L. J,Annson CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl' Canada Abswurmbachite* rutile, hollandite, and manganoan cuprian clinochlore. The new name is for Irmgard Abs-Wurmbach, in recog- T. Reinecke,E. Tillmanns, H.-J. Bernhardt (1991)Abs- her contribution to the crystal chemistry, sta- wurmbachite, Cu'?*Mnl*[O8/SiOo],a new mineral of nition of physical properties ofbraunite. Type the braunite group: Natural occurrence,synthesis, and bility relations, and crystal structure.Neues Jahrb. Mineral. Abh., 163,ll7- material is in the Smithsonian Institution, Washington, r43. DC, and in the Institut fiir Mineralogie, Ruhr-Universitlit Bochum, Germany. J.L.J. The new mineral and cuprian braunit€ occur in brown- ish red piemontite-sursassitequartzites at Mount Ochi, near Karystos, Evvia, Greece, and in similar quartzites on the Vasilikon mountains near Apikia, Andros Island, Barstowite* Greece.An electron microprobe analysis (Andros mate- C.J. Stanley,G.C. Jones,A.D. Hart (1991) Barstowite, gave SiO, 9.8, TiO, rial; one of six for both localities) 3PbClr'PbCOr'HrO, a new mineral from BoundsClifl 0.61,Al,O3 0.60, Fe'O, 3.0,MnrO. 71.3,MgO 0.04,CuO St. Endellion,Cornwall. Mineral. Mag., 55, l2l-125. 12.5, sum 97.85 wto/o,corresponding to (CuStrMn3tu- Electron microprobe and CHN analysis gavePb75.47, Mgoo,)", oo(Mn3jrFe|jrAlo orTif.[nCuStr)", nrSi' o, for eight (calc.)6.03, sum 101.46wto/o, cations,ideally CuMnuSiO'r, the Cu analogueof braunite. Cl 18.67,C l.Iz,H 0.18,O to Pb.orClrrrCr.or- The range of Cu2* substitution for Mn2' is 0-42 molo/oin which for 17 atoms corresponds The min- cuprian braunite and 52-93 molo/oin abswurmbachite.
    [Show full text]
  • Phyllosilicates in the Sediment-Forming Processes: Weathering, Erosion, Transportation, and Deposition
    Acta Geodyn. Geomater., Vol. 6, No. 1 (153), 13–43, 2009 PHYLLOSILICATES IN THE SEDIMENT-FORMING PROCESSES: WEATHERING, EROSION, TRANSPORTATION, AND DEPOSITION Jiří KONTA Faculty of Sciences, Charles University, Albertov 6, 128 43 Prague 2 Home address: Korunní 127, 130 00 Prague 3, Czech Republic *Corresponding author‘s e-mail: [email protected] (Received October 2008, accepted January 2009) ABSTRACT Phyllosilicates are classified into the following groups: 1 - Neutral 1:1 structures: the kaolinite and serpentine group. 2 - Neutral 2:1 structures: the pyrophyllite and talc group. 3 - High-charge 2:1 structures, non-expansible in polar liquids: illite and the dioctahedral and trioctahedral micas, also brittle micas. 4 - Low- to medium-charge 2:1 structures, expansible phyllosilicates in polar liquids: smectites and vermiculites. 5 - Neutral 2:1:1 structures: chlorites. 6 - Neutral to weak-charge ribbon structures, so-called pseudophyllosilicates or hormites: palygorskite and sepiolite (fibrous crystalline clay minerals). 7 - Amorphous clay minerals. Order-disorder states, polymorphism, polytypism, and interstratifications of phyllosilicates are influenced by several factors: 1) a chemical micromilieu acting during the crystallization in any environment, including the space of clay pseudomorphs after original rock-forming silicates or volcanic glasses; 2) the accepted thermal energy; 3) the permeability. The composition and properties of parent rocks and minerals in the weathering crusts, the elevation, and topography of source areas and climatic conditions control the intensity of weathering, erosion, and the resulting assemblage of phyllosilicates to be transported after erosion. The enormously high accumulation of phyllosilicates in the sedimentary lithosphere is primarily conditioned by their high up to extremely high chemical stability in water-rich environments (expressed by index of corrosion, IKO).
    [Show full text]
  • Italian Type Minerals / Marco E
    THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 77, pages II16-1 121, 1992 NEW MINERAL NAMES* JonN L. J,lrvrnon CANMET, 555 Booth Street,Ottawa, Ontario KlA 0G1, Canada Jacrr Pvztnwtcz Institute of Geological Sciences,University of Wroclaw, Cybulskiego30, 50-205 Wroclaw, Poland Camerolaite* wt0/0, corresponding to Na, ,u(ZnoroMnOo,o)ro ro - .4.03HrO, H. Sarp, P. Perroud (1991) (Ti38sNb0 07Fe' 04),3 e6Si8 08Or8 ideally Nau- Camerolaite,CuoAlr- . [HSbO.,SO4](OH),0(CO3). 2HrO, a new mineral from ZnTioSirO,, 4H,O. The mineral contains0.18-0.22 wto/o Cap Garonne mine, Var, France.Neues Jahrb. Mineral. F. Occurs as fan-shaped intergrowths of long prismatic Mon.,481-486. crystals,elongate [001], flattened [100], up to 7 mm long and 0.1 mm thick. Transparent, white to colorless,some Electron microprobe (ave. of eight) and CHN analyses grains with a silver tint; vitreous luster, elastic, crushes (for CO, and HrO) gaveCuO 40.56,AlrO3 14.54,SbrO5 into thin fibers along the elongation; uneven, splintery 13.55,SO3 4.75, CO2 6.26,F{2O 20.00, sum 99.66wto/o, fracture, white streak, yellow-green luminescencein the correspondingto Cu.,6,4,1, jeSo Co O,n ide- eesb' ol eeHrs 5, oo, electronmicroprobe beam, hardness 517-571 (ave.544) ally CuoAlr[HSbO4,SO4XOH),0(CO3).2HrO.Occurs as kglmm2 with a 20-g load (Mohs 5.5-6), no cleavage,{010} tufts and radiating aggregates(0.5-2 mm) of transparent, parting. D-"u" : 2.90, D"ut": 2.95 g/cm3 with Z : 2. blue-greenacicular crystalsup to 0.5 mm long and show- Colorlessin transmitted light, nonpleochroic, straight ex- ing {100} and {001}, flattenedon {100}, elongate[010].
    [Show full text]
  • Petrology of the Low-Grade Rocks of the Gunflint Iron-Formation, Ontario-Minnesota
    Petrology of the Low-Grade Rocks of the Gunflint Iron-Formation, Ontario-Minnesota PAP?k^N I Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794 ABSTRACT tent with textural and compositional data tinuation of the iron formation. Marsden supporting a primary origin for the iron and others (1968) used the term "Animikie The relatively unmetamorphosed middle silicates. Quartz, recrystallized carbonate Iron Formation" for the correlated seg- Precambrian Gunflint Iron-Formation of cements, microcrystalline siderite, hematite, ments of the Cuyuna, Mesabi, and Gunflint Ontario has undergone considerable post- and possibly magnetite are also considered Ranges of Minnesota and Ontario. depositional recrystallizarion and locally in- primary phases. Key words: mineralogy, The iron formation is structurally simple tense replacement. Although these tend to sedimentary petrology, crystal chemistry, and uncomplicated. It is nearly flat lying obscure primary textural-mineralogical re- sheet silicates. with an average southeast dip of 5°. Local lations, textural elements similar to those of folding and brecciation, often accompanied limestone can be identified and their INTRODUCTION by gravity faults, are, however, present. mineralogy defined. Two fundamentally This type of deformation was attributed by different kinds of iron formation are recog- This report deals with the mineralogy Goodwin (1956) to penecontemporaneous nized: (1) cherty iron formation, which and petrography of the relatively un- volcanic disturbances. consists of granules, ooliths, and interstitial metamorphosed Gunflint Iron-Formation The Gunflint Iron-Formation and the cements; and (2) banded or slaty iron for- of Ontario. Emphasis is placed on defining overlying Rove Formation (with which it mation, which is composed of matrices the textural relations and chemistry of forms a gradational contact) comprise the (fine-grained internally structureless silicate- and carbonate-bearing assemb- middle Precambrian Animikie Group.
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]
  • Iron Ore Deposits in the Eastern Tianshan Orogenic Belt (China): the Magnetite-Skarn-Magmatism Association Abstract
    Iron ore deposits in the Eastern Tianshan orogenic belt (China) : the magnetite-skarn-magmatism association Guangrong Li To cite this version: Guangrong Li. Iron ore deposits in the Eastern Tianshan orogenic belt (China) : the magnetite- skarn-magmatism association. Earth Sciences. Université d’Orléans, 2012. English. NNT : 2012ORLE2022. tel-00762741 HAL Id: tel-00762741 https://tel.archives-ouvertes.fr/tel-00762741 Submitted on 7 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ D’ORLÉANS ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES INSTITUT DES SCIENCES DE LA TERRE D’ORLÉANS THÈSE présentée par : Guangrong LI soutenue le : 5er juillet 2012 pour obtenir le grade de : Docteur de l’université d’Orléans Discipline/ Spécialité : Sciences de la Terre et de l’Univers -OYKSKTZYJKLKXJGTYRGIKOTZ[XKUXUM§TOW[KJK R +YZ:OGTYNGT)NOTK R 'YYUIOGZOUT 3GMT§ZOZKȇ9QGXTȇ3GMSGZOYSK THÈSE dirigée par : Luc BARBANSON Maître de conférences, Université d’Orléans - CNRS Bo WANG Professeur, Nanjing University RAPPORTEURS : Alain CHAUVET Chargé de recherche,Université
    [Show full text]
  • Gunnar Färber Minerals Systematic - Minerals from All Over the World 2020/03/05
    Gunnar Färber Minerals Systematic - Minerals from all over the world 2020/03/05 Achalaite xls Achalaite xls Berere Pegmatite Field, Bekapaika, Tsaratanana, Betsiboka / Madagascar; the rare Iron- Titanium-Niobium Oxide forms black compact massive crystal aggregates, these are a symmetrical-zonar intergrowth of Achalaite with Ilmenorutil; KS 95,00 Agrellite xls Kipawa Alkali Pegmatite, Sheffield Lake, Les Lacs-du-Témiscamingue, Quebec / Canada / TYP; light beige glassy shiny compact crystal aggregates of 3 cm, with some red Eudialyte, very rich pieces of Na-Ca-F- Silicate; KS 19,00; NS 38,00; HS 65,00 Aliettite xls Mt. Sleeping Beauty, Ludlow, San Bernardino Co., California / USA; white fine-crystalline crystal aggregates, very rich in addition to brown Ferrihydrite + Olivine on cavities in gray-brown Basalt; KS 38,00; NS 65,00 Anorthoclase xls Kilju, Myongchon-gun, North Hamyong Prov. / North Korea; brownish-gray high-luster prismatic twinned single crystals of 1.5 cm with an intense blue "moonstone effect". Old one-time specimens found during the Japanese occupation of the Korean Peninsula about 70 years ago; KS 28,00 Avdeevite xls Palelni Mine, Khetchel, Molo, Momeik, Kyaukme, Shan State / Myanmar / TYP; the new gemstone is a Cesium-LithiumBeryllium-Silicate. It forms pinkish longprismatic crystals of 5 mm (MM) to 1,2 cm (KS), particular together with white Beryl; MM 95,00; KS 225,00 Axinite-(Fe) xl Olivia Mine, Rosa de Castilla, Ensenada, Baja California / Mexico; brown gemmy well terminated single crystals of 1.5 cm (MM) to 2.5 cm (KS).; MM 19,00; KS 28,00 Barite xls Sterling Mine, Stoneham, Weld Co., Colorado / USA; pale blue transparent gemmy prismatic double- terminated single crystals of 2.5 cm (KS) to 3 cm (NS).
    [Show full text]
  • ( 12 ) United States Patent ( 10 ) Patent No.: US 10,674,746 B2 Wozniak (45 ) Date of Patent : Jun
    US010674746B2 ( 12 ) United States Patent ( 10 ) Patent No.: US 10,674,746 B2 Wozniak (45 ) Date of Patent : Jun . 9 , 2020 (54 ) ANIMAL NUTRITION COMPOSITIONS AND 6,475,530 B1 11/2002 Kuhrts RELATED METHODS 6,479,069 B1 11/2002 Hamilton 6,506,402 B1 1/2003 Winstrom 6,525,027 B2 2/2003 Vazquez et al . (71 ) Applicant: CYTOZYME ANIMAL NUTRITION , 6,602,512 B1 8/2003 Cavazza INC . , Salt Lake City , UT (US ) 6,620,425 B1 9/2003 Gardiner 6,682,762 B2 1/2004 Register (72 ) Inventor : Elizabeth Wozniak , Sandy , UT (US ) 6,767,924 B2 7/2004 Yu et al . 6,784,209 B1 8/2004 Gardiner et al. 6,903,136 B2 6/2005 Miller et al. (73 ) Assignee: Cytozyme Animal Nutrition , Inc. , Salt 6,932,999 B2 8/2005 Cavazza Lake City , UT (US ) 7,452,545 B2 11/2008 Yu et al. 7,597,916 B2 10/2009 Castillo ( * ) Notice : Subject to any disclaimer , the term of this 7,608,641 B2 10/2009 Miller et al . patent is extended or adjusted under 35 7,645,742 B2 1/2010 Stohs 7,674,484 B2 3/2010 Romero U.S.C. 154 ( b ) by 0 days . 7,749,547 B2 7/2010 Heuer et al . 7,772,428 B2 8/2010 Heuer et al. ( 21) Appl. No.: 15 /958,817 ( Continued ) Filed : ( 22 ) Apr. 20 , 2018 FOREIGN PATENT DOCUMENTS (65 ) Prior Publication Data CN 102548568 B 4/2014 US 2018/0235257 A1 EP 1 330 957 A1 7/2003 Aug. 23 , 2018 EP 1 207 885 B1 9/2005 EP 2 081 564 B1 1/2014 Related U.S.
    [Show full text]
  • Interactions of Clay Minerals and Their Effects on Copper-Gold Flotation Nestor Cruz Beng, Msc in Chemical Engineering
    Interactions of Clay Minerals and their Effects on Copper-Gold Flotation Nestor Cruz BEng, MSc in Chemical Engineering A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 Sustainable Minerals Institute Julius Kruttschnitt Mineral Research Centre Abstract The continuous depletion of mineral resources has resulted in the increased processing of low grade complex ores that in some cases contain clay minerals. These gangue minerals are often associated with ores containing copper and gold and can cause problems in mineral flotation. Some of the observations from industry when high clay ores are processed include the high flotation pulp viscosity, over-stable froth or absent froth, and lower grade and recovery. Clay minerals are small flat particles that occur in colloidal size ranges with charges on their surfaces that may change with pH. These characteristics allow them to interact with water, reagents and other gangue minerals present in flotation pulp. Given these properties and interactions it is expected that clay minerals can cause high slurry viscosities and mechanical entrainment contributing to the decline of flotation kinetics and/or dilution of flotation concentrates. Some solutions to high viscosity and entrainment are the dilution of flotation pulp, desliming, and the blending of easy to process ores and problematic ores. However, the dilution of flotation pulp increases water consumption and reduces plant throughput, desliming removes fine valuable minerals as well, and blending ores is also impractical since at some point it is necessary to process the high clay content ores alone. The use of dispersants or depressants to reduce viscosity and entrainment could be an effective way to improve the flotation of this type of ores, but to make the best use of this alternative it is essential to understand at a fundamental level some of the interactions of clay minerals in flotation.
    [Show full text]
  • Modulated 2:1 Layer Silicates: Review, Systematics, and Predictions
    American Mineralogist, Volume 72, pages 724-738, 1987 Modulated 2:1 layer silicates: Review, systematics, and predictions SrnprrnN Guccturrcrlr Department of Geological Sciences,University of Illinois at Chicago, Chicago,Illinois 60680, U.S.A. R. A. Eccr-nroN Department of Geology, Australian National University, P.O. Box 4, Canberra,A.C.T. 2600, Australia AssrRAcr A continuous or nearly continuous octahedralsheet places important constraints on the geometry and topology of the attached tetrahedra in modulated 2:l layer silicates.A plot of the average radius size of the tetrahedral cations vs. the average radius size of the octahedralcations shows the distribution of structureswith respectto misfit of tetrahedral and octahedral (T-O) sheets,with modulated structuresforming when misfit is large. It is tentatively concluded that such misfit is a requirement for modulated structuresto form. It is evident that misfit of T-O sheetsis a limiting factor for geometrical stability. On the basis of tetrahedral topology, modulated 2;l layer silicates are divided into two major categories,islandlike (e.g., zussmanite, stilpnomelane) and striplike (e.g., minnesotaite, ganophyllite) structures.Bannisterite, which is more complex, most closely approximates islandlike structures.The plot involving cation radii is useful as a predictive tool to identify modulated structures,and parasettensiteand gonyeriteare identified as possiblenew mem- bers of the group. Diffraction data suggestthat parsettensite has a variation of the stilpnomelane structure with smaller islandlike regions and gonyerite has a modulated chlorite structure. Chemical mechanismsto eliminate misfit of T-O sheetsusually involve Al substitutions. Becausemodulated 2:l layer silicatescommonly occur in Al-deficient environments, struc- tural mechanisms are usually a requirement to eliminate misfit of component sheets.
    [Show full text]
  • Summary of Recommendations of the Aipea Nomenclature Commitiee
    Canadian Mineralogist Vol. 18, pp. 143-150, (1980) SUMMARY OF RECOMMENDATIONS OF THE AIPEA NOMENCLATURE COMMITIEE S. W. BAILEY, Chairman· Department of Geology and Geophysics, University of Wisconsin - Madison, Madison,. Wisconsin 53706, U.s.A. INTRODUCTION turn have worked closely with the Commission' on New Minerals and Mineral Names of the Because of their small particle-size and vari­ I.M.A. (International Mineralogical Association). able degree of c'rystal perfection, it is not sur­ This summary of the recommendations made prising that clay minerals proved extremely to date by the international nomenclature-com­ difficult to characterize adequately prior to the mittees has been prepared in order to dissemi­ development of modern analytical,techniques. nate more widely the decisions reached and to Problems in characterization led quite naturally aid clay scientists in the correct usage of clay to problems in nomenclature, undoubtedly more nomenclature. Some of the material in the so than for the macroscopic, more perfectly present summary has been taken from an earlier crystalline minerals. The popular adoption in summary by Bailey et al. (1971a). the early 19508 of the powder X-ray diffracto­ meter for clay studies helped to solve some of CLASSIFICATION the problems of identification. Improvements in electron microscopy, electron diffraction and Agreement was reached early in the inter­ oblique texture electron diffraction, infrared and national discussions that a sound nomenclature DTA equipment, plus the development of nu­ is necessarily based on a satisfactory classifica­ clear and isotope technology, high-speed elec­ tion scheme. For this reason, the earliest and tronic computers, Mossbauer spectrometers and most extensive efforts of the several national most recently, the electron microprobe and committees on nomenclature have been ex­ scanning electron-microscope all have aided in pended on classification schemes.
    [Show full text]