Are You Suprised ?

Total Page:16

File Type:pdf, Size:1020Kb

Are You Suprised ? A DAMB 721 Microbiology Exam 2A 100 points September 28, 2005 Your name: _____________________________________________ Part I. Multiple Choice: Choose the ONE BEST answer. Mark the correct answer in Part 1 of your answer sheet. 1. Of the following, which conveys the highest risk of nosocomial infection to a hospitalized patient? A. the hospital environment (rooms, floors, fomites) B. invasive medical devices (catheters, respirators, etc.) C. hospital personnel, including physicians 2. A strain of Vibrio cholerae is moved from seawater to a low salt, high pH environment where it begins to produce the cholera toxin that will cause profuse diarrhea as well as pili and outer membrane proteins that will allow the bacterium to adhere to the colon. This environmental regulation of a number of closely linked virulence genes is typical of a: A. transposon B. specialized transduction C. phage conversion D. pathogenicity island 3. Primary characteristics that are used to classify bacteria include: A. Gram stain, cell shape and cell size B. Colony morphology C. Cell surface antigens D. Nutritional requirements E. Resistance profiles 4. Bacteria are only susceptible to penicillin and other β-lactam antibiotics during this phase of their growth cyle. A. lag phase B. logarithmic phase C. stationary phase D. death phase 5. Mannitol salt agar is selective and differential for __________________. The selective component is _______________; the differential component is ________. A. Enterococcus faecalis; 7.5% sodium chloride; mannitol B. Staphylococcus aureus; 7.5% sodium chloride; mannitol C. Corynebacterium diphtheria; tellurite; mannitol D. Staphylococcus aureus; mannitol; 7.5% sodium chloride E. Streptococcus pneumoniae; optochin; α-hemolytic response 2 6. Protein A is: A. Useful for serotyping strains of Streptococcus pyogenes. B. A protein that is a virulence determinant for Staphylococcus aureus and can activate fibrinogen to cause clot formation around the bacterial cell. C. A protein that is unique to the cell surface of Staphylococcus aureus and that contributes to the virulence of the bacterium by binding the Fc region of immunoglobulins D. Toxic for white blood cells. E. The unusual capsule of S. pneumoniae. 7. The anti-microbic action of the sulfonamides is due to their molecular: A. resemblance to acyl-d-alanylalanine B. resemblance to penicillin binding proteins (PBPs) C. resemblance to para-aminobenzoic acid (PABA) D. resemblance to trimethoprim 8. Dental equipment that is reusable and that penetrates tissue, bone or pulp: A. Is critical and should be disinfected with a high level disinfectant. B. Is semi-critical and should be disinfected with a low level disinfectant. C. Is critical and should be sterilized. D. Is semi-critical and should be disinfected with a high level disinfectant. E. Is semi-critical and should be sterilized. 9. OSHA regulates the following: A. Hazardous waste disposal. B. Employee Exposure to blood borne pathogens. C. Employee Exposure to hazardous chemicals. D. Both A and B. E. Both B and C. 10. Infections caused by bacteria that develop resistance to this anti-microbic are untreatable unless new anti-microbics can be developed to take its place. A. penicillin B. cephalosporin C. sulfonamide D. vancomycin 11. The following are the requirements for microbial pathogenicity: the ability to gain entry into and adhere to the host; the ability to cause damage, for example, by releasing toxins or LPS; the ability to avoid the host immune system; the ability to metabolize and replicate in the area of infection. A. The list is complete. A bacterium that could do these things could cause disease. B. The list is incomplete. A bacterium could do all of these things and still not be able to cause disease. 3 12. Prevotella sp. is (are): A. an asaccharolytic genus of periodontal pathogens B. endogenous pathogens C. a saccharolytic genus of periodontal pathogens D. resistant to most antibiotics E. pathogens for which there are special infection control requirements 13. The insoluble polysaccharide matrix of plaque is: A. fructosyl transferase catalyzing levan B. glucosyl transferase catalyzing alpha-1,3-branched mutan C. fructosyl transferase catalyzing alpha-1,3-banched glucan D. glucosyl transferase catalyzing alpha-1,6-branched mutan 14. Porphyromonas gingivalis are: A. collagenases B. invertases C. hydrolyases D. kinases 15. Which of the following statements is true of bacterial anaerobic respiration but not bacterial aerobic respiration? A. oxygen is the terminal electron acceptor B. nitrate or sulfate may be the terminal electron acceptors C. electron transport occurs in the bacterial cell membrane instead of in the mitochondrion D. is less energetic, because the electron transport chain may have fewer cytochromes and therefore fewer ATP synthetase complexes E. Both B and D. 16. Bacteria as a group produce a variety of acids, gasses, aldehydes and alcohols through fermentation reactions. The most common intermediate in these bacterial fermentation reactions is: A. pyruvate B. lactate C. ethanol D. citrate E. format 17. A form of gene transfer that requires a bacteriophage is: A. conjugation B. transduction C. transformation D. locomotion 4 18. What are Molecular Koch's Postulates trying to determine? A. the bacterium or other microorganism that is the etiologic (causative) agent of a disease B. the virulence determinant (gene) that encodes the major virulence factor of a pathogenic microorganism C. an appropriate animal model for a disease D. both A and B E. both B and C 19. What are Koch's Postulates trying to determine? A. the bacterium or other microorganism that is the etiologic (causative) agent of a disease B. the virulence determinant (gene) that encodes the major virulence factor of a pathogenic microorganism C. an appropriate animal model for a disease D. both A and B E. both B and C 20. A bacterium that undergoes a chromosomal mutation that results in the loss of the major surface antigen has undergone: A. a phage conversion B. an antigenic variation C. a phase variation D. generalized transduction 21. Some bacteria may gain a selective advantage if they have chromosomes with: 1. multiple structural genes that encode an antigen that is required for virulence; and 2. molecular mechanisms that allow them to change the structural gene that is adjacent to the promoter. This mechanism for gaining selective advantage is: A. antigenic variation B. lysogeny C. specialized transduction D. conjugation E. phage conversion 22. A form of gene transfer that requires a competent bacterial cell is: A. conjugation B. transduction C. transformation D. locomotion 5 23. The clonality of pathogenic bacteria refers to: A. the environmental regulation of genes encoding virulence factors B. the acquisition of virulence determinants encoded on extrachromosomal elements C. the infective dose of a specific species of bacteria D. opportunistic pathogens E. among a number of strains in a given bacterial species only a few will be associated with disease 24. Which of the following statements describes the way in which genes are transferred in bacterial conjugation? A. In a viral capsid B. On the plasmid carried by the male (+) donor cell. C. In specific bacteria the male (+) plasmid can integrate into the host chromosome and initiate transfer of the host chromosome to a recipient cell. D. B and C both describe ways in which genes may be transferred in bacterial conjugation. 25. The botulinum, scarlet fever and diphtheria toxins are encoded by a gene carried on a temperate bacteriophage. This type of phage conversion is also known as: A. Transformation B. Conjugation C. Specialized transduction. D. Generalized transduction. 26. The bacterium ___________ is the most frequent cause of nosocomial infections while ___________________ is the second most frequent cause. A. Staphylococcus aureus; Escherichia coli B. Escherichia coli; Enterococcus faecalis C. Enterococcus faecalis; Staphylococcus aureus D. Escherichia coli; Staphylococcus aureus 27. Which of the following anti-microbics disrupts membrane function by binding ergosterol in fungal membranes? A. chloramphenicol B. streptomycin C. the polyene, amphoteracin B D. clindamycin E. polymyxin B 28. An example of a biological vector is: A. a mosquito which harbors a pathogen during part of its life cycle. B. a medicine bottle covered with the pathogen Staph. aureus. C. a disease transmitted by an animal bite. D. a fly whose legs are covered with pathogenic bacteria 6 29. If the portal of exit and portal of entry of a disease is on the same person: A. this is an endogenous infection. B. this is evidence that the disease is spread by a fomite. C. this is evidence of spread by a biological vector. D. the individual must be immunocompromised. 30. A common portal of exit for diseases such as cholera that are spread by contaminated food and water is: A. Blood. B. Skin scales or flakes. C. Respiratory secretions. D. Fecal wastes. 31. Areas of the human body that are colonized by high levels of microorganisms (107 to 1011 per gram, cc or ml) are the: A. skin, stomach and esophagus B. kidneys, middle ear, bladder and dental pulp C. colon, dental plaque and saliva D. skin and nasopharynx 32. The kidneys, middle ear, bladder and dental pulp are areas of the human body that: A. have low levels of microorganisms, approximately103 per gram, cc or ml. B. are not colonized by normal flora and, therefore, are usually sterile C. have high levels of microorganisms, approximately >107 to 1011 per gram, cc or ml D. have medium levels of microorganisms, 104 to 107 per gram, cc or ml 33. Statement A: An endotoxin is likely to be phage or plasmid encoded. Statement B: An exotoxin is usually not heat stable. A. Statement A is true. B. Statement B is true. C. Both statements are true. D. Neither statement is true. 34. To diagnose a patient’s disease by isolating the causative agent (pathogenic microorganism) responsible, specimens are collected from the: A.
Recommended publications
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Wo 2010/025267 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025267 A2 (51) International Patent Classification: 02459 (US). MALO, Madhu S. [US/US]; 14 Hudson A61K 33/42 (2006.01) A61P 19/02 (2006.01) Street, Watertown, Massachusetts 02474 (US). A61P 1/12 (2006.01) A61P 37/08 (2006.01) (74) Agent: FASSE, J. Peter; Fish & Richardson P.C., P.O. A61P 31/04 (2006.01) Box 1022, Minneapolis, Minnesota 55440-1022 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2009/055216 kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 27 August 2009 (27.08.2009) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 61/093,129 29 August 2008 (29.08.2008) US SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (71) Applicant (for all designated States except US): THE TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Ldentif Ication of Clinically Relevant Viridans Streptococci by Analysis of Transfer DNA Intergenic Spacer Length Polymorphism
    international Journal of Systematic Bacteriology (1 999), 49, 1 59 1-1 598 Printed in Great Britain ldentif ication of clinically relevant viridans streptococci by analysis of transfer DNA intergenic spacer length polymorphism Y. De Gheldre,' P. Vandamme,213H. Goossens3and M. J. Struelens' Author for correspondence: Yves De Gheldre. Tel: + 32 2 555 4517. Fax: + 32 2 555 6459. e-mail : [email protected] 1 Department of The utility of PCR analysis of transfer DNA intergenic spacer length Microbiology, HBpital polymorphism @DNA-ILP)for the identification to the species level of clinically Erasme, Universite Libre de Bruxelles, 808 Route de relevant viridans streptococci was evaluated with a collection of reference Lennik, 1070 Brussels, strains of 15 species of the salivarius, anginosus, mitis and mutans rRNA Belgium homology groups. PCR products generated by using fluorescent, outwardly 2 Laboratory of directed, consensus tDNA primers were analysed by electrophoresis on Microbiology and denaturating polyacrylamide gels and by laser fluorescence scanning. Eleven BCCM/LMG Culture Collection, University of species showed specific and distinct tDNA patterns : Streptococcus cristatus, Ghent, Belgium Streptococcus gordonii, Streptococcus oralis, Streptococcus mitis, 3 Laboratory of Medical Streptococcus pneumoniae, Streptococcus sanguinis, Streptococcus Microbiology, University parasanguinis, Streptococcus anginosus, Streptococcus mutans, Streptococcus Hospital Antwerp, criceti and Streptococcus ratti. Indistinguishable patterns were obtained Antwerp, Belgium among two groups of species : Streptococcus vestibularis and Streptococcus salivarius on the one hand and Streptococcus constellatus and Streptococcus intermedius on the other. 5. mitis strains produced heterogeneous patterns that could be separated into three groups: a group containing S. mitis biovar 1 and two S, mitis biovar 2 groups, one of which clustered with S.
    [Show full text]
  • Patterns of Horizontal Gene Transfer Into the Geobacillus Clade
    Imperial College London London Institute of Medical Sciences Patterns of Horizontal Gene Transfer into the Geobacillus Clade Alexander Dmitriyevich Esin September 2018 Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy of Imperial College London For my grandmother, Marina. Without you I would have never been on this path. Your unwavering strength, love, and fierce intellect inspired me from childhood and your memory will always be with me. 2 Declaration I declare that the work presented in this submission has been undertaken by me, including all analyses performed. To the best of my knowledge it contains no material previously published or presented by others, nor material which has been accepted for any other degree of any university or other institute of higher learning, except where due acknowledgement is made in the text. 3 The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 4 Abstract Horizontal gene transfer (HGT) is the major driver behind rapid bacterial adaptation to a host of diverse environments and conditions. Successful HGT is dependent on overcoming a number of barriers on transfer to a new host, one of which is adhering to the adaptive architecture of the recipient genome.
    [Show full text]
  • an Emerging Pathogen for Salmonid Culture Jesús L
    , an emerging pathogen for salmonid culture Jesús L. Romalde, Carmen Ravelo, Iván Valdés, Beatriz Magariños, Eduardo de la Fuente, Carolina San Martín, Rubén Avendaño-Herrera, Alicia E. Toranzo To cite this version: Jesús L. Romalde, Carmen Ravelo, Iván Valdés, Beatriz Magariños, Eduardo de la Fuente, et al.. , an emerging pathogen for salmonid culture. Veterinary Microbiology, Elsevier, 2008, 130 (1-2), pp.198. 10.1016/j.vetmic.2007.12.021. hal-00532381 HAL Id: hal-00532381 https://hal.archives-ouvertes.fr/hal-00532381 Submitted on 4 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Streptococcus phocae, an emerging pathogen for salmonid culture Authors: Jesus´ L. Romalde, Carmen Ravelo, Ivan´ Valdes,´ Beatriz Magarinos,˜ Eduardo de la Fuente, Carolina San Mart´ın, Ruben´ Avendano-Herrera,˜ Alicia E. Toranzo PII: S0378-1135(07)00644-X DOI: doi:10.1016/j.vetmic.2007.12.021 Reference: VETMIC 3926 To appear in: VETMIC Received date: 25-6-2007 Revised date: 12-12-2007 Accepted date: 13-12-2007 Please cite this article as: Romalde, J.L., Ravelo, C., Valdes,´ I., Magarinos,˜ B., de la Fuente, E., Mart´ın, C.S., Avendano-Herrera,˜ R., Toranzo, A.E., Streptococcus phocae, an emerging pathogen for salmonid culture, Veterinary Microbiology (2007), doi:10.1016/j.vetmic.2007.12.021 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Are You Suprised ?
    A DAMB 711 Microbiology Exam 2A 100 points September 27, 2011 Your name: _____________________________________________ Exam # ___________ Seat # ____________ 1 I. Multiple Choice: Choose the ONE BEST answer. Mark the correct answer in Part 1 of your answer sheet. 1. Which of the following conveys the highest risk of nosocomial infection to a hospitalized patient? A. the hospital environment (rooms, floors, fomites) B. invasive medical devices (catheters, respirators, etc.) C. hospital personnel, including physicians D. mechanical vectors 2. The clonality of pathogenic bacteria refers to: A. the environmental regulation of genes encoding virulence factors B. the acquisition of virulence determinants encoded on extra-chromosomal elements C. the infective dose of a specific species of bacteria D. opportunistic pathogens E. only a few strains in a species will be the etiologic agent of a disease 3. Diseases caused by this genus of bacteria are never transmitted through contaminated food. A. Listeria B. Staphylococcus C. Mycobacteria D. Corynebacteria 4. When Vibrio cholera is moved from a high salt, basic environment to isotonic conditions, with neutral pH a sensor kinase in the bacterium phosphorylates a response regulator that initiates transcription. This is an example of: A. the environmental regulation of genes encoding virulence factors B. the acquisition of virulence determinants encoded on extra-chromosomal elements C. the infective dose of a specific species of bacteria D. opportunistic pathogens E. only a few strains in a species will be the etiologic agent of a disease 5. In which form of tuberculosis is a patient coughing up infectious material? A. miliary B. active C. latent/dormant D.
    [Show full text]
  • Review Memorandum
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K181663 B. Purpose for Submission: To obtain clearance for the ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel C. Measurand: Bacillus cereus group, Bacillus subtilis group, Corynebacterium, Cutibacterium acnes (P. acnes), Enterococcus, Enterococcus faecalis, Enterococcus faecium, Lactobacillus, Listeria, Listeria monocytogenes, Micrococcus, Staphylococcus, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Streptococcus, Streptococcus agalactiae (GBS), Streptococcus anginosus group, Streptococcus pneumoniae, Streptococcus pyogenes (GAS), mecA, mecC, vanA and vanB. D. Type of Test: A multiplexed nucleic acid-based test intended for use with the GenMark’s ePlex instrument for the qualitative in vitro detection and identification of multiple bacterial and yeast nucleic acids and select genetic determinants of antimicrobial resistance. The BCID-GP assay is performed directly on positive blood culture samples that demonstrate the presence of organisms as determined by Gram stain. E. Applicant: GenMark Diagnostics, Incorporated F. Proprietary and Established Names: ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel G. Regulatory Information: 1. Regulation section: 21 CFR 866.3365 - Multiplex Nucleic Acid Assay for Identification of Microorganisms and Resistance Markers from Positive Blood Cultures 2. Classification: Class II 3. Product codes: PAM, PEN, PEO 4. Panel: 83 (Microbiology) H. Intended Use: 1. Intended use(s): The GenMark ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel is a qualitative nucleic acid multiplex in vitro diagnostic test intended for use on GenMark’s ePlex Instrument for simultaneous qualitative detection and identification of multiple potentially pathogenic gram-positive bacterial organisms and select determinants associated with antimicrobial resistance in positive blood culture.
    [Show full text]
  • Prevalence of Different Streptococci Species in the Oral Cavity of Children and Adolescents Patricia Amoroso 1 Fernando A
    Braz J Oral Sci. January/March 2003 - Vol. 2 - Number 4 Prevalence of different streptococci species in the oral cavity of children and adolescents Patricia Amoroso 1 Fernando A. de Ávila 1 Abstract Célia M. O. Gagliardi 1 Streptococci species were isolated, identified and counted in 262 sa- liva samples collected from 131 children and adolescents from a pub- 1 Agraries and Veterinary Sciences University lic school nursery at the city of Jaboticabal, SP. Four Streptococci Departament of Patology Veterinary - species harboring oral samples were identified biochemically, as Strep- Estadual Paulista University tococcus salivarius, Streptococcus mutans, Streptococcus rattus, Strep- Campus Jaboticabal – SP - Brazil [email protected] tococcus sobrinus, and streptococci of the mitis group. The mean Streptococcus counts obtained were 1.0 x 109 CFU/ml saliva for the 3 to 5 year age range, 1.5 x 109 CFU/mL saliva for the 6 to 8 year age range, and 2.0 x 109 CFU/mL saliva for the 12 to 14 year age range. The prevalence of Streptococci in saliva were: S. salivarius (89.31%), S. mutans (73.28%), S. salivarius + S. mutans (44.27%) by the stan- Received for publication: January 22, 2003 dard method. The tongue depressor method showed S. mutans Accepted: February 14, 2003 (62.59%), S. salivarius (77.86%), S. salivarius + S. mutans (33.58%). The analysis of both techniques showed significant agreement for Streptococcus isolation. Key Words Isolation, streptococci, children, saliva, collection techniques. Correspondence to: Patricia Amoroso Av. Eng. Necker C. Camargos, 1733 Cep: 14783-085 Barretos SP Brazil e-mail: [email protected] 164 Braz J Oral Sci.
    [Show full text]
  • Streptococcus Laboratory General Methods
    The reference used for compiling the methods in Section I is: Murray, P.R., Baron, E. J., Jorgensen, J.J., Pfaller, M.A., and Yolken, R.H. Manual of Clinical Microbiology, 8th ed. ASM Press: Washington, DC, 2003. The Streptococcus species identification methods in Section II were compiled by Dr. Lynn Shewmaker. Also thanks to input from several individuals, including Richard Facklam and Lucia Teixeira. Section I. 1. Accuprobe-Enterococcus Test………….………..4 2. Accuprobe-Pneumococcus Test …………..….….4 3. Acid formation in carbohydrate broth..................5 4. Arginine Hydrolysis……………………….……….6 5. Bacitracin Test……………………………………..7 6. Bile-esculin Test…………………………………...8 7. Bile solubility Test …………………………………9 8. CAMP Test…......................................................10 9. Catalase Test......................................................11 10. Clindamycin test………………………………….12 11. Esculin hydrolysis……………………………….. 13 12. Gas from MRS broth……………………………...14 13. Gram Stain………………………………………...15 14. Growth at 10 & 45C……………………………. 17 15. Hemolysis………………………………………….18 16. Hippurate hydrolysis…………………………… 19 17. Lancefield Group Antigen………………………..20 18. Leucine amino peptidase (LAP)…………………21 19. Litmus Milk Test…………………………………..22 20. Motility………………………………………………23 21. 6.5% NaCl Tolerace Test...................................24 22. Optochin…………………………………………….25 23. Pigmentation....................................................... 26 24. Pyridoxal Requirement Test (Vitamin B6)……….27 25. Pyrrolidonlarylamindase (PYR)............................28 26.
    [Show full text]
  • Title: Bartonella Dynamics in Indigenous
    Molecular diversity and prevalence of Helicobacter, Bartonella and Streptococcus in Mus musculus from sub-Antarctic Marion Island in relation to host diversity By Candice Eadie Submitted in partial fulfillment of the requirements for the degree Master of Science (Zoology) Faculty of Natural and Agricultural Sciences Department of Zoology and Entomology University of Pretoria Pretoria South Africa Supervisors: Prof A.D.S. Bastos, Prof M.N. Bester and Prof S.N. Venter December 2011 1 © University of Pretoria Declaration I, Candice Eadie hereby declare that the dissertation, which I hereby submit for the degree Master of Science (Zoology) at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. Signature: Date : 9/12/2011 2 Disclaimer This thesis consists of a series of chapters that have been prepared as stand-alone manuscripts for subsequent submission for publication purposes. Consequently, unavoidable overlaps and/or repetitions may occur between chapters. 3 Molecular diversity and prevalence of Helicobacter, Bartonella and Streptococcus in Mus musculus from sub-Antarctic Marion Island in relation to host diversity by Candice Eadie Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa SUPERVISORS: Prof. A.D.S. Bastos Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa Prof. M.N. Bester Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa. Prof. S.N. Venter Department of Microbiology and Plant pathology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa.
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 8(12), 720-730
    ISSN: 2320-5407 Int. J. Adv. Res. 8(12), 720-730 Journal Homepage: -www.journalijar.com Article DOI:10.21474/IJAR01/12203 DOI URL: http://dx.doi.org/10.21474/IJAR01/12203 RESEARCH ARTICLE A REVIEW ON MICROBIAL ECOLOGY OF MUTANS STREPTOCOCCI IN HUMAN MOUTH Dr. Apoorva Mehrotra1, Dr. Mohammad Iqbal2, Dr. Waleed Khalil Al Dahlawi3 and Dr. WalaSaad Al Raddadi4 1. Assistant Professor, Department of Conservative Dentistry & Endodontics, Career Postgraduate Institute of Dental Sciences and Hospital, Lucknow, India. 2. Associate Professor and Head, Department of Restorative Dental Sciences, Faculty of Dentistry- Al Baha University, Kingdom of Saudi Arabia. 3. Dentist, Al Hijra Dental Complex, Kingdom of Saudi Arabia. 4. Dentist, Sydalshuhada Primary Health Care Centre, Kingdom of Saudi Arabia. ……………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History The streptococci constitute a large and complex group of bacteria that Received: 20 October 2020 have widely varying characteristics and that under certain conditions Final Accepted: 24 November 2020 are capable of independent pathogenicity. In human mouth, the Published: December 2020 viridians streptococci are one of the main groups of bacteria and they are the most commonly occurring microorganisms in oral infections Key words:- Streptococcus, Dental Caries, Bacteria including dental caries. Copy Right, IJAR, 2020,. All rights reserved. …………………………………………………………………………………………………….... Introduction:- Streptococcus mutans were named by Clarke in 1924 due to its variable morphology after been isolated due to the fact that they were predominant in many human carious lesions. Clarke also found out that in artificially induced caries these Streptococcus mutans stuck closely to tooth surfaces. Characteristics and features of this cluster of streptococci have been termed as non-motile, catalase negative, gram positive cocci in medium or short chains1,2.
    [Show full text]