bioRxiv preprint doi: https://doi.org/10.1101/768473; this version posted September 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Discovery and characterization of a Gram-positive Pel polysaccharide biosynthetic gene cluster 2 3 Gregory B. Whitfield1,2, Lindsey S. Marmont1,2,#a, Cedoljub Bundalovic-Torma1,2,#b, Erum 4 Razvi1,2, Elyse J. Roach3, Cezar M. Khursigara3, John Parkinson1,2,4, and P. Lynne Howell1,2,* 5 6 7 1Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, CANADA 8 2Department of Biochemistry, University of Toronto, Toronto, ON, CANADA 9 3Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, CANADA 10 4Department of Molecular Genetics, University of Toronto, Toronto, ON, CANADA 11 #aCurrent Address: Department of Microbiology, Harvard Medical School, Boston, MA, USA. 12 #bCurrent Address: Department of Cell Systems Biology, University of Toronto, Toronto, ON, 13 CANADA. 14 15 *Corresponding author 16 E-mail:
[email protected] (PLH) 1 bioRxiv preprint doi: https://doi.org/10.1101/768473; this version posted September 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 17 Abstract 18 Our understanding of the biofilm matrix components utilized by Gram-positive bacteria, 19 and the signalling pathways that regulate their production are largely unknown. In a companion 20 study, we developed a computational pipeline for the unbiased identification of homologous 21 bacterial operons and applied this algorithm to the analysis of synthase-dependent 22 exopolysaccharide biosynthetic systems (https://doi.org/10.1101/769745).