Community and Genomic Analysis of the Human Small Intestine Microbiota

Total Page:16

File Type:pdf, Size:1020Kb

Community and Genomic Analysis of the Human Small Intestine Microbiota Community and genomic analysis of the human small intestine microbiota Bartholomeus van den Bogert Thesis committee Promotor Prof. Dr M. Kleerebezem Personal chair in the Host Microbe Interactomics Group Wageningen University Co-promotor Dr E.G. Zoetendal Assistant professor, Laboratory of Microbiology Wageningen University Other members Prof. Dr T. Abee, Wageningen University Dr J. Doré, National Institute for Agricultural Research, INRA, Jouy en Josas, France Prof. Dr P. Hols, Catholic University of Leuven, Belgium Dr A. Nauta, FrieslandCampina Research, Deventer, The Netherlands This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Community and genomic analysis of the human small intestine microbiota Bartholomeus van den Bogert Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 9 October 2013 at 4 p.m. in the Aula. Bartholomeus van den Bogert Community and genomic analysis of the human small intestine microbiota, 224 pages PhD thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in Dutch and English ISBN 978-94-6173-662-8 Summary Our intestinal tract is densely populated by different microbes, collectively called microbiota, of which the majority are bacteria. Research focusing on the intestinal microbiota often use fecal samples as a representative of the bacteria that inhabit the end of the large intestine. These studies revealed that the intestinal bacteria contribute to our health, which has stimulated the interest in understanding their dynamics and activities. However, bacterial communities in fecal samples are different compared to microbial communities at other locations in the intestinal tract, such as the small intestine. Despite that the small intestine is the first region where our food and intestinal microbiota meet, we know little about the bacteria in the small intestine and how they influence our overall well-being. This is mainly attributable to difficulties in obtaining samples with the small intestine being located between the stomach and the large intestine. Therefore, the work in this thesis aimed at providing a better understanding of the composition and dynamics of the human small intestinal microbiota and to provide insight in the metabolic potential as well as immunomodulatory properties of some of its typical commensal inhabitants. Small intestinal samples used in the work described in this thesis were collected from ileostomy subjects, individuals that had their large intestine surgically removed and the end of the small intestine connected to an abdominal stoma, providing access to luminal content of the small intestine. Considering the importance of molecular techniques in contemporary ecological surveys of microbial communities, first of all, two technologies, barcoded pyrosequencing and phylogenetic microarray analysis were compared in terms of their capacity to determine the bacterial composition in fecal and small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, the use of different primer pairs in the amplification step was assessed in terms of its impact on the outcome of microbial profiling. The analyses revealed that the different primer pairs and the two profiling technologies provide overall similar results for samples of fecal and terminal ileum origin. In contrast, the microbial profiles obtained for small intestinal samples by barcoded pyrosequencing and phylogenetic microarray analyses differed considerably. This is most likely attributable to the constraints that are intrinsic to the use of the microarray to enable the detection of predefined microbiota members only, which is due to the probe design that is largely based on large intestinal microbiota communities. However, the pyrosequencing technology also allows for identification of bacteria that were not in advance known to inhabit our intestinal tract. The pyrosequencing technology was used as the method of choice to study the total and active small intestinal communities in ileostoma effluent samples from four different subjects through sequencing the 16S ribosomal RNA gene (rDNA) and ribosomal RNA (rRNA) content combined with metatranscriptome analysis by Illumina sequencing of cDNA derived from enriched mRNA of the same sample set to investigate the activities of the small intestinal bacteria. The composition of the small intestinal bacterial communities as assessed from rDNA, rRNA, and mRNA patterns appeared to be similar, indicating that the dominant bacteria in the small intestine are also highly active in this ecosystem. Streptococcus spp. were among the bacterial species that were detected in each ileostoma effluent sample, albeit that their abundance varied greatly between samples from the same subject as well as samples from different subjects. Veillonella spp. frequently co-occurred with Streptococcus spp., indicating that the Streptococcus and Veillonella populations play a prominent role in the human small intestine ecosystem and their co- occurrence suggests a metabolic relation between these genera. Therefore, cultivation and molecular typing methodologies were employed to zoom-in on these groups, which revealed that the richness of the small intestinal streptococci strongly exceeded the diversity that could be estimated on basis of 16S rRNA analyses, and could be extended to the genomic lineage level (anticipated to resemble strain-level). From ileostoma samples 3 different Streptococcus species were recovered belonging to the S. mitis group, S. bovis group, and S. salivarius group, which could be further divided in 7 genomic lineages. Notably, the Streptococcus lineages that were isolated displayed distinct carbohydrate utilization capacities, which may imply that their growth and relative community composition may respond quite strongly to differences in the dietary intake of simple carbohydrates over time. This notion is in good agreement with the observation that the Streptococcus lineage populations fluctuated in time with only one Streptococcus lineage being cultivated from both ileostoma samples collected in a one-year time frame. Conversely, the cultivated Veillonella isolates from samples during that same time-interval consistently encompassed a single lineage. Furthermore, this Veillonella lineage could be isolated from both the oral cavity as well as the ileostoma effluent. Analogously, three Streptococcus lineages that belong to a single phylotype also appeared to be present in bacterial communities from the oral cavity as well as the small intestine. These observations suggest the representatives of the Veillonella and Streptococcus genera that are encountered in the oral and small intestinal microbial ecosystems are closely related and indicate that the oral microbiota may serve as an inoculum for the upper GI tract. The metabolic capacity of 6 small intestinal Streptococcus lineages, that were obtained from a single ileostoma effluent sample, was further investigated through the determination of genomic sequences of these lineages. The small-intestinal Streptococcus genomes were found to encode different carbohydrate transporters and the necessary enzymes to metabolize different sugars, which was in excellent agreement with what carbohydrates could be used by representative strains of the Streptococcus lineages. To further our understanding how the different streptococci as representatives of the dominant small intestinal bacterial populations may influence our immune system, human dendritic cells were stimulated with strains of the different Streptococcus lineages to study their immunomodulatory properties. The Streptococcus lineages differed significantly in their capacity to modulate cytokine responses of blood- monocyte derived immature dendritic cells. As Streptococcus and Veillonella frequently co-occur in the small intestinal ecosystem, pair-wise combinations of strains of these two species were also tested for their combined immunomodulatory properties. This resulted in considerably different cytokine responses as those that could be predicted from the stimulations with either Streptococcus or Veillonella, indicating that it is not trivial to predict gut mucosal associated immune responses and that the composition of the intestinal microbiota as a whole may have a distinct influence on an individual’s immune status. In conclusion, the work described this thesis provides an expansion to the accumulating knowledge on the human intestine microbiota. Whereas most studies focus on the microbiota present in the distal regions of the intestinal tract, this study targeted the microbiota of the poorly proximal regions of the intestine and also addressed its capacity to interact with the local mucosal tissue. The data presented here can be exploited to guide the design of future studies that aim to elucidate the interplay between diet, microbiota and the mucosal tissues in the human small intestinal tract. Table of contents Chapter 1 General introduction and thesis outline 1 Chapter 2 Microarray analysis and barcoded pyrosequencing 21 provide consistent microbial profiles depending on the source of human intestinal samples Chapter 3 Congruency of phylogenetic composition
Recommended publications
  • Human Milk Microbiota in Sub-Acute Lactational Mastitis Induces
    www.nature.com/scientificreports OPEN Human milk microbiota in sub‑acute lactational mastitis induces infammation and undergoes changes in composition, diversity and load Alba Boix‑Amorós1,2,4, Maria Teresa Hernández‑Aguilar3, Alejandro Artacho2, Maria Carmen Collado1,5 & Alex Mira1,5* Sub‑acute mastitis (SAM) is a prevalent disease among lactating women, being one of the main reasons for early weaning. Although the etiology and diagnosis of acute mastitis (AM) is well established, little is known about the underlying mechanisms causing SAM. We collected human milk samples from healthy and SAM‑sufering mothers, during the course of mastitis and after symptoms disappeared. Total (DNA‑based) and active (RNA‑based) microbiota were analysed by 16S rRNA gene sequencing and qPCR. Furthermore, mammary epithelial cell lines were exposed to milk pellets, and levels of the pro‑infammatory interleukin IL8 were measured. Bacterial load was signifcantly higher in the mastitis samples and decreased after clinical symptoms disappeared. Bacterial diversity was lower in SAM milk samples, and diferences in bacterial composition and activity were also found. Contrary to AM, the same bacterial species were found in samples from healthy and SAM mothers, although at diferent proportions, indicating a dysbiotic ecological shift. Finally, mammary epithelial cell exposure to SAM milk pellets showed an over‑production of IL8. Our work therefore supports that SAM has a bacterial origin, with increased bacterial loads, reduced diversity and altered composition, which partly recovered after treatment, suggesting a polymicrobial and variable etiology. Human milk is a complex and live fuid, containing a relatively diverse and potential benefcial microbiota under healthy conditions1, which enhances gut microbiota colonization, likely stimulates commensal tolerance and supports the maturation of the immune system2–5.
    [Show full text]
  • WO 2015/066625 Al 7 May 2015 (07.05.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/066625 Al 7 May 2015 (07.05.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/04 (2006.01) G01N 33/15 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2014/06371 1 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 3 November 20 14 (03 .11.20 14) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/898,938 1 November 2013 (01. 11.2013) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: WASHINGTON UNIVERSITY [US/US] GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, One Brookings Drive, St.
    [Show full text]
  • The Oral Microbiome of Healthy Japanese People at the Age of 90
    applied sciences Article The Oral Microbiome of Healthy Japanese People at the Age of 90 Yoshiaki Nomura 1,* , Erika Kakuta 2, Noboru Kaneko 3, Kaname Nohno 3, Akihiro Yoshihara 4 and Nobuhiro Hanada 1 1 Department of Translational Research, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 2 Department of Oral bacteriology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 3 Division of Preventive Dentistry, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] (N.K.); [email protected] (K.N.) 4 Division of Oral Science for Health Promotion, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-45-580-8462 Received: 19 August 2020; Accepted: 15 September 2020; Published: 16 September 2020 Abstract: For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Wo 2010/025267 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025267 A2 (51) International Patent Classification: 02459 (US). MALO, Madhu S. [US/US]; 14 Hudson A61K 33/42 (2006.01) A61P 19/02 (2006.01) Street, Watertown, Massachusetts 02474 (US). A61P 1/12 (2006.01) A61P 37/08 (2006.01) (74) Agent: FASSE, J. Peter; Fish & Richardson P.C., P.O. A61P 31/04 (2006.01) Box 1022, Minneapolis, Minnesota 55440-1022 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2009/055216 kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 27 August 2009 (27.08.2009) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 61/093,129 29 August 2008 (29.08.2008) US SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (71) Applicant (for all designated States except US): THE TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Microbiota of the Tongue and Systemic Connections: the Examination of the Tongue As an Integrated Approach in Oral Medicine
    Review Microbiota of the Tongue and Systemic Connections: The Examination of the Tongue as an Integrated Approach in Oral Medicine Cinzia Casu 1,* , Giovanna Mosaico 2,* , Valentino Natoli 3,4 , Antonio Scarano 5, Felice Lorusso 5 and Francesco Inchingolo 3 1 Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), University of Cagliari, 09126 Cagliari, Italy 2 RDH, Freelancer Researcher, 72100 Brindisi, Italy 3 DDS, Private Dental Practice, 72015 Fasano, Italy; [email protected] (V.N.); [email protected] (F.I.) 4 Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy 5 Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; [email protected] (A.S.); [email protected] (F.L.) * Correspondence: [email protected] (C.C.); [email protected] (G.M.); Tel.: +39-070-609-2294 (C.C.) Abstract: The tongue is able to quickly reflect the state of health or disease of the human body. Tongue inspection is an important diagnostic approach. It is a unique method that allows to explore the pathogenesis of diseases based on the guiding principles of the holistic concept that involves the observation of changes in the lining of the tongue in order to understand the physiological functions and pathological changes of the body. It is a potential method of screening and early detection of cancer. However, the subjective inspection of the tongue has a low reliability index, and therefore computerized systems of acquisition of diagnostic bioinformation have been developed to analyze Citation: Casu, C.; Mosaico, G.; the lining of the tongue.
    [Show full text]
  • ( 12 ) United States Patent
    US009956282B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,956 , 282 B2 Cook et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) BACTERIAL COMPOSITIONS AND (58 ) Field of Classification Search METHODS OF USE THEREOF FOR None TREATMENT OF IMMUNE SYSTEM See application file for complete search history . DISORDERS ( 56 ) References Cited (71 ) Applicant : Seres Therapeutics , Inc. , Cambridge , U . S . PATENT DOCUMENTS MA (US ) 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al . 3 , 228 , 838 A 1 / 1966 Rinfret (72 ) Inventors : David N . Cook , Brooklyn , NY (US ) ; 3 ,608 ,030 A 11/ 1971 Grant David Arthur Berry , Brookline, MA 4 ,077 , 227 A 3 / 1978 Larson 4 ,205 , 132 A 5 / 1980 Sandine (US ) ; Geoffrey von Maltzahn , Boston , 4 ,655 , 047 A 4 / 1987 Temple MA (US ) ; Matthew R . Henn , 4 ,689 ,226 A 8 / 1987 Nurmi Somerville , MA (US ) ; Han Zhang , 4 ,839 , 281 A 6 / 1989 Gorbach et al. Oakton , VA (US ); Brian Goodman , 5 , 196 , 205 A 3 / 1993 Borody 5 , 425 , 951 A 6 / 1995 Goodrich Boston , MA (US ) 5 ,436 , 002 A 7 / 1995 Payne 5 ,443 , 826 A 8 / 1995 Borody ( 73 ) Assignee : Seres Therapeutics , Inc. , Cambridge , 5 ,599 ,795 A 2 / 1997 McCann 5 . 648 , 206 A 7 / 1997 Goodrich MA (US ) 5 , 951 , 977 A 9 / 1999 Nisbet et al. 5 , 965 , 128 A 10 / 1999 Doyle et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 ,589 , 771 B1 7 /2003 Marshall patent is extended or adjusted under 35 6 , 645 , 530 B1 . 11 /2003 Borody U .
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Rapid Automated Identification of Gram-Positive and Gram-Negative Bacteria in the Phoenixtm System J
    As presented at the 99th General Meeting of the American Society for Microbiology, May 1999. Rapid Automated Identification of Gram-Positive and Gram-Negative Bacteria in the PhoenixTM System J. SALOMON, T. DUNK, C. YU, J. POLLITT, AND J. REUBEN BD Biosciences • 7 Loveton Circle • Sparks, MD, USA 21152 ABSTRACT I Feasibility of rapid and reliable identification of over 225 taxa that included gram-negative and gram-positive species was evaluated in the PhoenixTM Automated Microbiology System (BD Biosciences, Sparks, MD). The PHOENIX Phoenix system is intended for the rapid identification of clinically relevant aerobic bacteria without supplemental INTRODUCTION tests. Seventy-five glucose-fermenting and 50 glucose- Accurate and rapid identification of clinically relevant gram- positive and gram-negative bacteria is becoming increasingly more nonfermenting gram-negative species and isolates from important in infectious disease therapy. Bacterial identification with Staphylococcus, Streptococcus, Enterococcus, commercially available, miniaturized, automated and manual systems has been on the rise for decades. More recently, miniaturized Corynebacterium and Bacillus species were included in identification systems have successfully employed a combination of this evaluation. Additionally, a total of 74 isolates from biochemical and enzymatic substrates to identify bacteria to the species level. This study was conducted to determine the feasibility of Campylobacteraceae that included Campylobacter, rapid identification of aerobic, gram-positive and gram-negative bacteria in the Phoenix Automated Microbiology System (BD Helicobacter and Arcobacter species were also tested in Biosciences, Sparks, MD). Identification in the Phoenix system is this new system. All test strains were previously identified based on phenotypic profiles of bacterial reactivity in the presence of substrates that are kinetically monitored.
    [Show full text]
  • Ldentif Ication of Clinically Relevant Viridans Streptococci by Analysis of Transfer DNA Intergenic Spacer Length Polymorphism
    international Journal of Systematic Bacteriology (1 999), 49, 1 59 1-1 598 Printed in Great Britain ldentif ication of clinically relevant viridans streptococci by analysis of transfer DNA intergenic spacer length polymorphism Y. De Gheldre,' P. Vandamme,213H. Goossens3and M. J. Struelens' Author for correspondence: Yves De Gheldre. Tel: + 32 2 555 4517. Fax: + 32 2 555 6459. e-mail : [email protected] 1 Department of The utility of PCR analysis of transfer DNA intergenic spacer length Microbiology, HBpital polymorphism @DNA-ILP)for the identification to the species level of clinically Erasme, Universite Libre de Bruxelles, 808 Route de relevant viridans streptococci was evaluated with a collection of reference Lennik, 1070 Brussels, strains of 15 species of the salivarius, anginosus, mitis and mutans rRNA Belgium homology groups. PCR products generated by using fluorescent, outwardly 2 Laboratory of directed, consensus tDNA primers were analysed by electrophoresis on Microbiology and denaturating polyacrylamide gels and by laser fluorescence scanning. Eleven BCCM/LMG Culture Collection, University of species showed specific and distinct tDNA patterns : Streptococcus cristatus, Ghent, Belgium Streptococcus gordonii, Streptococcus oralis, Streptococcus mitis, 3 Laboratory of Medical Streptococcus pneumoniae, Streptococcus sanguinis, Streptococcus Microbiology, University parasanguinis, Streptococcus anginosus, Streptococcus mutans, Streptococcus Hospital Antwerp, criceti and Streptococcus ratti. Indistinguishable patterns were obtained Antwerp, Belgium among two groups of species : Streptococcus vestibularis and Streptococcus salivarius on the one hand and Streptococcus constellatus and Streptococcus intermedius on the other. 5. mitis strains produced heterogeneous patterns that could be separated into three groups: a group containing S. mitis biovar 1 and two S, mitis biovar 2 groups, one of which clustered with S.
    [Show full text]
  • Organic Acid Production from Starchy Waste by Gut Derived Microorganisms”
    Propositions 1. Actinomyces succiniciruminis has potential for industrial succinate production from starchy waste (this thesis) 2. Knowing the relative abundance of each microbial species in a mixed rumen inoculum does not help to predict the fermentation products (this thesis) 3. Phytoplanktons are the real-world savers for the global warming crisis as they are world’s biggest oxygen producers and carbon sequesters (Witman, S. (2017) World’s biggest oxygen producers living in swirling ocean waters. Eos, 98) 4. The best way to protect endangered floras is to bring them into a commercial breeding system 5. Studying abroad elevates cooking skills to the master level 6. There is no real waste in our world Propositions belonging to this thesis entitled: “Organic acid production from starchy waste by gut derived microorganisms” Susakul Palakawong Na Ayudthaya Wageningen, 7 September 2018 Organic acid production from starchy waste by gut derived microorganisms Susakul Palakawong Na Ayudthaya Thesis committee Promotors Prof. Dr Alfons J.M. Stams Personal chair at the Laboratory of Microbiology Wageningen University & Research Prof. Dr Willem M. de Vos Professor of Microbiology Wageningen University & Research Co-promotor Dr Caroline M. Plugge Associate professor, Laboratory of Microbiology Wageningen University & Research Other members Prof. Dr Grietje Zeeman, Wageningen University & Research Dr Bundit Fungsin, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand Prof. Dr Gert-Jan W. Euverink, University of Groningen, The Netherlands Dr Marieke E. Bruins, Wageningen University & Research This research was conducted under the auspices of the Graduate School for Socio-Economic and Natural Sciences of the Environment (SENSE). Organic acid production from starchy waste by gut derived microorganisms Susakul Palakawong Na Ayudthaya Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof.
    [Show full text]
  • A Potential Nutraceutical from Leuconostoc Mesenteroides B-742
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 A potential nutraceutical from Leuconostoc mesenteroides B-742 (ATCC 13146); production and properties Chang-Ho Chung Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Life Sciences Commons Recommended Citation Chung, Chang-Ho, "A potential nutraceutical from Leuconostoc mesenteroides B-742 (ATCC 13146); production and properties" (2002). LSU Doctoral Dissertations. 464. https://digitalcommons.lsu.edu/gradschool_dissertations/464 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. A POTENTIAL NUTRACEUTICAL FROM LEUCONOSTOC MESENTEROIDES B-742 (ATCC 13146); PRODUCTION AND PROPERTIES A Dissertation Submitted to The Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Food Science by Chang-Ho Chung B. Sc., Sejong University, 1995 M.S., Sejong University, 1997 May 2002 ACKNOWLEDGMENTS I would like to express my sincere appreciation to my major advisor, Dr. Donal F. Day, for invaluable guidance, encouragement, and inspiration that he provided throughout the course of this study and the preparation of this dissertation. Special thanks are extended to Drs. J. Samuel Godber and Joan M. King in the Department of Food Science, Gregg S. Pettis in the Department of Biological Sciences and Mark L.
    [Show full text]