EPPO Reporting Service
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphological Systematics of the Nightshade Flea Beetles Epitrix
Clemson University TigerPrints All Theses Theses 8-2016 Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico Anthony Martin Deczynski Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Deczynski, Anthony Martin, "Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico" (2016). All Theses. 2479. https://tigerprints.clemson.edu/all_theses/2479 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MORPHOLOGICAL SYSTEMATICS OF THE NIGHTSHADE FLEA BEETLES EPITRIX FOUDRAS AND ACALLEPITRIX BECHYNÉ (COLEOPTERA: CHRYSOMELIDAE: GALERUCINAE: ALTICINI) IN AMERICA NORTH OF MEXICO A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Anthony Martin Deczynski August 2016 Accepted by: Dr. Michael Caterino, Committee Chair Dr. Peter Adler Dr. J. Antonio Baeza ABSTRACT The flea beetle genera Epitrix and Acallepitrix are revised for America North of Mexico, building on a prior preliminary revision of the genus Epitrix by the author (Deczynski 2014). Four new species are described: Epitrix cuprea sp. nov., E. rileyi sp. nov., E. latifrons sp. nov., and E. vasinoda sp. nov., bringing the North American Epitrix fauna to a total of 26 species. A key is provided to adults of all species. -
Plant Health Карантин Растений
КАРАНТИН РАСТЕНИЙ МАРТ НАУКА И ПРАКТИКА 1| 11| 2015 РУССКО-АНГЛИЙСКИЙ ЖУРНАЛ ТРИПСЫ — КАНДИДАТЫ НА ВКЛЮЧЕНИЕ В ПЕРЕЧЕНЬ КАРАНТИННЫХ ОБЪЕКТОВ ТАМОЖЕННОГО СОЮЗА, ОБНАРУЖИВАЕМЫЕ В ПОДКАРАНТИННОЙ ПРОДУКЦИИ, ПОСТУПАЮЩЕЙ В КАЛИНИНГРАДСКУЮ ОБЛАСТЬ стр. 4 КОЛЬЧАТЫЕ КОКОНОПРЯДЫ РОДА MALACOSOMA — НОВЫЕ ОБЪЕКТЫ КАРАНТИННОГО ПЕРЕЧНЯ РФ стр. 20 ПОИСК МОЛЕКУЛЯРНЫХ МАРКЕРОВ ДЛЯ ИДЕНТИФИКАЦИИ СОРНЫХ РАСТЕНИЙ стр. 32 THRIPS INTERCEPTED IN REGULATED ARTICLES IMPORTED INTO KALININGRAD REGION AS CANDIDATES FOR INCLUSION INTO THE PEST LIST OF THE CUSTOMS UNION page 9 TENT CATERPILLARS OF THE GENUS MALACOSOMA — NEW PESTS IN THE RUSSIAN QUARANTINE LIST page 24 SEARCH FOR MOLECULAR MARKERS FOR IDENTIFICATION OF WEEDS page 36 RUSSIAN-ENGLISH JOURNAL PLANT HEALTH MARCH ISSN 2306-9767 ISSN RESEARCH AND PRACTICE 1| 11| 2015 КАРАНТИН РАСТЕНИЙ 1| 11| 2015 1 СОДЕРЖАНИЕ CONTENT НАУЧНЫЕ ИССЛЕДОВАНИЯ RESEARCH STUDIES «КАРАНТИН РАСТЕНИЙ. НАУКА И ПРАКТИКА» В ОБЛАСТИ КАРАНТИНА РАСТЕНИЙ IN PLANT QUARANTINE ДВУЯЗЫЧНЫЙ НАУЧНЫЙ ЖУРНАЛ №1 (11) 2015 Г. В.И. Рожина, ведущий биолог ФГБУ «Калининградская МВЛ» Viktoria I. Rozhina, Leading Biologist Трипсы — кандидаты на включение в перечень карантинных объектов at the Kaliningrad Interregional Veterinary Laboratory Таможенного союза, обнаруживаемые в подкарантинной продукции, Thrips Intercepted in Regulated Articles Imported into Kaliningrad Region as поступающей в Калининградскую область Candidates for Inclusion into the Pest List of the Customs Union Главный редактор: Санин С.С. — академик РАН, РЕДАКЦИЯ: 4 9 У.Ш. Магомедов, кандидат директор Всероссийского НИИ Волкова Е.М. — заведующая сельскохозяйственных наук, фитопатологии В.Н. Жимерикин, ведущий научный сотрудник ФГБУ «ВНИИКР» Vladimir N. Zhimerikin, FGBU VNIIKR’s Leading Researcher лабораторией сорных растений директор ФГБУ «ВНИИКР» Ю.В. Смирнов, заместитель начальника Yury V. Smirnov, Deputy Head of FGBU VNIIKR’s научно-методического отдела энтомологии ФГБУ «ВНИИКР» Entomological Research and Methodology Department Мартин Уорд — Волков О.Г. -
P2302 Biology & Control of Thrips on Seedling Cotton
Biology & Control of THRIPon Seedling SCotton Biology and Control of Thrips Figure 1. Seedling cotton. Thrips feed on the cotyledons and in the on Seedling Cotton developing terminal of young cot- Thrips are the smallest of all cotton insect ton seedlings. Damage to cotyle- pests with an overall body length of less than one- dons is of little consequence, but twelfth of an inch. Despite their small size, these damage to young leaves and fruit- insects have the potential to cause yield reductions ing branches forming in the of more than 100 pounds of lint per acre; young terminal is magnified as extremely heavy infestations can even cause death these plant parts expand. of seedling plants. Heavy infestations of thrips can also cause delays in fruiting. How can an insect that is so small cause such damage? Figure 2. “Possum-eared” Cotton is much more susceptible to thrips cotton. Cotton seedlings that suffered from heavy injury than most other row crops. This is because thrips injury to young during the first 7 to 10 days after emergence, the leaves developing in the ter- terminal bud of cotton seedlings develops relative- minal bud will have tattered ly slowly (Figure 1). This terminal bud contains or crinkled leaves that often the tissue that will eventually develop into the curl upward and fail to true leaves and fruiting structures. Thrips tend to expand properly. The leaf concentrate their feeding in this terminal bud, area of severely damaged and the injury that occurs to these young develop- seedlings often is greatly ing plant parts is greatly magnified as they grow, reduced compared to that of undamaged seedlings. -
Integrated Pest Management: Current and Future Strategies
Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P. -
Helping Pinus Ponderosa Fight Dendroctonus Brevicomis and Dendroctonus Ponderosae: Year II
CALIFORNIA STATE SCIENCE FAIR 2008 PROJECT SUMMARY Name(s) Project Number Daniel M. Kari S1711 Project Title Helping Pinus ponderosa Fight Dendroctonus brevicomis and Dendroctonus ponderosae: Year II Abstract Objectives/Goals This project focuses on discovering natural ways to best preserve Pinus ponderosa from attacks by Dendroctonus brevicomis and Dendroctonus ponderosae, the bark beetles affecting these pine trees. Methods/Materials The first part of the project was conducted in two locations in the San Bernardino National Forest, Barton Flats and Angelus Oaks, where a density check of two, one-acre lots was conducted at each site by counting all trees and observing which plants surrounded dead pines and which plants surrounded healthy pines. Since Black Oak trees and Manzanita bushes proved to be the most prominent plants in this region, tests were conducted to evaluate the tannin content in each plant, tannin being the most powerful acid in their leaves. The assay used was for total Phenols. First ferric chloride (FeCl(3)) was mixed with HCl to make a pale yellow solution. A separate solution of potassium ferricyanide (K(3)Fe(CN)(6) was diluted in water. Each substance was stabilized before mixing each leaf sample in what is called the Prussian Blue Test. Gallic acid (pure tannin) was employed to standardize the spectrometer readings. Results The survey at Barton Flats found numerous Black Oaks, yet the Ponderosa Pines still experienced high fatalities from bark beetle attacks, especially as the density of Black Oaks increased. In contrast, the survey at Angelus Oaks found greater diversity in varieties of trees, and only one fatality near the Manzanita bushes common there. -
Corythucha Arcuata
Rapid Pest Risk Analysis (PRA) for: Corythucha arcuata November 2018 Summary and conclusions of the rapid PRA This rapid PRA is an update of one produced in 2007 and shows that the oak lace bug has the potential to add strain to trees and ecosystems which are already under threat from other pests and environmental factors. This pest has been present in Europe for some time, but in recent years its distribution has either expanded, or its population levels have increased so there is greater evidence of the potential effects of this pest, though still many uncertainties. The ratings for establishment potential and economic impact remain unchanged, however, more evidence of the potential of this pest to move on wood and wood products has led to a raising of the risk of entry, and evidence from Europe suggests that this pest may have a greater potential environmental impact than previously rated. Risk of entry Although oak trees are the preferred host, there are a number of other tree species that can be potential hosts, and therefore entry has been assessed accordingly. Entry on plants for planting has been assessed as moderately likely with medium confidence. The oak lace bug is most likely to be associated with plants for planting when overwintering under loose bark scales and in crevices. Most plants imported into the UK are likely to be young trees, with few bark crevices. Larger trees do represent a significant 1 risk, as it would be difficult to determine if they were pest free, however the numbers are likely to be fewer. -
Remarkably Efficient Production of A
Research Article Received: 23 October 2017 Revised: 21 December 2017 Accepted article published: 3 January 2018 Published online in Wiley Online Library: 23 February 2018 (wileyonlinelibrary.com) DOI 10.1002/ps.4846 Remarkably efficient production of a highly insecticidal Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) isolate in its homologous host Alexandra Bernal,a Oihane Simón,a Trevor Williams,b Delia Muñozc and Primitivo Caballeroa,c* Abstract BACKGROUND: A Chrysodeixis chalcites nucleopolyhedrovirus from the Canary Islands (ChchNPV-TF1) has proved to be effective for control of Chrysodeixis chalcites on banana crops. Commercialization of this virus as a bioinsecticide requires an efficient production system. 11 RESULTS: The sixth instar (L6)wasthemostsuitableforvirusproduction,producing1.80× 10 occlusion bodies (OB)/larva and showed a lower prevalence of cannibalism (5.4%) than fourth (L4)orfifth(L5) instars. Inoculation of L6 at 24 h post 11 11 molting produced six times more OB (5.72 × 10 OB/larva) than recently molted L6 larvae (1.00 × 10 OB/larva). No significant differences were recorded in mean time to death (165–175 h) or OB production per larva (3.75 × 1011 to 5.97 × 1011) or per mg 11 9 larval weight (1.30 × 10 to 2.11 × 10 ), in larvae inoculated with a range of inoculum concentrations (LC50 –LC90). Groups of 13 infected L6 larvae reared at a density of 150 larvae/container produced a greater total number of OBs (8.07 × 10 OB/container) than lower densities (25, 50 and 100 OB/container), and a similar number to containers with 200 inoculated larvae (8.43 × 1013 OB/container). CONCLUSION: The processes described here allow efficient production of sufficient OBs to treat ∼ 40 ha of banana crops using the insects from a single container. -
Seasonality and Lure Preference of Bark Beetles (Curculionidae: Scolytinae) and Associates in a Northern Arizona Ponderosa Pine Forest
COMMUNITY AND ECOSYSTEM ECOLOGY Seasonality and Lure Preference of Bark Beetles (Curculionidae: Scolytinae) and Associates in a Northern Arizona Ponderosa Pine Forest 1,2 1 3 1 M. L. GAYLORD, T. E. KOLB, K. F. WALLIN, AND M. R. WAGNER Environ. Entomol. 35(1): 37Ð47 (2006) ABSTRACT Ponderosa pine forests in northern Arizona have historically experienced limited bark beetle-caused tree mortality, and little is known about the bark beetle community in these forests. Our objectives were to describe the ßight seasonality and lure preference of bark beetles and their associates in these forests. We monitored bark beetle populations for 24 consecutive months in 2002 and 2003 using Lindgren funnel traps with Þve different pheromone lures. In both years, the majority of bark beetles were trapped between May and October, and the peak captures of coleopteran predator species, Enoclerus (F.) (Cleridae) and Temnochila chlorodia (Mannerheim), occurred between June and August. Trap catches of Elacatis (Coleoptera: Othniidae, now Salpingidae), a suspected predator, peaked early in the spring. For wood borers, trap catches of the Buprestidae family peaked in late May/early June, and catches of the Cerambycidae family peaked in July/August. The lure targeted for Dendroctonus brevicomis LeConte attracted the largest percentage of all Dendroc- tonus beetles except for D. valens LeConte, which was attracted in highest percentage to the lure targeted for D. valens. The lure targeted for Ips pini attracted the highest percentage of beetles for all three Ips species [I.pini (Say), I. latidens (LeConte), and I. lecontei Swaine] and the two predators, Enoclerus and T. chlorodia. -
Jordan Beans RA RMO Dir
Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation. -
Chrysodeixis Chalcites Nucleopolyhedrovirus (Chchnpv)
RESEARCH ARTICLE Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV): Natural occurrence and efficacy as a biological insecticide on young banana plants in greenhouse and open-field conditions on the Canary Islands Ernesto Gabriel Fuentes1, Estrella HernaÂndez-SuaÂrez1, Oihane SimoÂn2☯, a1111111111 Trevor Williams3☯, Primitivo Caballero2,4☯* a1111111111 a1111111111 1 Dpto. ProteccioÂn Vegetal, Instituto Canario de Investigaciones Agrarias, Valle Guerra, La Laguna, Tenerife, Spain, 2 Instituto de AgrobiotecnologõÂa, CSIC-Gobierno de Navarra, Mutilva, Navarra, Spain, 3 Instituto de a1111111111 EcologõÂa AC, Xalapa, Veracruz, Mexico, 4 Dpto. ProduccioÂn Agraria, Universidad PuÂblica de Navarra, a1111111111 Campus ArrosadõÂa s/n, Pamplona, Navarra, Spain ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Citation: Fuentes EG, HernaÂndez-SuaÂrez E, SimoÂn Abstract O, Williams T, Caballero P (2017) Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV): Natural Chrysodeixis chalcites, an important pest of banana crops on the Canary Islands, is usually occurrence and efficacy as a biological insecticide controlled by chemical insecticides. The present study aimed to evaluate the efficacy of the on young banana plants in greenhouse and open- most prevalent isolate of the Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV, Bacu- field conditions on the Canary Islands. PLoS ONE 12(7): e0181384. https://doi.org/10.1371/journal. loviridae) as a biological insecticide. Overall the prevalence of ChchNPV infection in C. chal- pone.0181384 cites populations was 2.3% (103 infected larvae out of 4,438 sampled), but varied from Editor: Miguel Lopez-Ferber, Ecole des Mines 0±4.8% on Tenerife and was usually low (0±2%) on the other islands. On Tenerife, infected d'Ales, FRANCE larvae were present at 11 out of 17 plantations sampled. -
Management of Western North American Bark Beetles with Semiochemicals
EN63CH21_Seybold ARI 20 November 2017 13:34 Annual Review of Entomology Management of Western North American Bark Beetles with Semiochemicals Steven J. Seybold,1,∗ Barbara J. Bentz,2 Christopher J. Fettig,1 John E. Lundquist,3 Robert A. Progar,4 and Nancy E. Gillette1 1USDA Forest Service, Pacific Southwest Research Station, Davis, California, 95618, USA; email: [email protected], [email protected], [email protected] 2USDA Forest Service, Rocky Mountain Research Station, Logan, Utah, 84321, USA; email: [email protected] 3USDA Forest Service, Pacific Northwest Research Station, Anchorage, Alaska, 99501, USA; ANNUAL REVIEWS Further email: [email protected] Click here to view this article's 4USDA Forest Service, Pacific Northwest Research Station, La Grande, Oregon, 97850, USA; online features: email: [email protected] • Download figures as PPT slides • Navigate linked references • Download citations • Explore related articles • Search keywords Annu. Rev. Entomol. 2018. 63:407–32 Keywords First published as a Review in Advance on aggregation pheromones, allomones, bark beetles, Dendroctonus, Ips, October 20, 2017 kairomones The Annual Review of Entomology is online at ento.annualreviews.org Abstract https://doi.org/10.1146/annurev-ento-020117- We summarize the status of semiochemical-based management of the major 043339 bark beetle species in western North America. The conifer forests of this This is a work of the US Government and is not region have a long history of profound impacts by phloem-feeding bark subject to copyright protection in the United States beetles, and species such as the mountain pine beetle (Dendroctonus ponderosae) and the spruce beetle (D. -
EPPO Reporting Service
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2021-01 General 2021/001 New data on quarantine pests and pests of the EPPO Alert List 2021/002 Update on the situation of quarantine pests in the Russian Federation 2021/003 Update on the situation of quarantine pests in Tajikistan 2021/004 Update on the situation of quarantine pests in Uzbekistan 2021/005 New and revised dynamic EPPO datasheets are available in the EPPO Global Database Pests 2021/006 Anoplophora glabripennis eradicated from Austria 2021/007 Popillia japonica is absent from Germany 2021/008 First report of Scirtothrips aurantii in Spain 2021/009 Agrilus planipennis found in Saint Petersburg, Russia 2021/010 First report of Spodoptera frugiperda in Syria 2021/011 Spodoptera frugiperda found in New South Wales, Australia 2021/012 Spodoptera ornithogalli (Lepidoptera Noctuidae - yellow-striped armyworm): addition to the EPPO Alert List 2021/013 First report of Xylosandrus compactus in mainland Spain 2021/014 First report of Eotetranychus lewisi in mainland Portugal 2021/015 First report of Meloidogyne chitwoodi in Spain 2021/016 Update on the situation of the potato cyst nematodes Globodera rostochiensis and G. pallida in Portugal Diseases 2021/017 First report of tomato brown rugose fruit virus in Belgium 2021/018 Update on the situation of tomato brown rugose fruit virus in Spain 2021/019 Update on the situation of Acidovorax citrulli in Greece with findings