Download the RC Archives Box and Folder List
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear Technology
Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10. -
ASB M B Annual Meeting Highlights from the 2009
2010 ANNUAL MEETING, APRIL 24-28. ANAHEIM AWAITS! hlights fr ig om H June 2009 t h e 2 0 0 9 A S B M B A n n u al Meeting American Society for Biochemistry and Molecular Biology ANNUAL REVIEWS A Nonprofit Scientific Publisher INSIGHTFUL ANNUAL REVIEW OF TABLE OF CONTENTS BIOCHEMISTRY Without a License, or Accidents Waiting to Happen, E. Peter Geiduschek RESEARCH IN • A Journey in the World of DNA Rings and Beyond, James C. Wang BIOCHEMISTRY Vol. 78 • JUlY 2009 • The Biochemistry of Disease: Desperately Seeking Syzygy, John W. Kozarich • Biosynthesis of Phosphonic and Phosphinic Acid Natural STARTS WITH Editor: Products, William W. Metcalf, Wilfred A. van der Donk • New Antivirals and Drug Resistance, Peter M. Colman • Multidrug Resistance in Bacteria, Roger D. Kornberg ANNUAL Hiroshi Nikaido • Conformational Pathology of the Serpins: Themes, REVIEWS Stanford University School Variations, and Therapeutic Strategies, Bibek Gooptu, David A. Lomas of Medicine • Getting a Grip on Prions: Oligomers, Amyloids, and Pathological Membrane Interactions, Byron Caughey, Gerald S. Baron, Bruce Chesebro, Annual Review of Martin Jeffrey • RING Domain E3 Ubiquitin Ligases, Raymond J. Deshaies, Biochemistry, in publication Claudio A.P. Joazeiro • Regulation and Cellular Roles of Ubiquitin- since 1932, sets the standard Specific Deubiquitinating Enzymes, Francisca E. Reyes-Turcu, Karen H. Ventii, Keith D. Wilkinson • Recognition and Processing of Ubiquitin- for review articles in biological Protein Conjugates by the Proteasome, Daniel Finley • Degradation of chemistry and molecular biology. Activated Protein Kinases by Ubiquitination, Zhimin Lu, Tony Hunter • The Since its inception, these volumes Role of Ubiquitin in the NFκB Regulatory Pathways, Brian Skaug, Xiaomo have served as an indispensable Jiang, Zhijian J. -
Jul/Aug 2013
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www. -
Copyright by Paul Harold Rubinson 2008
Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS. -
Samuel Goudsmit
NATIONAL ACADEMY OF SCIENCES SAMUEL ABRAHAM GOUDSMIT 1 9 0 2 — 1 9 7 8 A Biographical Memoir by BENJAMIN BEDERSON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph courtesy Brookhaven National Laboratory. SAMUEL ABRAHAM GOUDSMIT July 11, 1902–December 4, 1978 BY BENJAMIN BEDERSON AM GOUDSMIT LED A CAREER that touched many aspects of S20th-century physics and its impact on society. He started his professional life in Holland during the earliest days of quantum mechanics as a student of Paul Ehrenfest. In 1925 together with his fellow graduate student George Uhlenbeck he postulated that in addition to mass and charge the electron possessed a further intrinsic property, internal angular mo- mentum, that is, spin. This inspiration furnished the missing link that explained the existence of multiple spectroscopic lines in atomic spectra, resulting in the final triumph of the then struggling birth of quantum mechanics. In 1927 he and Uhlenbeck together moved to the United States where they continued their physics careers until death. In a rough way Goudsmit’s career can be divided into several separate parts: first in Holland, strictly as a theorist, where he achieved very early success, and then at the University of Michigan, where he worked in the thriving field of preci- sion spectroscopy, concerning himself with the influence of nuclear magnetism on atomic spectra. In 1944 he became the scientific leader of the Alsos Mission, whose aim was to determine the progress Germans had made in the development of nuclear weapons during World War II. -
RF Annual Report
PRESIDENT'S TEN-YEAR REVIEW ANNUAL REPORT1971 THE ROCKEFELLER FOUNDATION THE ROCKEFELLER mr"nMnftTinN JAN 26 2001 LIBRARY 2003 The Rockefeller Foundation The pages of this report are printed on paper made from recycled fibers THE ROCKEFELLER FOUNDATION 111 WEST 50TH STREET, NEW YORK, NEW YORK 10020 PRINTED IN THE UNITED STATES OF AMERICA 2003 The Rockefeller Foundation CONTENTS President's Ten-year Review 1 1971 Grants and Programs 105 Study Awards 143 Organizational Information 151 Financial Statements 161 1971 Appropriations and Payments 173 2003 The Rockefeller Foundation TRUSTEES AND TRUSTEE COMMITTEES April 1971—April 1972 DOUGLAS DILLON* Chairman JOHN D. ROCKEFELLER 3RD1 Honorary Chairman BOARD OF TRUSTEES BARRY BINGHAMS VERNON E. JORDAN, JR. FREDERICK SEITZ W. MICHAEL BLUMENTHALS CLARK KERB FRANK STANTON JOHN S. DICKEY MATHILDE KRIM MAURICE F. STRONG* DOUGLAS DILLON ALBERTO LLERAS CAMARGO CYRUS R. VANCE ROBERT H. EBERT BILL MOYEHS THOMAS J. WATSON, JR.4 ROBERT F. GOHEEN JOHN D. ROCKEFELLER 3RD2 CLIFTON R. WHARTON, JR. J. GEORGE HARRAR JOHN D. ROCKEFELLER IV W. BARRY WOOD, JR.5 THEODORE M. HESBURGH ROBERT V. ROOSA WHITNEY M. YOUNG, JR.6 ARTHUR A. HOUGHTON, JR. NEVIN S. SCRIMSHAW* EXECVTIVE COMMITTEE THE PRESIDENT Chairman ROBERT V. ROOSA THEODORE M. HESBURGH* _ _ _ _ alternate member DOUGLAS DILLON FREDERICK SEITZ ,, „ , PC VERNON E. JORDAN, JR. MATHILDE KRIM* FRANK STANTON alternate member BILL MoYEHS8 CYRUS R. VANCE* NEVJN S- SCRIMSHAW* JOHN D. ROCKEFELLER 3nn2 ROBERT F. GOHEEN alternate member alternate member FINANCE COMMITTEE Through June 30 Beginning July 1 DOUGLAS DILLON Chairman ROBERT V. ROOSA Chairman ROBERT V. ROOSA DOUGLAS DILLON* THOMAS J. -
Edward Mills Purcell (1912–1997)
ARTICLE-IN-A-BOX Edward Mills Purcell (1912–1997) Edward Purcell grew up in a small town in the state of Illinois, USA. The telephone equipment which his father worked with professionally was an early inspiration. His first degree was thus in electrical engineering, from Purdue University in 1933. But it was in this period that he realized his true calling – physics. After a year in Germany – almost mandatory then for a young American interested in physics! – he enrolled in Harvard for a physics degree. His thesis quickly led to working on the Harvard cyclotron, building a feedback system to keep the radio frequency tuned to the right value for maximum acceleration. The story of how the Manhattan project brought together many of the best physicists to build the atom bomb has been told many times. Not so well-known but equally fascinating is the story of radar, first in Britain and then in the US. The MIT radiation laboratory was charged with developing better and better radar for use against enemy aircraft, which meant going to shorter and shorter wavelengths and detecting progressively weaker signals. This seems to have been a crucial formative period in Purcell’s life. His coauthors on the magnetic resonance paper, Torrey and Pound, were both from this lab. I I Rabi, the physicist who won the 1944 Nobel Prize for measuring nuclear magnetic moments by resonance methods in molecular beams, was the head of the lab and a major influence on Purcell. Interestingly, Felix Bloch (see article on p.956 in this issue) was at the nearby Radio Research lab but it appears that the two did not interact much. -
2005 Annual Report American Physical Society
1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists. -
Luis Alvarez: the Ideas Man
CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize. -
I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein. -
Pages 459 To
459 University Organization Board of Trustees The dean of the Heller School for Social study abroad, international students and Policy and Management oversees the scholars, and student enrichment services), academic activities of the school and its Hiatt Career Center, research and planning, Under Massachusetts law, the Board of work in such policy areas as children, and student life (including athletics, Trustees is the governing body of the youth, families, health, mental health, chaplaincy, community service, health university. There are four faculty substance abuse, disabilities, aging, social services, intercultural center, judicial representatives and three student change, and economic inequalities. orientation, psychological counseling, representatives to the board who participate residence life, and student activities). in board meetings and have votes on the The dean of the Brandeis International several committees. The president of the Business School oversees the academic, The senior vice president for university, the chair of the Fellows, the professional, and development activities communications administers and executes president of the Brandeis National of the university’s second professional critical university-wide internal and Committee, and the president of the school. Research areas of the school external communications, overseeing the Alumni Association serve ex officio. The include economic policy, finance, global communications emergency response plan board annually elects an alumni term entrepreneurship, international business, and directing all crisis communications. trustee who serves a four-year term with regional economics integration, and trade Further, she is responsible for an integrated full voting privileges. and exports. marketing communications program that highlights Brandeis’s research The President accomplishments, academic excellence, The president, the chief executive officer of The Faculty Senate social justice mission, and scholarly the university, is appointed by the Board of contributions to the Jewish community. -
Carl Wieman Cheriton Family Professor and Professor of Physics and of Education Curriculum Vitae Available Online
Carl Wieman Cheriton Family Professor and Professor of Physics and of Education Curriculum Vitae available Online CONTACT INFORMATION • Administrative Contact Linda J Kim Email [email protected] Bio BIO Carl Wieman holds a joint appointment as Professor of Physics and of the Graduate School of Education. He has done extensive experimental research in atomic and optical physics. His current intellectual focus is now on undergraduate physics and science education. He has pioneered the use of experimental techniques to evaluate the effectiveness of various teaching strategies for physics and other sciences, and served as Associate Director for Science in the White House Office of Science and Technology Policy. ACADEMIC APPOINTMENTS • Professor, Physics • Professor, Graduate School of Education HONORS AND AWARDS • Carnegie US University Professor of the Year, Carnegie Foundation for the Advancement of Teaching (2003) • Nobel Prize in Physics 2001, Nobel Foundation (2001) PROFESSIONAL EDUCATION • Ph.D., Stanford University , Physics (1977) • B.S., MIT , Physics (1973) Research & Scholarship RESEARCH INTERESTS • Brain and Learning Sciences • Higher Education • Science Education • Teachers and Teaching Page 1 of 3 Carl Wieman http://cap.stanford.edu/profiles/Carl_Wieman/ CURRENT RESEARCH AND SCHOLARLY INTERESTS The Wieman group’s research generally focuses on the nature of expertise in science and engineering, particularly physics, and how that expertise is best learned, measured, and taught. This involves a range of approaches, including individual cognitive interviews, laboratory experiments, and classroom interventions with controls for comparisons. We are also looking at how different classroom practices impact the attitudes and learning of different demographic groups. Some current projects include: 1. Investigating problem solving strategies.