Nuclear Technology
Total Page:16
File Type:pdf, Size:1020Kb
Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10. Demonstration Sites 571 Chapter 11. Sources of Information 605 Index 613 Preface Modern nuclear technology emerged in the twentieth century from the pioneering intellectual achievements of many scientists who struggled to explain the atom, identify and characterize its fundamental components, and apply such previously unanticipated phenomena as radioactivity and nuclear energy. Through a series of dramatic discoveries, these scientists unraveled the secrets hidden within the atomic nucleus. Using the phe- nomena of nuclear fission and nuclear fusion, scientists unlocked the vast energy content of the atomic nucleus. Their pioneering scientific efforts, performed during times of peace and conflict, resulted in a new scientific understanding of matter, its fundamental components, and the physical laws governing the relationship between energy and matter. Throughout the history of technology, only a few events have dramat- ically altered the course of human civilization. Amazingly, nuclear tech- nology provided two such world-changing events within three years. On December 2, 1942, a small band of scientists led by the Italian-American physicist Enrico Fermi succeeded in operating the world’s first nuclear re- actor at the University of Chicago. Although primitive by modern tech- nology standards, Chicago Pile One (CP-1) inaugurated the modern age of nuclear power. This pioneering experiment in the control of a nuclear fission chain reaction began a new technical era filled with great hope that human beings might wisely harvest the energy within the atomic nucleus. Nuclear scientists quickly recognized that an operating reactor also pro- vided them with a large quantity of neutrons to create many interesting new isotopes for applications in medicine, industry, basic research, envi- ronmental science, and space exploration. x PREFACE Contemporary nuclear science historians suggest that this very special event is analogous to the critical moment in Greek mythology when Prometheus stole fire from Mount Olympus (home of Zeus and the other gods) and bestowed it as a gift to humankind. Prometheus, who was one of the Titans, wanted to help human beings, but Father Zeus was extremely angry at the minor deity’s generous deed and severely punished him. Yet control of fire ultimately enabled the human race to evolve from a no- madic, survival-level, hunter-gatherer existence into the technically com- plex global civilization we enjoy today. Nuclear physicists may be perceived as the “new Prometheans”—people who have given modern society the gift of a new type of fire: the fire from within the atomic nucleus. The second world-changing nuclear technology event, the world’s first nuclear explosion, occurred at precisely 05:29:45 A.M. (mountain war time) on July 16, 1945. This event caused an incredible burst of human-made light that pierced the predawn darkness of the southern New Mexican desert and bathed the surrounding mountains in the glow of a nuclear fire- ball. The bulky, spherical plutonium-implosion device, called Trinity, ex- ploded with a yield of 21 kilotons—completely vaporizing the tall steel support tower upon which it rested. The tremendous blast signaled the dawn of a new age in warfare—the age of nuclear weaponry. From this fate- ful moment on, human beings were capable of unleashing wholesale de- struction on planet Earth. Nuclear war represents an instantaneous level of violence unavailable in all previous periods of human history. While observing the first nuclear fireball, the American physicist J. Robert Oppenheimer, who lead the team of atomic bomb scientists at Los Alamos, New Mexico, recalled the ancient Hindu declaration: “I am be- come Death, the destroyer of worlds.” Contemporary philosophers soon began to question whether this weapon extended technology beyond the ability of human social and political institutions to control it. Over the span of just a few decades in the twentieth century, the achievements of nuclear scientists greatly changed the world in which we live. The intellectual significance of the work of many of these individu- als has been publicly acknowledged through the presentation of prestigious awards, such as the Nobel Prize in physics or chemistry. Others helped bring about new levels of scientific understanding in a less publicly recognized, but nonetheless equally important, way. In addition to the nuclear reactor and the nuclear weapon, scientific breakthroughs gave rise to many of the other interesting, but sometimes controversial, nuclear technology appli- cations described in this book. In Nuclear Technology, the physical principles behind the operation of nuclear reactors for power, propulsion, research, and isotope production PREFACE xi are explained. Discussions also include the use of radioactivity and radia- tion in such areas as nuclear medicine, radiology, and food preservation. The many beneficial uses of radioactive isotopes in medicine, basic re- search, agriculture, industry, archaeology, geology, environmental science, and space exploration are also presented. Next, the social and political im- pact of nuclear technology is described. For example, nuclear technology has played a dominant role in national security and geopolitics since World War II. Looking to the future, this book suggests and encourages the family of nations to make a unanimous decision to promote and harvest only the beneficial aspects of nuclear technology. Instead of becoming the destroyer of worlds, nuclear technology should represent a powerful technology that serves as the saver of worlds and the protector of Earth. As suggested in these chapters, a future generation may apply advanced forms of nuclear technology to defend the home planet against a wayward celestial object that threatens to destroy all life in a giant cosmic collision. Astrophysicists note that the biogenic elements—those basic chemical elements found in our bodies that are necessary for life—came from a com- plex series of nuclear transformations (called nucleosynthesis) within ex- ploding ancient stars. As a result of such primeval processes that took place on a cosmic scale, we are now literally made out of stardust. In the future, nuclear technology may allow the human race to travel back to the stars from which we came. Nuclear Technology is part of a special series of comprehensive reference volumes that deals with the scientific principles, technical applications, and societal impacts of modern technologies. The present volume serves as an initial, one-stop guide to the exciting field of nuclear technology. Its chapters provide a detailed history of nuclear technology; a chronology of important milestones in the development of nuclear technology; profiles of important scientists; a detailed but readable explanation of how the tech- nology works; discussion of the impact, issues, and future of nuclear tech- nology; a glossary of important terms; and listings of relevant associations, demonstration sites, and information resources. The contents were carefully chosen and the writing carefully focused to meet the information needs of high school students, undergraduate uni- versity and college students, and members of the general public who want to understand the nature of nuclear technology, the basic scientific prin- ciples upon which it is based, how nuclear technology has influenced his- tory, and how it is now impacting society. This book serves as both a comprehensive, stand-alone introduction to nuclear technology and an excellent starting point and companion for more detailed personal inves- xii PREFACE tigations. Specialized technical books and highly focused electronic (In- ternet) resources often fail to place an important scientific event, techni- cal discovery, or applications breakthrough within its societal context. This volume overcomes