k

INDEX

Note: Page numbers with f denotes figure and with t denotes table

ABCD correlation matrix Agilent’s ADS, 228 representation of, 342 AlGaAs/GaAs HEMT, 158, 159f k ABCD parameter analysis Alloyed capacitance diode, 103, 104f k transmission line element, 312f Ambient temperature, 121, 335 Abrupt junction diode, 86–88, 87f , 205, 269 cross-modulation, 101f cascaded, 243 harmonic distortion, 102 class-A amplifier, 1062 Acceptor, 76 envelope simulation of, 1056, 1056f, Active bias circuit 1057f temperature properties of, 399t FET, gate current, 646f Active filter load line, 643f digital loops transient behavior low noise, examples of, 245–253 lock-in characteristic, 836 low-noise and high-power, 242–245 pull-in characteristic, 833 Friis equation, 243 for second-order loop, 823, 824f Lange parameter, 243 for third-order loop, 825, 825f noise measure, 243 Active frequency multiplication, 427–429 monolithic microwave integrated circuit Active two-port, mountingCOPYRIGHTED of, 354 MATERIAL(MMIC), 1059, 1060f Adjacent channel power ratio (ACPR), 30 one-tone harmonic balance simulation of, Admittance, 272 1050–1051, 1050–1051f Aeroflex Euro test system, 745 parts, list of, 432t AgilentHBT model, 134–135, 139 selection, 1081–1084, 1082–1083f Agilent PHEMT, 222, 223t stability check, 225f ATF34143 stability circle, 222f transient simulation of, 1044–1045f

Microwave Circuit Design Using Linear and Nonlinear Techniques, Third Edition. George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde, and Matthias Rudolph. © 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc. 1148

k k

INDEX 1149

two-tone harmonic balance simulation of, ATF-55143 1051, 1052f parameters of, 431t Amplifier design ATF34143 PHEMT Barkhausen oscillation condition, 432 amplifier, 224f distributed-matrix , 423f S parameters, 227t frequency doubler, 428f Attenuator, 338, 1007–1027 frequency multiplier, 426f balanced reflective, 1021, 1022f active device model, 428f bridged-tee, 1023, 1023f active multiplier realization, 428f performance of, 1023f doubler-conversion gain, 429f intermodulation performance, 1022f harmonic frequency generation, 427 pin diode, 1018–1024 passive frequency multiplication, 426–427 BA110 diode, capacitance/voltage PHEMT tripler, 429 characteristic, 104f pinchoff, 427 Back-to-back diodes, 102, 103f Gma amplifier, 402f Balanced amplifier interstage design, 421f mixed-mode parameters, 239f limitations, 430–435 Balanced Balanced, 397 millimeter-wave amplifiers Balanced devices, 236 Gunn diode local oscillator, 425 Balun, 273, 909 negative- amplifier, 434f center-tapped Nyquist plot, 435f lumped element equivalent of, 959f 1.9-GHz PCS amplifier, 430f, 433f, 434t, performance of, 961 429–434 compensated Marchand balun, 914 single-stage, 399–426 distributed active, 961 broadband amplifier, 410 transmission line model of, 965f k feedback circuits, 413f distributed broadband k graceful degradation, 409 characteristics of, 963 Infineon, 413 dual microstrip-to-parallel-plate line, internal amplifier, 406 925f inverter, 405 dual planar compensated, 918f, 924f low-VSWR amplifier, 408f dual version of, 916 MODAMP schematic (MSA 07), 412f monolithic Monolithic Darlington Amplifier, 411 frequency response of, 960f MWT-7 MESFET, 405 planar compensated, 919 MWT-7, parameters of, 403t on low-dielectric substrate, 917f novel circuit topology, 405 planar coupled line, 914f oscillation, maximum frequency of, 401 planar orthogonal shunt inductor, 406 interconnect configuration of, 918f stability factor, 399 transformer, 275 thermal impedance, 410 Band-stop filters, 309–312 stability analysis, 430–435 Bandpass 2.1-GHz W-CDMA amplifier, 429 network, 452 Analog signals, 15–26 Bandpass filter, 294, 304–306, 322, 304–306, Analog-to-digital converter (ADC) circuits, 15 306f Angelov (Chalmers) model, 162, 163f coupled-line, 324f Anode, 866 lumped-element, 306f Ansoft’s Serenade, 228 narrow-band, 306–309, 306–309, 310f Armstrong oscillator, 580f stub, 321f Associated Associated, 407 Band-stop filters, 309–312, 311f AT41400 Bandwidth, 263, 332 LRO, 574f Barkhausen

k k

1150 INDEX

Barkhausen (continued) Body capacitance, 49 criterion, 579 Body effect, 172 oscillation condition, 432 Boltzmann’s constant, 333, 334 Barrier Bounded input-bounded output (BIBO), potential, 867 432 Barrier height, diodes, 70 Broadband amplifier, 397 Base–collector capacitance, 124, 129 Broadband Broadband, 410 of InGaP/GaAs HBT, 138, 139f Broadband ring hybrid Base resistance multiplayer stripline topology, 897f phase noise contribution, 665f Butterworth Behavioral simulation, 1080–1081, passband response, 296f 1080–1082f prototype filter, 297 Bias response, 295–297 gate-to-source capacitance, 939f stopband response, 296f heterojunction bipolar transistors (HBTs), 198–200 Calibrated network analyzer, 206 high electron-mobility transistor (HEMT), Capacitance, 273 196–197 of bipolar transistors, 115–117 Bias-induced distortion, 1117–1120 characteristics, 871 Bias-induced products (BIPs), 1109 diode, 869 BIBO, see Bounded input-bounded output, linear time-variant capacitance, 873 432 of tuning diodes, 92–94 BiCMOS process, 129, 141 Capacitive Bifilar magnet wire feedback impedance of, 240f negative input impedance, 581f Bilinear transformation, 261 VCO, 583f k k Bipolar cascode Capacitor, 318 dc bias schematic, 417f current, 872 Bipolar junction transistor (BJT), 113, 116f parallel, 297 bias circuit, 397 ratio of, 655 LNA, 252f Capacitor model, 1095–1096, 1096f Bipolar oscillator Carrier analytical approach for efficient design, phase noise, 591f 751–779 Carrier injection, 1009 Bipolar transistor, 113–127. See also Cascaded amplifier, 354 Heterojunction bipolar transistors Cascaded networks (HBTs) noise figure, 353–354 capacitances and transit-times, 115–117 cascaded amplifier, 354 charge control model, 117–120 total available gain, 353 cutoff frequencies, 123–127 Cascaded noisy two-ports Ebers–Moll model, 113–115, 113f with noise figure, 353f parameters of, 760 Cascaded two-ports, 227f phase noise, 555f Cascode amplifier, 413–420 small-signal model, 123–127 circuit parameters, 419t temperature and self-heating, 120–123 1- to 5-GHz, 414f BJT-based oscillator, 585 1- to 8-GHz, 416f with noise feedback, 585f with temperature effects, 418f BJT/HBT temperature response of, 420t dc bias circuit, 398f Cathode, 866 Cavity resonators, 327 gain from, 434f CB configuration phase margins from, 434f ABCD parameters, 345–346

k k

INDEX 1151

CC configuration Class A operation ABCD parameters, 345–346 optimum ac load impedance, 471f CD4046 phase/frequency comparator, 822, Classic image rejection mixer, see 823f Single-sideband modulator, 978 CDMA. See Code division multiple access Coaxial dielectric resonators, 327 (CDMA) Coaxial line, 319 CE Code division multiple access (CDMA), 15, configuration 21 ABCD parameters, 345–346 Coded orthogonal frequency-division CE BJT vs. frequency, 209f multiplexing (COFDM), 23–24 Cell phone transmitter, 294 Colpitts oscillator, 747 Ceramic resonator oscillator, 558f Combining two-port matrix measured phase noise of, 559f method of, 339 simulated phase noise of, 558f Commensurate transmission line networks, Ceramic resonator oscillator (CRO), 318 742 Commercial synthesis software, 326 Charge carrier, 869 Common-mode signal, 236 Charge control model, 117–120 Compensated Marchand balun, 914 Charge pump, 820 Complementary metal-oxide-semiconductor Charge-pump-based phase-locked loops, (CMOS), 111 826–827 Component variation, 1069, 1071, Chebyshev 1073–1074, 1073f gvalues, 300t Computer-aided design (CAD), 273 passband response, 299f simulator, 1013 polynomial, 298 tools, 325 response, 297–301 Congruence transformation, 343 k stopband response, 299f Constant-reflection coefficient, 273 k Chebyshev transformer, 277 Contact potential, see Barrier potential, 867 Chip capacitor, 46, 47f Conventional transformer, 273 frequency response of, 46, 50f Conversion loss, 877 Chip inductor, 46 Conversion matrix frequency response of, 46, 50f components of, 874 parallel-coupled, 52 Conversion noise, 696 Chip resistor, 47 Converter circuit for, 47f high-level up vs. typical parasitic, 46t characteristics, 930f Circuit two-tone distortion performance, 931f frequency response, 273 Coplanar waveguide (CPW), 1131–1132, properties of, 233f 1132f Circuit D Correlation performance of, 405t admittance, 350 RF schematic of, 404f coefficient, 350 Circuit E matrix, 338 performance of, 405t Coupled resonators, 306 RF schematic of, 405f Coupling, 307 Circuit optimization, 1067–1069, 1070–1072f Coupling coefficient, 549 Circuit simulator, 1030, 1058 CRO, see Ceramic resonator oscillator, 742 Circulator, 1145, 1146f Cross junction, 273 Clapp-Gouriet Cross-modulation, 100–101 circuit, 582 abrupt and hyperabrupt junction diodes, oscillator, 581f 101f Class-A amplifier, 1062 Crystal oscillators, 814–815

k k

1152 INDEX

Crystal , 5, 5f IF signal, 986 Current gain, 230–231 incremental conductance, 873 Cutoff frequency, 96, 295, 475, 885 intrinsic of bipolar transistors, 123–127 admittance matrix, 874 of field-effect transistors (FETs), junction capacitance range vs. voltage, 71 156–158 large-signal diode model, 61–64, 62t of SiGe HBTs, 144–146 large-signal model, 872f LO impedance, 881 dc bias decoupling, 955 measurement of, 882f dc biasing, 263 mixer and detector, 65–69 DC feed design, 1084, 1084f, 1085f mixer diodes, 72–73 DDS. See Direct digital frequency synthesizer mixer theory, 866–880 (DDS) noise correlation, 879f Decibel, 333 noise model, 878 deembedding, 206 operation, 866 Delay, 332 parameter trade-offs, 70–72 Depletion, 79 PIN diodes, 73–84 “Depletion-mode” device, 166, 167f problems Detuned short configuration, 564 cross-modulation, 100–101 Device under test (DUT), 336 distortion products, 99–100 Digital loops transient behavior intermodulation, 101 using tri-state phase detectors post-tuning drift, 99 active filter, 833, 836 pumped intrinsic lock-in characteristic, 835–836 multiport model, 875f passive filter, 834, 837 Q factor/diode loss, 94–99 pull-in characteristic, 831–833 RF impedance, 883 k Digital signals, 15–26 measurement of, 883f k Digital single-carrier modulation system, RF parameters vs. local-oscillator drive 16, 17f level, 72f Digital-to-analog converter (DAC) circuits, series resistance, 870 15Dielectric constant, 277 short circuiting, 871 Dielectric filters, 312 small-signal model, 872f Dielectric resonator (DR), 328, 1144, SPICE parameters---indextab, 63t, 640 1144f triple-junction, 928f Dielectric resonator oscillator (DRO) rings, 819–820 using MSA 0835, 578f tuning diodes, 84–94 predicted phase noise of, 552f unmatched Dielectric spacer, 547 return loss of impedances of, 889f Differential S parameters, 236–240 Direct digital frequency synthesizer (DDS), Diffused capacitance diode, 104f 812, 851–856, 854f Diffusion capacitance, 64 Directional coupler, 228 Diffusion charge, 64 analysis of, 408f Diode, 60–110 Discontinuities, 1138–1140, 1138–1140f characteristics of, 929f Distortion, bias-induced, 1117–1120 DC I–V curves, 65f Distortion products, 99–100 Fourier coefficients, 875 Distributed amplifier, 421–425 Gaussian noise source, 878 Distributed Distributed, 397 harmonic distortion, 102 Distributed elements, 43–55, 1131–1137 reduction of, 102–105 air bridge, 1135–1136, 1136f ideality factor, 869 coupled lines, 1133–1134, 1133f IF impedance, 883 coupler, 1137, 1137f measurement of, 883f helical coil, frequency response of, 55f

k k

INDEX 1153

taper, 1135, 1135f comparison of, 1065t transmission lines, 1130f, 1131–1133 microwave filter, 1066–1067 transmission lines, interconnection of, performing, 1065 53 Electromagnetic simulator, 54 waveguides, 1134–1136, 1134f Electronic design automation (EDA) software, wrap, 1136–1137, 1136f 1029–1030 Distributed-element amplifier Electronic system level (ESL) design, 1030 circuit model, 460f Electrothermal cosimulation, flow in, Donor, 76 1058–1062, 1058f, 1060–1061f Dopants, 76 Elementary functions Double-balanced mixer, 906–930 adjacent channel power ratio, 30 with microstrip-to-parallel-plate line baluns, dynamic measure (DM), 31 913f dynamic range, 28, 29f Double-diffused metal-oxide-semiconductor intermodulation distortion, 26, 31f (DMOS) transistor, 179, 180f linear dynamic range, 29 Double-double-balanced mixer, 908 minimum detectable signal, 27, 29 low frequency representation, 910f noise figure, 26 Double heterojunction bipolar transistor spurious-free dynamic range, 29, 30f (DHBT), 131 third-order intermodulation (TOI), 29, 31, soft-knee effect in, 134–135 31f DR, see Dielectric resonator, 328 Element extraction, see Extraction, 326 Drain circuit Enhancement mode, definition of, 166 current distribution in, 472f Enhancement mode device, 166, 167f Drain conductance, 625, 756 Enhancement-mode PHEMT, 223 expressions for, 625–627 Envelope simulation, 1052–1055, 1053–1055f Drain line inductance, 467 extensions to, 1055–1056 k Drain-pumped mixer modulated amplifier, 1056–1057 k conversion gain of, 948f Equal-ripple response, see Chebyshev Dual network, 302 response, 298 Dual-gate FET Equivalent bandwidth, 335 characteristics of, 950f equivalent circuit extraction, 206 conversion gate characteristics, 951f ESL, see Effective series inductance, 49 drain current, 951f Exponential taper, 276 operation of, 949 External noise sources, 348 single-gate equivalent model of, 474f External parasitic elements, influence of, Dual-modulus counter, 815, 817f 354–357 DUT, see Device under test, 336 Extraction, 326 Dynamic Dynamic Dynamic, 409 Dynamic load line, 38–39 Fano’s limit, 285 Dynamic measure (DM), 31 Fast Fourier transform (FFT), 23, 23f, 1047 Dynamic range, 28, 29f, 923 FBAR, see Film bulk-wave acoustic resonator, 327 Ebers–Moll model, 113–115, 113f FBH-HBT model, 126f EDA. See Electronic design automation (EDA) large-signal equivalent circuit of, 137, 138f software FDTD. See Finite difference time domain Eddy current, 52 (FDTD) Edge-triggered JK master-slave flip-flops, Feedback amplifier, 411–413, 579f 820–822, 823f Feedback circuit EEHEMT, 162 phase noise improvement, 586f Effective series inductance (ESL), 49 Feedback inductance, 574 Electromagnetic (EM) simulation, Feedback line 1062–1063, 1079 characteristic impedance of, 617

k k

1154 INDEX

Feedback oscillator Film insulation, 240 using Finite difference time domain (FDTD), capacitive voltage divider, 580f 1063–165 inductive voltage divider, 580f Finite element method (FEM), 1063, 1064 MSA0835, 578f Flusoft designer, 632 mutual coupling, 580f Flux linkage, 273 series resonant circuit, 581f Forward bias, 868, 1016 FEM. See Finite element method (FEM) Forward-current regime, 1019 FET drain current, 455 Forward gain, 818 FET mixer Four-cell distributed amplifier drain-pumped single-gate, 948f current combining for, 472f single-gate Fourier coefficients, 875 in harmonic balance analysis, 941f Fractional-N principle, 846–848 in noise analysis, 944f Fractional-N synthesizer, 846, 847, 849, theory, 953 851–853f FET model Frequency parameter values---indextab, 641 bands, 13–15, 14t FET oscillator divider, 815–817 constant-frequency of, 632f multiplier, 426–429 narrow-band, performance of, 647f range, 263 noise degeneration circuit for, 649f response, 277, 302 noise performance of, 648f, 650f scaling, 303 wide-band performance of, 648f stabilization wide-band tuning of, 648f methods of, 649f FET switch, 1024–1027 transformation, 295 broadband SP4T, 1026f Frequency synthesizer, 812–814 k circuit model, 1026f building block k broadband SPDT frequency divider, 815–817, 817f performance of, 1025f loop filters, 822–830 SPDT series, 1025f phase-frequency comparators, Field-effect transistor (FET), 111, 1024 817–822 amplifier design parameters, 474t reference oscillator, 814–815, 815f, 816f capacitance model, 150–152, 151f voltage controlled oscillator, 814 carrier-mounted, 614 characteristics of circuit of, 630f frequency range, 831 cutoff frequencies, 156–158 lock-in characteristic, 833–837 DC model, 147–150 /transient response, 837–845, dispersion/memory effects, 152–156 838–845f example of, 764–773 phase noise, 831 bias condition, 772 pull-in characteristic, 831–835 device parasitic, 772 spurious response, 831, 832f high-pass filter, 772 digital direct frequency synthesizer, large-signal model, 638f 851–856 measured gain-saturation advantages, 856 characteristics of, 616f fractional-N principle, 846–848 noise equivalent circuit, 943f practical circuits, 846–847f self-heating of, 152–156 spur-suppression techniques, 849–851, small-signal model, 156–158 850f, 851t temperature and self-heating, 120 Friis equation, 243 transfer characteristics of, 157–158 Film bulk-wave acoustic resonator (FBAR), gvalues, 296 327 GaAs-based diodes, 70, 90–91

k k

INDEX 1155

GaAs FET Gummel–Poon model, 117–120, 1090, 1092, mixer 1092f noise performance, 940 Gunn diode local oscillator, 425 oscillator Gyrator, 1144–1145, 1145f FM noise of, 649 layout of, 751f Handheld cellular telephone transceiver, 34, load line for, 750f 35f parasitic element value, 888 Halo substrate, 52 switches, 1007 Harmonic GaAs-HBT, 125, 129 frequency generation, 427 vs. bipolar junction transistor (BJT), 131 Harmonic balance, 1089 DC behavior, 132 method, 633 Gummel plots for, 132, 132f oscillator analysis setup with, 1089, 1089f small-signal equivalent circuit of, 123f Harmonic balance simulation, 1045–1049, GaAs metal-semiconductor field-effect 1054 transistor (MESFET), 3, 4f, 1074 drawback, 1046 GaAs power pHEMT, 153 extensions to, 1049–1050 GaAs varactor one-tone amplifier, 1050–1051 dynamic capacitance and resistance of, two-tone amplifier, 1051–1052 555f Harmonic content, 656 Gain, 332 Harmonic balance electromagnetic (HB–EM) Gain circles, 360f cosimulation, 1101, 1102 Gain shaping, 458 HBTs. See Heterojunction bipolar transistors Gallium arsenide MESFET (GaAs MESFET) (HBTs) oscillator structures, 610f HDI, see High-density interconnect, 49 GaN HEMTs, 153, 160, 161f Helical coil, 54–55 k amplification properties of, 155 frequency response of, 55f k dispersion in, 154f HEMT. See High electron-mobility transistor packaged, 184f (HEMT) S-parameters, 156, 157f Heterodyne receiver, 6, 6f Gate bias, 451 Heterojunction bipolar transistors (HBTs), Gate capacitance 112 dependance of, 937 biasing, 198–200 zero-bias, 627 GaAs and InP, 127–141 Gate line DC and electro-thermal model, 132–135 attenuation vs. normalized frequency, large-signal modeling, 137–141 467f small-signal performance, 135–137 Gaussian distribution, 1071, 1073f SiGe, 141–147 Gaussian minimum shift keying (GMSK), 20 small-signal equivalent circuit, 123 Generator, 334 Hetero structure field-effect transistor (HFET), admittance, 340, 357 158 resistor, 333 HGAs, see High-gain amplifier, 397 Generator representation, 235f High gain, 399–400 Genetic optimization, 1068–1069 High-density interconnect (HDI), 49 Gma amplifier, 402f High electron-mobility transistor (HEMT), Graceful degradation, 409 112, 153 Grounded coplanar waveguide (GCPW), band diagram of, 159f 1132–1133, 1132f biasing, 196–197 Ground shield, 52 electric behavior of, 159 Group delay correction, 335 large-signal modeling, 161–165 Guide wavelength vs. frequency with dielectric layer structure of, 158, 159t constant, 44f low-noise, 187, 188f

k k

1156 INDEX

High-frequency (HF), 1021 multisection quarter-wave, 280f High-gain amplifier, 397 taper, 278f High-pass filter, 302–303 single-element matching, 270f lumped-element, 304f load impedance, 269 transmission line, 321–325 Smith chart, 262f High-power amplifier (HPA), 215, 409–410 bandwidth, 263 HP2001 bilinear transformation, 261 bipolar chip common base, 572t dc biasing, 263 HPA – seeHigh-power amplifier, 215 frequency range, 263 Hybrid narrow-band, 263 operation of, 900 oscillator, 262 Hybrid element Q plots, 268f Bessel functions, 54 reflection coefficient plane, 261 Hyperabrupt junction diode, 88–89, 89f, single-element matching, 269 623–624 topology, 263 capacitance versus junction bias, 90f, 623f transmission line calculator, 261 cross-modulation, 101f wideband, 263 harmonic distortion, 102 solutions to, 268t nvs.reverse voltage, 90f tapered transmission lines N–X, 89f dielectric constant, 277 exponential taper, 276 IEEE MTT-S, 354 frequency response, 277 IF impedance, 883 Klopfenstein taper, 276 IHP BiCMOS process, 143 linear taper, 276 Impact ionization tuning, 276 definition of, 181 transmission line transformer k in MOSFETs, 181–182 9:1 transformer, 275f k Image parameter design, 294 balun transformer, 275 Impedance, 53, 881 ideal, 273 matching, 46 simple balun transformer, 275f scaling, 297 two-wire, 274f transformation, 274 two-element matching transformer, 273 admittance, 272 Impedance matching series reactance, 271 amplifiers, 269 series/shunt lossless network, 271 broadband match, 269f Inductance, 248 distributed, 267f Inductor hybrid, 267f gate-bonding, 285 lossless elements, 261 quality factor of, 655 lumped-element, 264f series, 297 mixers, 269 Infineon BFP620 multisection quarter-wave Gummel-Poon model tapered matching, comparison of, transistor chip data, 419t 276f InGaP/GaAs HBT networks, 269 band diagram of, 130, 131f microstripline, 269 base–collector capacitance, 138, 139f oscillators, 269 I–V curves, 133, 133f port impedance, 269 layer structure of, 127 quarter-wave baluns oscillator, 192, 193f push-pull amplifier, 276f power-spectral measurement, 141 response transit frequency, 135, 136f Chebyshev design, 280f Injection gain, 587

k k

INDEX 1157

InP DHBTs, 129, 130f high electron-mobility transistor (HEMT), Gummel plots for, 132 161–165 I–V measurement, 134 PIN diodes, 73–74, 74f transit frequency, 136, 137f Large-signal PIN diode model, 73–74, 74f InP double heterojunction bipolar transistor Late effect, 118 (DHBT), 126–127, 127f Laterally diffused metal-oxide-semiconductor InP HBT, 125 (LDMOS) transistor, 180, 181f InP HEMTs, 160 Layout EM cosimulation, 1099, 1100f, 1102 Input port, 337 Layout window, 1034, 1035f Insertion loss design, 294, 295 LC Integrated circuits (ICs), 1032 resonator, 310 Integrated frequency synthesizer, 812, 813f topology, 306 Integration method, 1042 Lead inductance, 206, 354 Intermodulation, 101 Lee and Hajimixeri noise model, 696 Intermodulation products, 1108 Leeson phase noise equation, 695–696 Intermodulation performance, 886 shortcomings of, 696 Internal detector, 337 Leeson’s noise model, 539 Internal Internal, 406 Leeson’s oscillator model, 590–595 Internal noise sources, 350 Libra Microwave SPICE, 884 Interstage network Line stretcher, 227 distributed element, 460f Linear lumped element, 460f dynamic range, 29 Inverse fast Fourier transform (IFFT), 23, indicator, 337 23f network Inversion, 168 parameters, 613 Inverter, 405 simulator, 475 k admittance, 323 taper, 276 k Isolator, 1145, 1146f Linear two-ports noise correlation in, 360–363 Jacobian matrix, 1036 noisy, 348f Johnson’s figure of merit (JFoM), 110–111 chain matrix, 349f Johnson noise, 334 S parameter, 349f Junction, 76 Linear diode model, 72 capacitance, 68–69, 870 Linearly graded junction diode, 88, 88f effect, 273 Linear oscillator analysis, 1085–1086, 1088–1089f Kirchhoff’s law, 232 Linear simulation, 1035 Kirchhoff’s current law (KCL), 1036 Linear two-ports, noise figure, 333 Kirk effect, 120 Linear two-ports, noise figure measurements Klopfenstein taper, 276 attenuator, 338 Kuroda transforms, 319–321 device under test, 336 input port, 337 Lange coupler, 892 internal detector, 337 Lange Lange, 407 linear indicator, 337 Lange parameter, 243 noise equation, 336 Large-signal noise generator, wide-band, 337 amplifier design, 397–435 receiver, 336 microwave diode model, 622t thermal energy, 337 Large-signal diode model, 60–64, 62t video noise meter, 336 Large-signal modeling Linear two-ports, noise in, 332 heterojunction bipolar transistors (HBTs), bandwidth, 332 137–141 Boltzmann’s constant, 333

k k

1158 INDEX

Linear two-ports, noise in (continued) impedance, 215, 269, 295, 452 CB configuration, 347f resistance, 297 CC configuration, 346f resistor, 297 circles Local oscillation (LO), 1049 noise tuning, 357 drive voltage correlation conversion gain, 938f congruence transformation, 363 power power spectrum, 361 conversion loss, 967f correlation matrix Long-term PTD, 99 congruence transformation, 343 Loop filters, 822–826 mean value, 338 charge-pump-based phase-locked loops, decibel, 333 826–827 delay, 332 passive PLL filter, 827–831 external parasitic elements, influence of Loop gain optimization, 1086, 1088f, 1089, active two-port, mounting of, 354 1089f IEEE MTT-S, 354 Loop gain/transient response, 837–845, lead inductance, 354 838–845f low-input VSWR, 354 Lossless parasitic reactance, 354 elements, 261 stray capacitance, 354 lumped elements, 269 transistor package, equivalent circuit of, transmission line components, 269 355f Low-input VSWR, 354 factor, 332 Low-noise amplifier, 397, 407–409, 186–187 gain, 332 associated gain, 407 generator admittance, 340 Lange coupler, 407 generator resistor, 333 Wilkinson in-phase power splitter, 409 k parallel combination, 361f Low-noise design, 596–604 k parameters Low-pass filter (LPF), 295, 814 noisy two-port, 338 direct digital frequency synthesizer (DDS), satellite receiver, 333 855 series element, definition of, 343 dual prototype, 297f shunt element, definition of, 343 frequency, 302 signal energy, 332 impedance scaling, 302 signal-to-noise ratio prototype, 297f ambient temperature, 335 Low-pass prototype filter design, 295–301 Boltzmann’s constant, 334 Butterworth response, 295–297, 296–297f equivalent bandwidth, 335 Chebyshev response, 297–301, 299f, 300t, generator, 334 301f group delay correction, 335 Low-pass response, 295 Johnson noise, 334 Low-temperature cofired ceramic (LTCC), 49 mean-square voltage, 334 Low-VSWR amplifier, 408f noise bandwidth, 335f Lower sideband (LSB), 979 resistor, 334 LPF. See Low-pass filter (LPF) rms voltage, 334 LRO, see Lumped-resonator oscillator, 575 signal power, 334 LSB, see Lower sideband, 979 sources, transformation of, 345 LTCC, see Low-temperature cofired ceramic, spectral component, 332 49 Linear two-ports, noise temperature, LTCC switch 334 layer structure, 1017f LNA, see Low-noise amplifier, 397 Lumped elements, 43–55, 326, 1127–1128 Load bond wire, 1129–1130, 1129f conductance, 297 body capacitance, 49

k k

INDEX 1159

capacitor, 1128, 1129f microstrip cross, 285 chip capacitor passband, 279 circuit for, 47f using distributed elements, 273–277 with reactance, 49f using lumped elements, 272 chip inductor Materka nonlinear model, 246t with reactance, 49f MathCAD, 326 chip resistor, 47 Mathematica, 326 diodes, 1130, 1130f MATLAB, 326 eddy current, 52 Matrix amplifier, 421–425 effective series inductance (ESL), 49 Maximum available gain, 401–407 filters, 312 RF schematic, 402f ground shield, 52 Maximum available power gain (MAG), 125 halo substrate, 52 Maximum frequency of oscillation, 125 modelithics, 48 for field-effect transistors (FETs), 157 multilayer ceramic capacitor, 47 for SiGe HBTs, 145 parasitic effects on, 46–53 Maximum stable gain, 215 resistor, 1128, 1128f Maxwell’s equations, 11–12, 11–13, 13f resistor, circuit for, 47f MCROS, 53 RF to microwave circuits, transition of, Mean value, 338 43 Mean-square voltage, 334 impedance matching, 46 Memory effects, 152–153, 1055 microwave transmission, 46 MESFET input millimeter wave, 43 broadband match, 282f quasi-TEM microstripline, 44 with microstrip cross, 284f RF range, 43 MESFET oscillator TEM microstripline, 44 circuit configuration of, 764f k waveguide transmission, 46 open model, 765f k shunt capacitance, 49 MESFET/PHEMT signal strip, 47 bias circuit for, 398f silicon loss, 52 Metal and semiconductor silicon substrates, 52 energy levels, 867f spiral inductor, 52, 52f Metal-oxide-semiconductor field-effect electromagnetic field for, 53f transistors (MOSFET), 165 square inductor, 52 drain current, 952f surface-mount chip capacitor short-channel effects, 176–180 vs. substrate height, frequency response small-signal model, 172–176, 173f of, 51f substrate flow in, 181–182 Lumped transmission line, 46 subthreshold conduction in, 181 Lumped-component behavior transfer characteristics of, 166–172 complexity of, 49 velocity saturation of, 179f Lumped-resonator oscillator voltage limitations, 172 Clapp–Gouriet based, 575f Metal-semiconductor field-effect transistor Lumped-resonator oscillator (LRO), 575 (MESFET), 147, 1059, 1061, 1075, 1076–1078f, 1077 Matching networks Metal-semiconductor bandwidth constraints, 277–287 diode binomial transformer design, 277 current-voltage relationship, 869 Chebyshev transformer, 277 junction, 866 Fano’s limit, 285 Metal-semiconductor field-effect transistor GaAs MESFET, 285 (MESFET), 245 gate-bonding inductor, 285 Metamorphic high electron-mobility transistor load Q1, 281t (mHEMT), 159t, 160

k k

1160 INDEX

Method of moments (MoM), 1063–1064 oscillator design and simulation, 1102 Microstrip cross, 285 1/f noise characterization, 1090–1096 Microstrip line elements, 273 amplifier selection, 1081–1084, Microstrip ring 1082–1083f enhanced bandwidth, 899f behavioral simulation, 1080–1081, Microstripline, 269, 1131, 1131f 1080–1082f Microwave applications, 36t DC feed design, 1084, 1085f Microwave circuits simulation layout EM cosimulation, 1099–1102 design entry loop gain and phase, optimization of, board and MMIC layout, 1034, 1035f 1086–1089 schematic capture, 1033–1034, 1034f matching and linear oscillator analysis, design types 1085–1086, 1088–1089f monolithic microwave integrated circuit, nonlinear oscillator analysis, 1089, 1032–1033, 1032f 1089f, 1090f, 1090t , 1031, 1031f oscillator start-up time, 1099 electromagnetic simulation, 1062–1063 phase noise simulation, 1096–1099 finite difference time domain, surface transverse wave delay line, 1064–1065 1079–1080 finite element method, 1064 Wilkinson divider design, 1085, 1086f, method of moments, 1066–1064 1087f microwave filter, EM based, simulation methods, comparison of, 1066–1067 1101t performance, 1065–1066 Microwave diode model, 61, 61f linear circuit simulation, 1035 Microwave FET microwave filter, schematic based, analytical approach for efficient design, 1039–1040 751–779 k small-signal AC simulation, Microwave filters, 294–330 k 1035–1038 band-stop filters S-parameter simulation, 1035–1038 LC resonator, 310 manufacturing design stopband, 309 circuit optimization, 1067–1069, bandpass filter, 294 1070–1072f coupled resonators, 306 component variation, 1069, 1071, coupled-line, 324f 1073–1074, 1073f LPF design, 305 Monte Carlo analysis, 1074–1078, lumped-element, 306f, 310f 1076–1078f resonance, 306 optimization, 1067–1069, 1070–1072f stub, 321f yield analysis and yield optimization, CAD tools 1078–1079 commercial synthesis software, 326 nonlinear simulation, 1040 extraction, 326 electrothermal cosimulation, 1059–1062 MathCAD, 326 envelope simulation, 1052–1056 Mathematica, 326 harmonic balance simulation (see MATLAB, 326 Harmonic balance simulation) synthesis, 325 mixing circuit and thermal simulation, topology, 325 1057–1059 cell phone transmitter, 294 modulated amplifier, 1056–1057 designs and CAD tools, 325–326 Newton’s method, 1040 electromagnetic based, 1066–1067 one-tone amplifier, 1050–1051 frequency transformation, 295 transient simulation, 1041–1045 high-pass filters transistor modeling, 1040–1041 frequency response, 302 two-tone amplifier, 1051–1052 frequency scaling, 303

k k

INDEX 1161

series capacitance, 303 Richards transformation, 318–325 series inductance, 303 semilumped low-pass, 317f, 315–317, image parameter design, 294 315f insertion loss design, 294 short-circuited stub, 314 low-pass wave current, 312 dual network, 302 wave voltage, 312 low-pass filter schematic based, 1038f, 1039–1040 lumped-element, 301f transmitter, 294 low-pass prototype design Microwave Harmonica, 633 cutoff frequency, 295 Microwave integrated circuit technology, 272 gvalues, 296 Microwave mixer design, 1000 impedance scaling, 297 diode mixer theory, 866–880 load conductance, 297 anode, 866 load impedance, 295 barrier potential, 867 load resistance, 297 capacitance, 869 load resistor, 297 capacitor current, 872 low-pass filter, 295 cathode, 866 low-pass response, 295 charge carrier, 869 parallel capacitor, 297 diode ideality factor, 869 passband, 295 diode operation, 866 realizability theory, 295 electric field, 868 series inductor, 297 fabrication, 870 stopband response, 295 Fermi level, 867 unity source, 295 metal-semiconductor junction, 866 low-pass prototype filter design quantum mechanical tunneling, 870 Butterworth response, 295–297, RF skin resistance, 870 k 296–297f Schottky barrier, 866 k Chebyshev response, 297–301, 299f, Schottky theory, 867 300t, 301f surface state density, 867 microwave signal generator, 294 thermionic emission model, 869 overview of, 294–295 thermionic work function, 866 real-life filters thermodynamics, 867 coaxial dielectric resonators, 327 tunneling, 870 dielectric resonators, 328 double-balanced mixers FBAR basics, 328f balun, 909 lumped elements, 326 balun structure, 911f transmission line elements, 327 broadband high-pass balun structure, sensitive receiver, 294 912f transformations coaxial balun, 911 bandpass filters, 304–306, 306f double-double-balanced mixer, 908 band-stop filters, 309–312, 311f dynamic range, 923 high-pass filters, 302–303, 304f Marchand compensated balun, 915f low-pass filters, 302 multiple diode combination, 925 narrow-band bandpass filters, 306–309, octave bandwidth, 916f 310f phase relationship, 907f transmission line filters, 312–314, 312f single-ring mixer, 906 dielectric filters, 312 star mixer, 908, 910f lumped-element, 312 thick quartz substrate, 919f open-circuited stub, 314 with transformer hybrids, 906f parallel open stub, 319 transmission line structure, 911 printed-circuit filters, 312 FET mixer theory reflected wave, 313 single-gate FET mixer, 934f

k k

1162 INDEX

Microwave mixer design (continued) FET, 955 small-signal GaAs FET, 932f isolation performance of, 967f spectral performance, 942f JFET, 956f transconductance, 932, 933f monolithic active/passive, 969f FET modulator, 986f double-ring, 926f microwave SPICE, 983 circuit of, 964f mixer, 946f, 947f down-converter, 962f RF (carrier) signal, 982 drain and gate pumped single-balanced mixer, 890–906 comparison of, 949f single-sideband modulator, 984f dual double-balanced, 981 performance of, 985f dual-gate FET, 952, 952f, 959 special mixer circuits, 978–987 image rejection, 980, 982f image rejection, 980f circuit configuration of, 983f lower sideband, 979 frequency spectra, 981f phase imbalance, 980 with multisection coupler, 982f single-sideband, 980f performance of, 983f single-sideband modulator, 978 LO analysis, 872f upper sideband, 979 monolithic, 953 Microwave oscillator distributed, 953f noise performance of, 647 double-balanced, 966f performance of, 647–650 double-balanced, performance of, 967f Microwave signal generator, 294 monolithic double-ring Microwave SPICE, 983 compression performance of, 979f Microwave transmission, 8, 8f, 46 conversion loss performance of, 977f Mid-mode S parameters, 237 isolation, 979f Millimeter-wave, 43 multioctave bandwidth, 915 k applications, 36t, 37 noise model, 876f k Millimeter-wave amplifier, 397, 425–426 noise properties of, 878 Millimeter-wave region, 272 performance, 921f Minimum detectable signal (MDS), 27, 29 planar double-ring, 927f Minimum shift keying (MSK), 19, 19f self-oscillating, 999f, 999–1000 Mixer frequency response of, 999f balanced FET, 955–964 noise figure, 1000f conventional double-balanced, 961 output load line, 1000f dc bias decoupling, 955 single-balanced third order intermodulation, 957 analysis of, 905 balanced GaAs MESFET balun structure, 900 conversion gain, 958f branch line hybrid, 895f modulation curves, 959f employing hybrid, 905f bias sensitivity excitation mode, 898 measured vs. modeled performance of, hybrid performance of, 891f 955f hybrid ring (Rat-race) model, 896f circuit model, 920f Lange coupler, 892 complete MESFET, 957f augmented matrix for, 876f microstrip branch line coupler conversion loss performance, 895f components of, 877 microstrip Lange coupler, 894f distributed microstrip Lange coupler configuration, measured vs. modeled conversion loss 893f characteristics, 954f microstrip ring (rat-race) hybrid performance of, 954f performance, 898f double-balanced phase relationship, 903f

k k

INDEX 1163

phasor diagram, 905f thin-film capacitor, 1142 quadrature coupler, 905 thin-film resistor, 1142 ring hybrid circuit, 896f underpass/overpass, 1143 trifilar wound center-tapped transformer, Monolithic GaAs FET 894 single-sideband modulator, 985f VMOSFET, 955, 956f Monolithic microwave integrated circuit single-diode, 880–889 (MMIC), 60, 245, 1029, 1032–1033, conversion loss degradation, 887f 1032f cutoff frequency, 885 amplifier design of, 881 1/f noise model extraction of, with external ports, 884f 1090–1092, 1093f frequency components of, 881f layout window, 1034 impedance, 881 Monte Carlo analysis, 1074–1078, 1074t, intermodulation performance, 886 1076–178f Libra Microwave SPICE, 884 Monte Carlo noise technique, 1055 LO and RF return loss performance of, Multi section quarter-wave 890f tapered matching, comparison of, 276f LO impedance, 882f Multilayer ceramic capacitor, 47 microstrip circuit layout, 890f Multilayer ceramics, 1017 multiport matching network, 885f Multiple diode combination, 925 network analyzer, 881 Multisection coupler, 981 single-ended, 949 Multistage amplifier, 420–421 subharmonically pumped MMIC, 988f Multistage design, 455–461 single-ring, 909f Multistage Multistage, 400 subharmonically pumped, 987, 987f Multithrough switch, 1012 up-converter, 962f Mutual heating, transistors, 122 k Mixer diodes, 72–73 MWT-17 MESFET k Mixer noise, 1000 large signal distortion, 411f Mixer noise analysis (MOSFET), 1000 MWT-7 Mixers, 269 MESFET, 405 MMIC. See Monolithic microwave integrated parameters of, 403t circuit (MMIC) MMIC amplifier model, 1098 Narrow-band, 263 MODAMP, see Monolithic Darlington n-channel metal-oxide-semiconductor Amplifier, 411 (NMOS) transistor, 166 Mode conversion, 238 with bias voltages, 169 Modelithics, 48 characteristics of, 172 Modulation doped field-effect transistor cross-section of, 168f (MODFET), 158 NDF function, 529 Modulation index, 692 NDF method, 456 Modulation noise, 696 NEC 869177 MoM. See Method of moments (MoM) parameters for, 615t Monolithic Darlington Amplifier (MODAMP), Negative resistance, 539 411 Network analyzer, 881 Monolithic distributed bandpass matching Newton’s method, 1040, 1043, 1047 network Node capacitance, 308 with FET load impedance, 453t Noise, 1050 Monolithic elements, 1141–1143 Noise circles, 357–359 interdigital capacitor, 1141, 1141f Noise correlation matrix, 338–346 interdigital rectangular and spiral inductor, transformation, 343t, 342–343 1141–1142, 1142f Noise equation, 336 interdigital transformer, 1142 Noise factor, 332

k k

1164 INDEX

Noise figure, 26, 333 Open-loop gain, 819 circles, 360f Optimization, 325, 1067–1069, 1070–1072f measurement, 364f, 336–364 Optimum impedance, 352 single-sideband measurement, 364f Optimum miter, 273 test equipment, 363–365 Orthogonal frequency-division multiple Noise generator, wide-band, 337 (OFDM) Noise measure, 243 advantage of, 24 Noise parameters, 338–346 downside of, 24 calculation of, 344f frequency-domain signal, 24, 25f determination of, 365–366 transmitter, 23, 23f vs. feedback, 358f Oscillation relation of, 340–341 conditions for, 539 transformation of, 356t, 357t determination of, 631 Noise resistance, 352 design and simulation (see Microwave Noise sources, 244f circuits simulation, oscillator design ABCD parameter representation of, 345f and simulation) generator current, 340f load admittance transformation of, 345 domains of, 631f transformed to input, 345f maximum frequency of, 401 Noise temperature, 334 real and imaginary currents, 652f Noise transformation startup behavior, 1099, 1100f using ABCD matrix, 339, 340f steady-state, 767 Noise tuning, 357 surface transverse wave, 1080, 1081–0f Noise-free amplifier Oscillator, 205, 221, 262, 269, 527, 573f, phase noise of, 592f 617f, 653f Noise-free system AC drain current, 775f k ABCD parameter representation of, 344f base voltage of, 657f k Noise-free transistor with bipolar HBT CE configuration, 346f single-sideband phase noise, 606f noise sources of, 244f buffered Noisy two-port, 338 load voltage vs. time, 646f Nonlinear analysis power output stream, 646f IF output voltage, 942f cavity type, 541 Non-linear analyzer, 1082, 1082f cavity-tuned, 607f Nonlinear circuit analysis ceramic resonator, 744f, 742–745, 746f modern CAD for, 37–38 Aeroflex Euro test system, 745 Nonlinear circuit simulator, 454 measured phase noise of, 745f Nonlinear oscillator analyzer, 1089, 1089f, predicted phase noise of, 746f 1090f, 1090t stray impedance, 742 I-V characteristics, 629f circuit for, 606f, 747f Nonlinear parallel RC network, 1123–1126 collector current of, 657f Nonlinear simulation. See Microwave circuits Colpitts, 580f simulation, nonlinear simulation comparison of noise sideband performance Novel Novel Novel, 405 of, 604f Numerically controlled oscillator (NCO), 856 currents, 744f Nyquist formula, 351 design values for, 622t drain current Offset quadrature phase shift keying plot of, 775f (OQPSK), 18f, 19 vs. time, 644f Ohmic/triode region, 172 efficiency of, 618f Omega generator, 215 FM noise, 620f Open-circuited stub, 314 frequency-pushing characteristics of, 619f

k k

INDEX 1165

frequency-temperature variation, 619f YIG GaAs FET-based, 747–751 phase noise comparison, 555f circuit diagram of, 749f schematic for, 554f gate bias in, 621f YIG-tuned, 553f Hartley, 580f Oscillator design, 538–779 high frequency, 597f analytic approach to, 608–621 load line of, 645f, 774f Barkhausen criterion, 579 measured phase noise of, 749f BJT-based oscillator, 585 negative resistance, 539 buffered, 571f, 645f noise analysis of Clapp-Gouriet circuit, 582 nonlinear approach, 696–699 completed LRO, 574f noise components of, 702f compressed Smith chart noise generation in, 699 admittance, 544 nonlinear active models, 621–632 frequency resonance, 544 drain conductance, 625 impedance, 544 transconductance, 625 conventional parameter extraction, 642f nonlinear analysis, 631 DC parameter extraction, 641f open loop model, 767f DRO design, 634f optimized, 617f equivalent-circuit derivation, 628 optimum embedding elements, 609f feedback inductance, 574 output configuration, 660f flowchart, 573f parallel feedback I-V characteristics topology of, 763 analytic simulation of, 628 parallel resonant, 545f injection gain, 587 parallel-tuned Colpitts, 658 large-signal design, examples of phase noise, 594f based on Bessel functions, 653–656 k feedback models, 593f Leeson’s noise model, 539 k phase noise calculation low-noise, 596–604 CAD solution for, 691–706 maximum oscillator power, 588, 589f PM to FM noise conversion in, 600f microwave oscillators performance, power output spectrum, 644f 647–650 predicted output power of, 659f NE68830 predicted phase noise of, 602f, 657f, 659f, nonlinear parameters of, 663t 748f package parameters of, 663t printed circuit board of, 748f package parasitics, 664f RF choke, 619 parallel feedback schematic of, 626f, 658f output admittance, 759 self-bias operation, 620f output susceptance, 759 series feedback parallel feedback (bipolar) topology of, 760f quasilinear approach, 765 series resonant, 545f phase noise, 691 shunt topology, 611f reflection coefficient, 538 simulated noise figure of, 776f resonating capacitance, 573 simulated output power of, 776f resonator single-sideband phase noise, 605f band-stop filter, 551f specifications for, 542t--544t bandpass filter, 551f with transmission line resonator, 745 cavity, 547 transmission line, 576f dielectric, 539 two-port, connected to generator, 540f dielectric spacer, 547 ultrafast dielectric resonator oscillator, 650f low loss, 539 using BFP520 transistor, 651f lumped-element, 547 varactor-tuned, 539 standard round/square packaging, 557f

k k

1166 INDEX

Oscillator design (continued) Parallel resonance, 545–546 varactor, 547 Parallel-resonant circuits, tuner diode in, YIG sphere, 553f 105–107, 106f self-oscillating mixer, 777–779 Parallel shorted stubs, 322 series feedback Parallel-coupled line bandpass filters, drain conductance, 756 324–325 drain current, 756 Parameter extraction method, 637–639 drain resistance, 755 large-signal modeling, 637 transconductance, 756 Parasitic element, 316 small-signal theory, 585 Parasitic oscillation, 527 Smith chart, 538 Parasitic reactance, 354 compressed, 541f Passband, 279, 295 stability factor, 539 Passband response, 317 synthesizer, 777 Passive frequency multiplication, 426–427 transistor, 541 Passive microwave elements two-port, 570–577 discontinuities, 1138–1140, 1138–1140f using large-signal parameters, distributed elements, 1131–1137 651–653 air bridge, 1135–1136, 1136f using nonlinear CAD tools, 632–647 coupled lines, 1133–1134, 1133f Flusoft designer, 632 coupler, 1137, 1137f harmonic balance method, 633 taper, 1135, 1135f Microwave Harmonica, 633 transmission lines, 1130f, 1131–1133 robust model parameter extractor, waveguides, 1134–1136, 1134f 638 wrap, 1136–1137, 1136f validation circuits, 742–751 lumped elements, 1127–1128 varactor-tuned DRO, 636f bond wire, 1129–1130, 1129f k YIG capacitor, 1128, 1129f k predicted phase noise of, 554f diodes, 1130, 1130f Oscillator Q, 586–588 resistor, 1128, 1128f Oscillators, 538 monolithic elements, 1141–1143 Output admittance, 759 interdigital capacitor, 1141, 1141f Output network interdigital rectangular and spiral distributed element, 459f inductor, 1141–1142, 1142f lumped element, 459f interdigital transformer, 1142 Output power, 586–588 thin-film capacitor, 1142 example of, 658–664 thin-film resistor, 1142 Output susceptance, 759 underpass/overpass, 1143 overview of, 1127 Packaged Avago ATF34143 low-noise special-purpose elements pseudomorphic HEMT circulator, 1145, 1146f gain of, 189–190 dielectric resonator, 1144, 1144f I–V curves of, 188 gyrator, 1144–1145, 1145f noise figure of, 189 isolator, 1145, 1146f output IP3 and P1dB of, 191 YIG (Yttrium Iron Garnet, Y3Fe6012), Packaged transistors, 182–186, 184f 1143f, 1144 p-channel metal-oxide-semiconductor (PMOS) Passive network, 206 transistors, 166 Passive PLL filter, 827–831 Parallel feedback Passive RC filter, 822, 823f, 824 topology of, 758f PCB. See Printed circuit board (PCB) Parallel feedback (bipolar), 763–764 Peak voltage, 216 Parallel feedback (MESFET), 758–759 Phase comparator, 820, 821 Parallel open stub, 319 Phase detectors, 814, 818–819

k k

INDEX 1167

gain, 832 Post-tuning drift (PTD), 99 output, 819 Power amplifiers (PAs), 112, 194 scale factor, 820 self-heating in, 195 for small frequency errors, 822, 822f Power amplifier design Phase-frequency comparators, 817–822, cascode push-pull feedback, 529f 819–822 FET distributed amplifier, 463f diode rings, 819–820 monolithic two-stage amplifier, 461f edge-triggered JK master-slave flip-flops, performance of, 461f 820–822, 823f multistage amplifier, 462f phase detectors, 818–819 multistage design, 455–461 Phase imbalance, 980 amplitude equalization network, 457f Phase-locked loop (PLL), 36, 37 gain shaping, 458 Phase-locked system, 812 interstage network, 456 Phase noise, 691 NDF method, 456 example of, 658–664 two-stage amplifier, 455f, 459 simulation, 1096–1099, 10977–1099f optimum load impedance synthesizers, 831 absorbed into output network, 459f Phase noise calculation, 691–706 power amplifier stability, 527–529 conversion noise, 696 NDF function, 529 frequency conversion, 699 oscillator, 527 modulated sinusoid, 702 parasitic oscillation, 527 modulation index, 692 power-distributed amplifier, 462–479 modulation noise, 696 cutoff frequency, 475 noisy nonlinear network, 697f drain line inductance, 467 Phase-locked loop (PLL), 558, 813, 814 dual-gate FET, performance goals for, linearized model, 818f 473t k Phase optimization, 1086, 1088–1089f, dual-gate, transmission lines, 476f k 1089 fractional bandwidth, 469f PHEMT PHEMT, 429 linear simulator, 475 PIN diode, 73–84, 75t, 1007–1010 low-voltage LTCC, 478f applications, 83–84 LTCC PHEMT, 477f capacitance of, 79–80, 81f LTCC transformer, 479f construction of, 76f lumped-element transmission lines, cross-modulation in, 83, 85f 465f forward resistance vs. forward current, 83, measured vs. predicted power output 84f performance, 477f insertion loss vs. frequency, 83f monolithic dual-gate FET, 476f intermodulation distortion (IMD), 83, normalized frequency response, 469f 84f oscilloscope preamplifier, 462 large-signal model, 73–74, 74f performance of, 476f with relative doping profile, 1008f RF drive signal, 477 reverse shunt resistance, 82f series gate capacitor, 479 small-signal model single-gate FET, 473 parameters of, 1020t total drain current, 475 variable resistance, 75–78 transmission line attenuation, 466 voltage vs. current, 79 voltage gain, 464 Pin structure simplified FET model, 463f doping profile, 1008 single-stage, 449–455 Pinchoff, 427 bandpass network, 452 Pitch angle, 240 FET drain current, 455 PLL, see Phase-locked loop, 558 gate bias, 451 Port impedance, 269 load impedance, 452, 454f

k k

1168 INDEX

Power amplifier designcontinued ( ) lumped elements, 326–327 nonlinear circuit simulator, 454 thin-film bulk-wave acoustic optimum load impedance, 452t resonator (FBAR), 327–330, Power amplifier stability, 527–529 328–329f Power gain, 223–229, 1062 transmission line elements, 327 Power pseudomorphic high electron-mobility Read-only-memory (ROM), 854 transistor (pHEMT), 153, 160 Realizability theory, 295 Power spectrum, 361 Reference oscillator, 814–815, 815f, 816f Power-distributed amplifier, 462–479 Reflected wave, 313 PTD. See Post-tuning drift (PTD) Reflection coefficient, 216, 352, 538 Printed circuit board (PCB), 1031, 1031f Reflection coefficient plane, 261 Printed-circuit filters, 312 Resistance Process design kit (PDK), 1033 gate-charging, 628 Pumped nonlinear element Resistive Resistive, 411 modulation spectra of, 871f Resistive tee attenuator, 214f Punchthrough, 80 Resistor, 334 Resonance, 306 Q factor/diode loss, 94–99, 98t frequency, 544 Quadrature coupler, 905 oscillator, 544 Quadrature phase shift keying (QPSK), 18f, Resonant circuits, diode-tuned, 105–110 19 Resonating capacitance, 573 Quality factor, 307 Resonator, 546–570 Quarter-wave baluns cavity, 547 push-pull amplifier, 276f ceramic, 556–558 Quarter-wave transformer calculation of equivalent circuit, multisection, 277 556–558 k single-section, 277 dielectric, 547–550 k Quarter-wavelength transformer, 322 circuit of, 549f, 551f coupled with microstripline, 548f Radio-frequency interference (RFI), 240 coupling coefficient, 549 Radio-frequency (RF)/microwave systems coupling of, 548f analog signals, 15–26 frequency stabilization of, 550f crystal radio receiver, 5, 5f dielectrics, 539 digital signals, 15–26 input impedance of, 569f dynamic load line, 38–39 lossy elementary functions (see Elementary phase noise contribution of, 664f functions) low-loss, 539 frequency bands, 13–15, 14t lumped-element, 547 GaAs metal-semiconductor field-effect measurements, 564–570 transistor (MESFET), 3, 4f detuned short configuration, 564 Maxwell’s equations, 11–12, 13f parameters, 569t microwave applications, 36t single-ended, 564 millimeter wave applications, 36t, 37 varactor, 547, 552–556 RF transmitters and receivers, 32–33 parameters of, 556f transversal electromagnetic (TEM) mode, YIG, 552 13 Resonator circuit, 221 waveforms, 15 Reverse-voltage capacitance, 62 wireless applications, 7, 7t, 34–37, 36t RF amplifier Reactance slope parameter, 307 active bias network, 743f Real-life filters RF choke (RFC), 619 cavity resonators, 327 RF compression coaxial dielectric resonators, 327 characteristics of, 968f

k k

INDEX 1169

RF impedance, 883 RoMPE, see Robust model parameter RF range, 43 extractor, 638 RF skin resistance, 870 Root-mean-square (RMS), 216, 336 RF switches, 1007–1027 FET, 1024–1027 S parameter, 216 GaAs FET switches, 1007 Satellite receiver, 333 pin diode Schottky CAD simulator, 1013 barrier, energy level of, 868f carrier injection, 1009 mixer, noise sources of, 878 forward-bias, 1016 theory, 867 multilayer ceramics, 1017 Schematic capture window, 1033–1034, multithrough switch, 1012 1034f packaged model, 1010f Schottky barrier diodes plastic surface-mount model, 1011t electrical characteristics and physics of, series/shunt model, 1015f 65–67 shunt diode, 1014 Schottky diodes single-pole double-throw, 1011, 1012f, band diagrams, 69f 1013f barrier height of, 70 single-pole single-throw, 1010, 1011f capacitance of, 68 small-signal model, 1019f chip cross-section, 65, 66f T/R switch, 1014 current–voltage relationship, 66 pin structure vs. junction diodes, 65 doping profile, 1008 Selectively implanted collector (SIC), 144 SP4T Self-heating design of, 1026 of bipolar transistors, 120–123 transmit/receive (T/R) switches, 1007 of field-effect transistors (FETs), 152–156 k RF to microwave circuits, transition of, in power amplifier, 195 k 43 Self-oscillating mixer, 777–779 RF voltage load line in, 778f diode current, 1009f predicted phase noise of, 779f RF voltage swing RF power of, 778f maximum gate line, 470f schematic for, 777f RFC, see RF choke, 619 Semiconductor processing with integrated RFI, see Radio-frequency interface, 240 circuit emphasis, 216 RHP, See Right-half plane, 528 Semiconductor processing with integrated Richardson equation, 66 circuit emphasis analysis Richards transformation S parameters, 216, 217, 217f Kuroda transform, 319–321, 320f Semiconductor technology, 59 parallel-coupled-line bandpass filters, Semilumped low-pass filters, 317f, 315–317 324–325, 324f Sensitive receiver, 294 shorted-stub bandpass filters, 321f, Series 323–324 inductor, 272 transmission line high-pass filters, reactance, 271 321–322 transmission line, 272 transmission line low-pass filters, Series capacitance, 303 318–319 Series diode Richards variable, 318 classical passive multiplier realization, 427f Right-half plane (RHP), 528 Series feedback Ripple, 298 maximum output power, 754 RMS, see Root-mean-square, 216 topology of, 752f Robust model parameter extractor (RoMPE), Series feedback (bipolar), 760–762 638 Series feedback (MESFET), 751–757

k k

1170 INDEX

Series Gate Capacitor Simulation methods, comparison of, 1101t amplifier design parameters, 475t Simulation Program with Integrated Circuit Series gate capacitor, 479 Emphasis (SPICE), 1040 Series inductance, 46, 48f, 303 Single-element matching, 270f, 269–271 Series resonance, 545–546 Single-gate FET, 473 Series/shunt lossless network, 271 Single-gate FET mixer Series/shunt switch X-band, 939f analysis of, 1017 Single-pole double-throw, 1011 Shockley equation, 60 insertion loss, 1012 Short-circuited stub, 223, 314 Single-pole single-throw, 1010 Shorted-stub bandpass filters, 323–324 Single-ring mixer, 906 Short-term PTD, 99 Single-tone analysis, 1109–1111 Shunt capacitance, 49 Single-tone Volterra series expansion, Shunt capacitor, 272 1121–1123 Shunt diode, 1014 dc term, 1123 classical passive multiplier realization, fundamental frequency, 1122 427f Single-sideband modulator, 978 Shunt Shunt, 406 Single-stage amplifier Shunt SPDT, 1014f performance variations of, 453t insertion loss, 1015f small-signal gain performance of, 454f Si BJT LNA Slope parameter, see Diode ideality factor, single-stage, 248 869 SiGe:C process, 143 Solid-state X-band radar, 2 SiGe HBTs, 141–147 Small-signal band diagram of, 142, 142f amplifier design, 397—435 breakdown voltages, 144 parameters, 67–68 k cross-section of, 141, 142f Small-signal AC simulation, 1035–1038, k cutoff frequencies, 144–146 1040 DC characteristics of, 143, 143f Small-signal model doping profile of, 143, 143f bipolar transistors, 123–127 quasi-saturation, 146–147 field-effect transistors (FETs), 156–158 scanning electron microscope (SEM) metal-oxide-semiconductor field-effect image, 145, 146f transistors (MOSFETs), 172–176, Signal and noise voltage 173f combination of, 334f Smart-cut process, 165 Single-carrier frequency-domain-equalization Smith chart, 221, 261–269 (SC-FDE) compressed, 544–545 modulation and demodulation, 25–26, 25f half-power points Signal energy, 332 identification of, 570f Signal power, 334 impedance, 422f Signal strip, 47 S-parameter simulation, 1035–1038, 1037f Signal-to-noise ratio, 334–336 SPDT, see Single-pole double throw, 1011 setup of, 336f Special-purpose elements Silicon beam-lead diode circulator, 1145, 1146f element values, 889f dielectric resonator, 1144, 1144f LO, RF, and IF impedances, 888f gyrator, 1144–1145, 1145f parasitic element value, 888 isolator, 1145, 1146f Silicon loss, 52 YIG (Yttrium Iron Garnet, Y3Fe6012), Silicon Schottky diodes, 70 1143f, 1144 Silicon substrates, 52 Spectral component, 332 Simple balun transformer, 275f Spectral density, 351 Simulated annealing, 1068 SPICE, 37, 38

k k

INDEX 1171

SPICE model test, 1082, 1083f Thermal energy, 337 Spiral inductor, 52, 52f Thermally coupled parallel transistors, 122, electromagnetic field for, 53f 123f lumped physical model of, 52f Thermal simulation, 1057–1059 Splitter, 239 Thermal Thermal, 410 Spread-spectrum, 21 Thermionic emission model, 869 Spurious response, 831, 832f, 855 Thermionic work function, 866 Spur-suppression techniques, 849–851, 850f, Thin-film bulk-wave acoustic resonator 851t (FBAR), 327–330, 328–329f SPST, see Single-pole single-throw, 1010 3G cellular service, 3 Spurious-free dynamic range (SFDR), 29, Three-port power divider, 233, 234f 30f Three-ports, 231–234 Square inductor, 52 Three-stage amplifiers SSB modulator types of, 424f input and output voltage, 986f Threshold voltage, 148 performance of, 987f Third-order intermodulation (TOI), 29, 31, Star mixer, 908 31f, 33 dual-balun circuit, 922f Time-domain circuit simulation, 1043 glass packaged diodes employment, Time shooting method, 1050 923f Topology, 263, 325 Stopband, 309 Total available gain, 353 Stopband response, 295 Total drain current, 475 Storage time, 64 Tracking, 109–110 Stray capacitance, 354 Transcapacitances, 151 Surface mode, 14 Transcendental function, 298 Surface state density, 867 Transconductance, 625, 756, 932 k Surface-mount chip capacitor conversion, 938f k vs. substrate height, frequency response of, expressions for, 625–627 51f Transducer gain, 216 Surface transverse wave (STW) delay line, Transducer power gain, 234–236 1079–1081, 1080f, 1098 unilateral transducer power gain, 236 1/f noise measurement and modeling of, Transferred-substrate transistor, 127f, 129 1092, 1093–1095f, 1094, 1095 Transferring noise sources to input, 344 Susceptance slope parameter, 307 Transformations Switching diode, 64 bandpass filters, 304–306, 306f Synthesizer, 777 band-stop filters, 309–312, 311f phase-locked loop, 558 high-pass filters, 302–303, 304f PLL based, 568f low-pass filters: frequency and impedance System-level simulation, 1030 scaling, 302 narrow-band bandpass filters, 306–309, T/R switch, 1014 310f LTCC, 1017f, 1018f Transformer hybrid Tanh-function, 162 performance of, 897 Tapered transmission lines, 276–277 with trifilar, 899f Tee Attenuator voltage and current conditions in, 901f, resistors, 215t 903f Telegrapher equations, 8–9 wire diagram of, 900f Telephone cables Transient-assisted harmonic balance (TAHB), advanced, 242 1050 category-type, 242 Transient simulation, 1041–1045, 1046–1047 Temperature coefficient of capacitance (TCC), Transistor, 215, 541 94, 95f, 96f 1/f noise properties, 191, 192f

k k

1172 INDEX

Transistor (continued) Transmission line, 8, 9f, 312 amplifier attenuation, 466 noise power vs. frequency, 589f calculator, see Smith chart, 261 and bias elements, 272, 327 for low-noise amplification, 186–191 filters, 312–325 for oscillator design, 191–194 high-impedance, 315f for power amplification, 194–196 interconnection of, 53 bipolar, 113–127 low-impedance, 315f classification of, 110–112 low-pass filters, 318–319 with external reference node, 232f mode, 273 field-effect transistors (FETs), 111 principles, 240 capacitance model, 150–152, 151f structure, 911 cutoff frequencies, 156–158 transformer, 273–276 DC model, 147–150 two-wire, 274f dispersion/memory effects, 152–156 twisted-wire, 55 self-heating of, 152–156 Transmission line filters, 312–314, 312f small-signal model, 156–158 Richards transformation, 318–325 temperature and self-heating, 120 semilumped low-pass filters, 315–317, transfer characteristics of, 157–158 315f, 317f GaAs and InP heterojunction bipolar Transmitter, 294 transistors, 127–141 Transport version, Ebers–Moll model, 114 high electron-mobility transistor (HEMT), Transversal electromagnetic (TEM) mode, 153 13 band diagram of, 159f Transversal electromagnetic (TEM) wave electric behavior of, 159 propagation, 8 large-signal modeling, 161–165 Transverse-electric (TE) mode propagation, 8 k layer structure of, 158, 159t Transverse-magnetic (TM) mode propagation, k metal-oxide-semiconductor field-effect 8 transistors (MOSFETs), 165 Trifilar wound center-tapped transformer, short-channel effects, 176–180 894 small-signal model, 172–176, 173f Tri-state phase detectors, 831–837 substrate flow in, 181–182 T-topology, 115, 124 subthreshold conduction in, 181 Tuning, 276 transfer characteristics of, 166–172 Tuning range, 108–109 velocity saturation of, 179f Tuning diodes, 84–94 voltage limitations, 172 capacitance, 92–94 model capacitance ratio vs. breakdown voltage, negative resistance, 579–586 93f noise properties of, 187 temperature coefficient of, 94, 95f, 96f oscillator, 600f in parallel resonant circuit, 105–107, 106f output I–V curve, 194f physics, 85–92 packaged, 182–186, 184f planar vs. mesa construction, 91–92, 91f Transistor modeling, 1040–1041 Tunneling, 870 Transistor package, equivalent circuit of, quantum mechanical, 870 355f Twisted-wire pair lines, 240–242 Transit frequency, 124 Twisted-wire pair transformers, 273 of InGaP/GaAs HBT, 135, 136f Two-dimensional electron gas field-effect of SiGe HBTs, 146 transistor (TEGFET), 158 Transition frequency Two-element matching, 271–272 bias-dependent, 598f Two-oscillator circuit, 579f Transit time, 64 Two-port of bipolar transistors, 115–117 cascade circuit, 401f

k k

INDEX 1173

noise, 338f root-mean-square, 216 noisy description, 347–352 transducer gain, 216 correlation admittance, 350 small signal, 205 external noise sources, 348 stability, 221–223 internal noise sources, 350 Agilent PHEMT, 222, 223t mean-square fluctuation, 351 enhancement-mode PHEMT, 223 noise resistance, 352 resonator circuit, 221 Nyquist formula, 351 short-circuited stub, 223 optimum impedance, 352 Smith chart, 221 reflection coefficient, 352 three-port power divider, 233, 234f spectral density, 351 three-ports parallel combination, 339f Kirchhoff’s law, 232 Two-port network, 205–253 twisted-wire pair lines amplifier, 205, 206f film insulation, 240 CE BJT vs. frequency, 209f HPA, 242f deembedding, 206, 209f LNA, 242f differential S parameters, 236–240 pitch angle, 240 balanced devices, 236 radio-frequency interference, 240 common-mode drive, concept of, transmission line principles, 240 237f Two-port parameters, 206 common-mode signal, 236 Two-port parameters---), 215 mixed-mode, 237 Two-tone analysis, 1111–1117 mixed-mode wave variables, 237f frequency-domain representation, 1116f mode conversion, 238 time-domain representation, 1115f equivalent circuit extraction, 206 Two-tone intermodulation products, linear, 205 1108–1128 k oscillator, 205, 206f k parameters, 207t UMTS, 20, 21, 34 calibrated network analyzer, 206 Uniform distribution, 1071, 1073f high-power amplifier, 215 Unilateral amplifier lead inductance, 206 using variable coupler and line stretcher, maximum stable gain, 215 403f Omega generator, 215 Unilateral gain, 223, 400–407, 1105–1107 passive network, 206 Unilateral transducer power gain, 236 resistive tee attenuator, 214f Unity source, 295 stability factor, 215 Upper sideband (USB), 979 tee Attenuator, resistors for, 215t USB, see Upper sideband, 979 transistor, 215 unconditional stability, 215 Vacuum work function, see Thermionic work voltage loss ratio, 215 function, 866 power gain Varactors/varicaps. See Tuning diodes Agilent’s ADS, 228 Varactor tuned oscillator, 539 Ansoft’s Serenade, 228 predicted phase noise of, 603f cascaded two-ports, 227f tuning range directional coupler, 228 calculation of, 605t line stretcher, 227 values for, 583f LNA, 228 Variable coupler, 227 unilateral gain, 223 Vertical bipolar inter-company (VBIC) model, variable coupler, 227 132 S parameters Vertical metal-oxide-semiconductor (VMOS) peak voltage, 216 transistor, 179, 180f reflection coefficient, 216 Video noise meter, 336

k k

1174 INDEX

Voltage-controlled oscillator (VCO), 812, 814 Wilkinson divider design, 1085, 1086f, operation, 818 1087f Voltage gain, 229, 464 Wilkinson in-phase power splitter, 409 Voltage loss ratio, 215 Wireless, 7, 7t, 34–37, 36t Voltage standing-wave ratio (VSWR), 273 Volterra series equations, 1121 X-band mixer VSWR, see Voltage standing-wave ratio, 273 conversion gain, 940f diodes, 72, 72t Wave current, 312 measure vs. computed performance, 940f Waveforms, 15 single-gate, 938 Wave voltage, 312 X-parameters, 1056 Waveguide transmission, 46 Webster effect, 118 Yield analysis, 1078–1079 Wideband, 263 Yield optimization, 1078–1079 Wide-band code-division multiple access YIG, see Yttrium iron garnet), 547 (WCDMA), 3, 5 Yttrium iron garnet (YIG), 547, 1143f, 1144

k k

k k

k k

k k

k k

k k

k k

k k

k k

k k

k k

k k

k k

k