Copyrighted Material

Copyrighted Material

k INDEX Note: Page numbers with f denotes figure and with t denotes table ABCD correlation matrix Agilent’s ADS, 228 representation of, 342 AlGaAs/GaAs HEMT, 158, 159f k ABCD parameter analysis Alloyed capacitance diode, 103, 104f k transmission line element, 312f Ambient temperature, 121, 335 Abrupt junction diode, 86–88, 87f Amplifier, 205, 269 cross-modulation, 101f cascaded, 243 harmonic distortion, 102 class-A amplifier, 1062 Acceptor, 76 envelope simulation of, 1056, 1056f, Active bias circuit 1057f temperature properties of, 399t FET, gate current, 646f Active filter load line, 643f digital loops transient behavior low noise, examples of, 245–253 lock-in characteristic, 836 low-noise and high-power, 242–245 pull-in characteristic, 833 Friis equation, 243 for second-order loop, 823, 824f Lange parameter, 243 for third-order loop, 825, 825f noise measure, 243 Active frequency multiplication, 427–429 monolithic microwave integrated circuit Active two-port, mountingCOPYRIGHTED of, 354 MATERIAL(MMIC), 1059, 1060f Adjacent channel power ratio (ACPR), 30 one-tone harmonic balance simulation of, Admittance, 272 1050–1051, 1050–1051f Aeroflex Euro test system, 745 parts, list of, 432t AgilentHBT model, 134–135, 139 selection, 1081–1084, 1082–1083f Agilent PHEMT, 222, 223t stability check, 225f ATF34143 stability circle, 222f transient simulation of, 1044–1045f Microwave Circuit Design Using Linear and Nonlinear Techniques, Third Edition. George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde, and Matthias Rudolph. © 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc. 1148 k k INDEX 1149 two-tone harmonic balance simulation of, ATF-55143 1051, 1052f parameters of, 431t Amplifier design ATF34143 PHEMT Barkhausen oscillation condition, 432 amplifier, 224f distributed-matrix amplifiers, 423f S parameters, 227t frequency doubler, 428f Attenuator, 338, 1007–1027 frequency multiplier, 426f balanced reflective, 1021, 1022f active device model, 428f bridged-tee, 1023, 1023f active multiplier realization, 428f performance of, 1023f doubler-conversion gain, 429f intermodulation performance, 1022f harmonic frequency generation, 427 pin diode, 1018–1024 passive frequency multiplication, 426–427 BA110 diode, capacitance/voltage PHEMT tripler, 429 characteristic, 104f pinchoff, 427 Back-to-back diodes, 102, 103f Gma amplifier, 402f Balanced amplifier interstage design, 421f mixed-mode parameters, 239f limitations, 430–435 Balanced Balanced, 397 millimeter-wave amplifiers Balanced devices, 236 Gunn diode local oscillator, 425 Balun, 273, 909 negative-feedback amplifier, 434f center-tapped Nyquist plot, 435f lumped element equivalent of, 959f 1.9-GHz PCS amplifier, 430f, 433f, 434t, performance of, 961 429–434 compensated Marchand balun, 914 single-stage, 399–426 distributed active, 961 broadband amplifier, 410 transmission line model of, 965f k feedback circuits, 413f distributed broadband k graceful degradation, 409 characteristics of, 963 Infineon, 413 dual microstrip-to-parallel-plate line, internal amplifier, 406 925f inverter, 405 dual planar compensated, 918f, 924f low-VSWR amplifier, 408f dual version of, 916 MODAMP schematic (MSA 07), 412f monolithic Monolithic Darlington Amplifier, 411 frequency response of, 960f MWT-7 MESFET, 405 planar compensated, 919 MWT-7, parameters of, 403t on low-dielectric substrate, 917f novel circuit topology, 405 planar coupled line, 914f oscillation, maximum frequency of, 401 planar orthogonal shunt inductor, 406 interconnect configuration of, 918f stability factor, 399 transformer, 275 thermal impedance, 410 Band-stop filters, 309–312 stability analysis, 430–435 Bandpass 2.1-GHz W-CDMA amplifier, 429 network, 452 Analog signals, 15–26 Bandpass filter, 294, 304–306, 322, 304–306, Analog-to-digital converter (ADC) circuits, 15 306f Angelov (Chalmers) model, 162, 163f coupled-line, 324f Anode, 866 lumped-element, 306f Ansoft’s Serenade, 228 narrow-band, 306–309, 306–309, 310f Armstrong oscillator, 580f stub, 321f Associated Associated, 407 Band-stop filters, 309–312, 311f AT41400 Bandwidth, 263, 332 LRO, 574f Barkhausen k k 1150 INDEX Barkhausen (continued) Body capacitance, 49 criterion, 579 Body effect, 172 oscillation condition, 432 Boltzmann’s constant, 333, 334 Barrier Bounded input-bounded output (BIBO), potential, 867 432 Barrier height, diodes, 70 Broadband amplifier, 397 Base–collector capacitance, 124, 129 Broadband Broadband, 410 of InGaP/GaAs HBT, 138, 139f Broadband ring hybrid Base resistance multiplayer stripline topology, 897f phase noise contribution, 665f Butterworth Behavioral simulation, 1080–1081, passband response, 296f 1080–1082f prototype filter, 297 Bias response, 295–297 gate-to-source capacitance, 939f stopband response, 296f heterojunction bipolar transistors (HBTs), 198–200 Calibrated network analyzer, 206 high electron-mobility transistor (HEMT), Capacitance, 273 196–197 of bipolar transistors, 115–117 Bias-induced distortion, 1117–1120 characteristics, 871 Bias-induced products (BIPs), 1109 diode, 869 BIBO, see Bounded input-bounded output, linear time-variant capacitance, 873 432 of tuning diodes, 92–94 BiCMOS process, 129, 141 Capacitive Bifilar magnet wire feedback impedance of, 240f negative input impedance, 581f Bilinear transformation, 261 VCO, 583f k k Bipolar cascode Capacitor, 318 dc bias schematic, 417f current, 872 Bipolar junction transistor (BJT), 113, 116f parallel, 297 bias circuit, 397 ratio of, 655 LNA, 252f Capacitor model, 1095–1096, 1096f Bipolar oscillator Carrier analytical approach for efficient design, phase noise, 591f 751–779 Carrier injection, 1009 Bipolar transistor, 113–127. See also Cascaded amplifier, 354 Heterojunction bipolar transistors Cascaded networks (HBTs) noise figure, 353–354 capacitances and transit-times, 115–117 cascaded amplifier, 354 charge control model, 117–120 total available gain, 353 cutoff frequencies, 123–127 Cascaded noisy two-ports Ebers–Moll model, 113–115, 113f with noise figure, 353f parameters of, 760 Cascaded two-ports, 227f phase noise, 555f Cascode amplifier, 413–420 small-signal model, 123–127 circuit parameters, 419t temperature and self-heating, 120–123 1- to 5-GHz, 414f BJT-based oscillator, 585 1- to 8-GHz, 416f with noise feedback, 585f with temperature effects, 418f BJT/HBT temperature response of, 420t dc bias circuit, 398f Cathode, 866 Bode plot Cavity resonators, 327 gain from, 434f CB configuration phase margins from, 434f ABCD parameters, 345–346 k k INDEX 1151 CC configuration Class A operation ABCD parameters, 345–346 optimum ac load impedance, 471f CD4046 phase/frequency comparator, 822, Classic image rejection mixer, see 823f Single-sideband modulator, 978 CDMA. See Code division multiple access Coaxial dielectric resonators, 327 (CDMA) Coaxial line, 319 CE Code division multiple access (CDMA), 15, configuration 21 ABCD parameters, 345–346 Coded orthogonal frequency-division CE BJT vs. frequency, 209f multiplexing (COFDM), 23–24 Cell phone transmitter, 294 Colpitts oscillator, 747 Ceramic resonator oscillator, 558f Combining two-port matrix measured phase noise of, 559f method of, 339 simulated phase noise of, 558f Commensurate transmission line networks, Ceramic resonator oscillator (CRO), 318 742 Commercial synthesis software, 326 Charge carrier, 869 Common-mode signal, 236 Charge control model, 117–120 Compensated Marchand balun, 914 Charge pump, 820 Complementary metal-oxide-semiconductor Charge-pump-based phase-locked loops, (CMOS), 111 826–827 Component variation, 1069, 1071, Chebyshev 1073–1074, 1073f gvalues, 300t Computer-aided design (CAD), 273 passband response, 299f simulator, 1013 polynomial, 298 tools, 325 response, 297–301 Congruence transformation, 343 k stopband response, 299f Constant-reflection coefficient, 273 k Chebyshev transformer, 277 Contact potential, see Barrier potential, 867 Chip capacitor, 46, 47f Conventional transformer, 273 frequency response of, 46, 50f Conversion loss, 877 Chip inductor, 46 Conversion matrix frequency response of, 46, 50f components of, 874 parallel-coupled, 52 Conversion noise, 696 Chip resistor, 47 Converter circuit for, 47f high-level up vs. typical parasitic, 46t characteristics, 930f Circuit two-tone distortion performance, 931f frequency response, 273 Coplanar waveguide (CPW), 1131–1132, properties of, 233f 1132f Circuit D Correlation performance of, 405t admittance, 350 RF schematic of, 404f coefficient, 350 Circuit E matrix, 338 performance of, 405t Coupled resonators, 306 RF schematic of, 405f Coupling, 307 Circuit optimization, 1067–1069, 1070–1072f Coupling coefficient, 549 Circuit simulator, 1030, 1058 CRO, see Ceramic resonator oscillator, 742 Circulator, 1145, 1146f Cross junction, 273 Clapp-Gouriet Cross-modulation, 100–101 circuit, 582 abrupt and hyperabrupt junction diodes, oscillator, 581f 101f Class-A amplifier, 1062 Crystal oscillators, 814–815 k k 1152 INDEX Crystal radio receiver, 5, 5f IF signal, 986 Current gain, 230–231 incremental conductance, 873 Cutoff frequency, 96, 295, 475, 885 intrinsic of bipolar transistors, 123–127 admittance matrix, 874 of field-effect transistors (FETs), junction capacitance range vs. voltage, 71 156–158 large-signal diode model, 61–64, 62t of SiGe HBTs, 144–146 large-signal model, 872f LO impedance, 881 dc bias decoupling, 955 measurement of, 882f dc biasing, 263 mixer and detector, 65–69 DC feed design, 1084, 1084f, 1085f mixer diodes, 72–73 DDS. See Direct digital frequency synthesizer mixer theory, 866–880 (DDS) noise correlation, 879f Decibel, 333 noise model, 878

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us