Models, Methods and Tools for Product Service Design the Manutelligence Project Springerbriefs in Applied Sciences and Technology
Total Page:16
File Type:pdf, Size:1020Kb
SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY POLIMI SPRINGER BRIEFS Laura Cattaneo · Sergio Terzi Editors Models, Methods and Tools for Product Service Design The Manutelligence Project SpringerBriefs in Applied Sciences and Technology PoliMI SpringerBriefs Editorial Board Barbara Pernici, Politecnico di Milano, Milano, Italy Stefano Della Torre, Politecnico di Milano, Milano, Italy Bianca M. Colosimo, Politecnico di Milano, Milano, Italy Tiziano Faravelli, Politecnico di Milano, Milano, Italy Roberto Paolucci, Politecnico di Milano, Milano, Italy Silvia Piardi, Politecnico di Milano, Milano, Italy More information about this series at http://www.springer.com/series/11159 http://www.polimi.it Laura Cattaneo • Sergio Terzi Editors Models, Methods and Tools for Product Service Design The Manutelligence Project Editors Laura Cattaneo Sergio Terzi Department of Management, Economics Department of Management, Economics and Industrial Engineering and Industrial Engineering Politecnico di Milano Politecnico di Milano Milan, Italy Milan, Italy ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs in Applied Sciences and Technology ISSN 2282-2577 ISSN 2282-2585 (electronic) PoliMI SpringerBriefs ISBN 978-3-319-95848-4 ISBN 978-3-319-95849-1 (eBook) https://doi.org/10.1007/978-3-319-95849-1 Chapter 4 is licensed under the terms of the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/). For further details see license information in the chapter. Library of Congress Control Number: 2018948601 © The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap- tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface This book summarizes work being undertaken within the Manutelligence European Research Project (Grant agreement N°: 636951, H2020-FoF-2014, FoF-05— Innovative product–service design using manufacturing intelligence). The project aims at supporting enterprises to develop smart, social, and flexible products with high value-added services. Manutelligence has improved product and service design by developing suitable models and methods, and connecting them through a modular collaborative secure ICT Platform. The use of real data collected in real time through the Internet of Things (IoT) technologies underpin the design of product–service system (PSS) and allows to follow the PSS along its life cycle. Available data allows a better measure and simulation of costs and sustainability issues, through life-cycle cost (LCC) and life-cycle assessment (LCA). Analyzing data coming from IoT systems and sharing LCC and LCA information thanks to the ICT Platform allows speeding up the design of product–service (P-S), decreasing costs and better understanding customer needs. Industrial partners involved in the project provided a clear overview of the Manutelligence results and proved how its technological solutions improve the design of a product–service system and the management of the product–service life cycle. The book covers a large number of topics, since Manutelligence really involved several issues coming from the product and service life cycle. It was designed to offer readers the possibility to have a complete view of all the results we have achieved during the project. Furthermore, it contains a clear explanation of the IT modular architecture we have developed in order to collect within a unique and complete framework different tools and software. Chapter 1 introduces the main research contents and provides an overview on Manutelligence objectives. Furthermore, it introduces the description of the IT modular platform. Chapter 2 deals with engineering and business requirements definition, analysis, and validation. It describes the four-phase methodology implemented to define the common aggregated requirements for the platform development. The phases include requirement elicitation, structuration and organization, analysis and refinement and validation. It also shows the main results of each phase. v vi Preface Chapter 3 describes an approach to manage PSS along its life cycle. It includes a design methodology for PSS and a systems modeling method. It also highlights challenges related to PSS lifecycle management observed during the Manutelligence project. Chapter 4 shows how the platform developed during the project enable designers and engineers to access through natural 3DEXPERIENCE to data from both the traditional enterprise IT systems (CAD, CAX, PLM, MES, etc.) and IoT-enabled systems. Furthermore, it describes how it is possible to retrieve physical products information and knowledge management during the PSS lifecycle phases. Chapter 5 presents tools and procedures to embed and retrieve the knowledge related to the P-S and its life cycle in manufacturing. Taking into account the information coming from different sources (PLCs, sensorial IoT nodes, etc.) in the context of production system, a methodology to present coherently field data is proposed, with the idea to offer interoperability and integration also from the point of view of the different devices used to collect these data. Chapter 6 describes a tool aimed at carrying out the life cycle assessment (called MaGA) and another one for the life cycle costing (called BAL.LCPA). In order to seamlessly include environmental and economic considerations into the design process, the two stand-alone tools have been integrated with the Manutelligence design platform. Their application in a Fablab-like environment is described to show how they interact with design tools and to provide examples of the results they get. Chapter 7 describes all the different use cases involved in the project. It is focused on how each of them has applied Manutelligence methods and tools in order to improve PSS design and management. A particular focus is dedicated to the usage of the Manutelligence platform. Chapter 8 illustrates the business potential of product and service lifecycle engineering tools within the manufacturing sector, with particular attention to the use cases of the Manutelligence project. The whole process (the aggregation and the value creation) is investigated. From the scenario, analysis of the global PLM sector emerged that the aggregation of product and service lifecycle engineering tools is able to generate significant added value, highlighting in this way the relevant commercial perspectives of the Manutelligence platform. Milan, Italy Laura Cattaneo Sergio Terzi Acknowledgements We are grateful to our project officer Erastos Filos and to our reviewer Mrs. Anastasia Garbi for their constructive and useful suggestions; they greatly helped us shape our project results. Also, we own gratitude to our project coordi- nator Maurizio Petrucciani for his invaluable support through all phases of the project and to all the consortium partners, that have made this work and this project outstanding. At last, as authors from Politecnico di Milano we would like to thank the members of our team who were involved in the project, namely Francesca Amato, Daniele Cerri, Matteo Cocco, Elisabetta De Berti, Silvia Marchetto, Manuel Oliveira, Monica Rossi, Emanuela Vinci. All of them provided their best effort in achieving the results of the project, contributing to the research development and to the scientific improvement of our group, led by Prof. Marco Taisch, and to the progress of the entire Politecnico and to the whole society. The work reported in this book is funded by the European Commission, through European Union’s Horizon 2020 research and innovation programme, under grant agreement no. 636951. vii Contents 1 Introduction ........................................... 1 Laura Cattaneo, Jacopo Cassina, Maurizio Petrucciani, Sergio Terzi and Stefan Wellsandt 2 Engineering and Business Requirements