Radiation and Cell Cycle

Total Page:16

File Type:pdf, Size:1020Kb

Radiation and Cell Cycle High Yield Summary Reviews in Radiation Oncology Radiation and Cancer Biology Gayle E. Woloschak, PhD Tuesday, June 18, 2019 11:00 a.m. – 1:00 p.m. Eastern Daylight Time June 25, 2019 Gayle E. Woloschak PhD Professor of Radiation Oncology, Radiology, and Cell & Molecular Biology Associate Dean for Graduate Student and Postdoctoral Affairs Northwestern University Feinberg School of Medicine June 25, 2019 Definitions • Bq-2.7x10-11 Ci—equal to one disintegration per sec • Ci—3.7x1010 disintegrations per sec • Gy—absorbed radiation dose, the quantity which deposits 1 Joule of energy per kg—1Gy=100rad • Sievert—dose equivalence—multiply absorbed dose in Gy by the Quality Factor (Q)— 1Sv=100rem • LET—measure of the rate of energy transfer from an ionizing radiation to the target material—keV of energy lost/micron track length Unit Conversion Factors: SI and Conventional Units • 1 Bq = 2.7 × 10–11 Ci = 27 pCi • 1 Ci = 3.7 × 1010 Bq = 37 GBq • 1 Sv = 100 rem • 1 rem = 0.01 Sv • 1 Gy = 100 rad • 1 rad = 0.01 Gy • 1 Sv Bq–1 = 3.7 × 106 rem μCi–1 • 1 rem μCi–1 = 2.7 × 10–7 Sv Bq–1 • 1 Gy Bq–1 = 3,7 × 106 rad μCi–1 • 1 rad μCi–1 = 2,7 × 10–7 Gy Bq–1 Biomolecular Action of Ionizing Radiation; Editor:Shirley Lehnert, 2007 Units Used in Radiation Protection • Equivalent dose—average dose x radiation weighting factor—Sv • Effective dose—sum of equivalent doses to organs and tissues exposed, each multiplied by the appropriate tissue weighting factor—Sv • Committed equivalent dose—equivalent dose integrated over 50 years (relevant to incroporated radionuclides)—Sv • Committed effective dose—effective dose integrated over 50 years (relevant to incorporated radionuclides)--Sv • Collective effective dose—product of the average effective dose and the number of individuals exposed—person-Sv • Collective effective dose committed—integration of the collective dose over 50y (relevant to incorporated radionuclides)—person-Sv uR/hr US Geological Survey, 1993 2-6 Annual Report 2008 NCRP, July 2006 Indirect Action For Low LET radiation, 67% damage is indirect action For High LET radiation, most (all?) damage is direct action Critical distance of indirect action is within 2nm radius from DNA. Hall and Giaccia, 2018 Stochastic vs Deterministic • Heritable effects and cancer • Non-cancer somatic effects • Single cell effect • Organ effect • 2 severity states • Different severity states (present/absent) (graded) • No threshold dose • Threshold • Low dose or high dose • Intermediate or high dose • Dose-response: Linear • Dose-response: threshold Quadratic sigmoid • Relevant to radiation • Relevant to normal tissue early protection, diagnostic radiology and late effects in radiotherapy • Example: cancer • Example: cataracts, normal tissue damage Summary of Aberrations • Chromosomal Aberrations • cell is irradiated in G1 (before duplication of chromosomes) • break occurs in single strand of chromatin replicated in S, seen in M phase • translocations dicentrics and rings – both lethal • dicentrics used for dose estimates, 25cGy is sensitivity • Chromatid Aberrations • cell is irradiated after S (after duplication) • radiation causes break in both chromatids • observe it in M phase • anaphase bridge--lethal • Correlation of chromosome aberrations and disease: • physical abnormalities • mental retardation • cancer • lethality Issues of Radiation Genetics • No unique mutations • Most mutations are not detected; those that are detected are most often dominant (single gene) • Mutations are rare events • Within the same species, genes vary both in their spontaneous mutation rate and in their vulnerability to radiation. • Number of mutations is proportional to dose. Summary of Radiation Genetics • Doubling dose for mutations in male mice (low LET): acute 20-30cGy; protracted 90-100cGy • Estimated mutagenic hazard in humans:2-3x10-7 mutations/gene/cGy • Period at risk for expression of a radiation mutation: 10 genetic generations of 30y each=300 y • Genetic maximum permissible dose limits: occupational 50mSv/y; general population 1mSv per year Radiation and Cell Cycle 1.Cells are most sensitive to radiation at or close to M 2.Cells are most resistant to radiation in late S 3.For prolonged G1 → a resistant period is evident early G1 followed be a sensitive period in late G1 4.Cells are usually sensitive to radiation in G2 (almost as sensitive as in M) There are exceptions to these rules in some cell lines. Frequency of chromosomal aberrations is a linear quadratic function of dose. Low Dose: both aberrations caused by the same e- High Dose: caused by different electrons FIGURE 2.20 The frequency of chromosomal aberrations (dicentrics and rings) is a Iinearquadratic function of dose because the aberrations are the consequence of the interaction of two separate breaks. At low doses, both breaks may be caused by the same electron; the probability of an exchange aberration is proportional to dose (D). At higher doses, the two breaks are more likely to be caused by separate electrons. The Q probability of an exchange aberration is proportional to the square of the dose (D2). Hall and Giaccia 2018 Contribution to Killing • M phase/G2—alpha-large beta-nil • G1 phase—alpha-large beta-small • Early S—alpha and beta are medium • Late S—alpha-small beta-large Cell-survival curves Survival curve describes the relationship between the proportion of cell survival and radiation dose linear-quadratic model: 2 S = e−D−D S = fraction of surviving D = dose , = constants D = D2 → D = / (dose at which the linear and quadratic contributions to cell killing are equal) densely ionizing radiation: / sparsely ionizing radiation: / Hall and Giaccia 2018 Single hit. multitarget Single target 2-component L-Q model Biomolecular Action of Ionizing Radiation; Editor:Shirley Lehnert, 2007 Cells are more sensitive to Radiation in the presence of Oxygen than in its absence High dose region of survival curve Low dose region of survival curve Hall and Giaccia 2018 Oxygen Concentration and Sensitivity to Radiation Approx. partial pressure of O2 Cells reach full at which gamma-irradiated cells radiosensitization at exhibit radiosensitivity halfway 20-40mmHg, near the between their fully aerobie O2 concentration in and fully hypoxic response venous blood. is near 3mmHg 1mmHg=1Torr Radiosensitivity increases until about 30mmHg is achieved, and then it remains the Same for all oxygen concentrations. The most dramatic increase is seen at low O2 Concentrations near 0.5% (3mmHg). From Hall and Giaccia, 2018 Sizes of Tumors and presence of necrotic core regions All tumors with a radius of 200um or greater have necrotic centers. Tumors with a radius of less than 160um usually do not have necrotic centers. From Hall and Giaccia, 2018 Diffusion of Oxygen through Tumor Tissue Regions of hypoxia also have low pH, glucose, GFs Oxygen can generally diffuse 150um at the arterial end of the capillary and less at the venous end. From Hall and Giaccia, 2018 HPH or PHD From Hall and Giaccia, 2018 Relationship of OER/RBE with LET The point at which the RBE increases is where the OER drops most dramatically. Hall and Giaccia 2018 Biomolecular Action of Ionizing Radiation; Editor:Shirley Lehnert, 2007 Oxygen Effect During Cell Cycle OER – • Oxygen enhancement ratio • Varies throughout the cell cycle G2 phase OER = 2.3 - 2.4 S phase OER = 2.8 – 2.9 • For any given phase of the cell cycle, OER was the same for all doses • For asynchronous cells, OER does vary with doses: OER is smaller at higher levels of survival OER is higher at lower levels of survival • Little therapeutic significance High vs. Low LET Effect High LET Low LET DNA damage Mostly direct 2/3 is indirect Ionizations Dense (blobs) Sparse (spurs) survival curve Steeper slope; reduce Smaller slope, larger shoulder shoulder Alpha/beta Alpha is high, beta is Alpha is less important constant Cell cycle effects +/- ++++ SLDR none ++ PLDR none ++ OER O2 has little or no effect on O2 enhances low LET high LET effects Radioprotectors Little effect (?) effective Categories of Cellular Radiation Damage 1. Lethal—irreversible, irreparable, leads to cell death 2. Sublethal (SLD)—repaired in hours; if a second dose is given, can interact with more damage to create lethal damage; represents shoulder on cell survival curve Sublethal Damage Repair—increase survival when a dose is fractionated over time 3. Potentially Lethal Damage (PLD)—can be modified by the post-irradiation environment Dose-Rate Effect for HeLa Cells -Decrease dose-rate, survival curve is More shallow, shoulder disappears, Survival is an exponential function of dose Shallow shoulder to survival curve -For HeLa Cells: dose-rate effect is most for low dose rate Evident at .01-1 Gy/min. Above or below That there is little effect. -Dose rate effect varies from one cell type To another similar Hall and Giaccia 2018 Amifostine •WR2721 → WR1065 (in vivo) •Active transport of drug to normal tissues vs. tumor (?) Give drug minutes before radiation, ↓ normal tissue toxicity •Alkaline phosphatase (liver) converts inactive prodrug amifostine into the active drug in the body. •Tissue variability: good protection: hematopoietic system, gut lining, salivary glands no protection: CNS (doesn’t cross blood-brain barrier) •Hydrophilic nature gives ↑ uptake in normal tissues •Dose-limiting toxicity: hypotension •Also call ethyol •Is FDA approved for use as a radioprotector Law of Bergonie and Tribondeau The radiosensitivity of a cell varies: • DIRECTLY with its rate of mitosis. • DIRECTLY with its mitotic future. • INDIRECTLY with its degree of morphologic and functional differentiation. • EXCEPTION: Lymphocytes which are very radiosensitive but are fixed post- mitotic cells. Cassarett’s formulation: The more differentiated, the more radioresistant the cell type. Cells with increased capability for division are more radiosensitive than non-dividing cells. Exception: Lymphocytes (D0 of 80cGy) Hall and Giaccia 2010 10-49h Doses given in Gy, but they represent Gy of gamma-rays or x-rays Narrow window of dose over which BM transplants are useful following TBI LD50 increases with antibiotics and nursing.
Recommended publications
  • Time, Dose and Fractionation in Radiotherapy
    2/25/2013 The introduction of Fractionation 2-13/13 Radiobiology lecture Time, Dose and Fractionation in Radiotherapy The Four Rs of Radiobiology Repair of Sublethal Damage • Cells exposed to sparse radiation experience • Efficacy of fractionation based on the 4 Rs: sublethal injury that can be repaired – Repair of sublethal damage • Cell killing requires a greater total dose when given –Repopulation in several fractions – Reassortment of cells within the cell cycle • Most tissue repair occurs in about 3 hours and up –Reoxygenation to 24 hours post radiation • Allows for repair of injured normal tissue and gives a potential therapeutic advantage over tumor cells Reoxygenation Redistribution • Oxygen stabilizes free radicals • Position in cell cycle at time of radiation • Hypoxic cells require more radiation to kill determines sensitivity •Hypoxic tumors • S phase is radioresistant – Temporary vessel constriction •G2 phase delay results in increased radiation – Outgrowth of blood supply and capillary collapse resistance • Tumor shrinkage reduces hypoxic areas • Fractionated RT redistributes cells • Reinforces fractionated dosing • Rapidly cycling cells like mucosa, skin are more sensitive • Slower cyclers like connective tissue, brain are spared 1 2/25/2013 Repopulation • Increased regeneration of surviving fraction Basics of Fractionation • Rapidly proliferating tumors regenerate faster • Determines the length and timing of therapy course • Dividing a dose into several fractions spares normal tissues • Accelerated Repopulation – Repair
    [Show full text]
  • Radiobiology Is a Young Science and Is Solely Concerned with the Study Of
    The Rockefeller Foundation and its support of Radiobiology up to the 1970s By Sinclair Wynchank Senior Lecturer University of Cape Town Rondebosch, South Africa [email protected] © 2011 by Sinclair Wynchank Radiation biology, or radiobiology, is a very young science, solely concerned with the study of the interactions between ionizing radiation and living matter. This science slowly became a recognized field of study after the discovery of ionizing radiation (i.e., X rays) in 1895. A broadly varied and evolving terminology has been applied to aspects of radiobiology and therefore, archival searches concerning it are complex. This report is a work in progress, which mainly recounts support given by the Rockefeller Foundation (RF) to radiobiology. The RF was a most important player in the early history of radiobiology and a crucial influence in ensuring that the science steadily matured during its first six decades. Time constraints prevented all relevant items from being accessed, but a clear idea of the RF‟s strong influence on radiobiology‟s early history has resulted. Examples of RF activities to verify this assertion are given below, in by and large chronological order. After a brief analysis of RF aid, there is a short account of why its support so strongly benefitted the young science. To my knowledge there is very little written about the history of radiobiology and nothing about the role that the RF or other philanthropic bodies played in this history. Inevitably, for an extensive time, individual radiobiologists first studied other fields of science before radiobiology. Even in 2011 there are only five universities in the U.S.
    [Show full text]
  • General Guidelines for the Estimation of Committed Effective Dose from Incorporation Monitoring Data
    Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaftt Wissenschaftliche Berichte FZKA 7243 General Guidelines for the Estimation of Committed Effective Dose from Incorporation Monitoring Data (Project IDEAS – EU Contract No. FIKR-CT2001-00160) H. Doerfel, A. Andrasi, M. Bailey, V. Berkovski, E. Blanchardon, C.-M. Castellani, C. Hurtgen, B. LeGuen, I. Malatova, J. Marsh, J. Stather Hauptabteilung Sicherheit August 2006 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 7243 GENERAL GUIDELINES FOR THE ESTIMATION OF COMMITTED EFFECTIVE DOSE FROM INCORPORATION MONITORING DATA (Project IDEAS – EU Contract No. FIKR-CT2001-00160) H. Doerfel, A. Andrasi 1, M. Bailey 2, V. Berkovski 3, E. Blanchardon 6, C.-M. Castellani 4, C. Hurtgen 5, B. LeGuen 7, I. Malatova 8, J. Marsh 2, J. Stather 2 Hauptabteilung Sicherheit 1 KFKI Atomic Energy Research Institute, Budapest, Hungary 2 Health Protection Agency, Radiation Protection Division, (formerly National Radiological Protection Board), Chilton, Didcot, United Kingdom 3 Radiation Protection Institute, Kiev, Ukraine 4 ENEA Institute for Radiation Protection, Bologna, Italy 5 Belgian Nuclear Research Centre, Mol, Belgium 7 Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France 8 Electricité de France (EDF), Saint-Denis, France 9 National Radiation Protection Institute, Praha, Czech Republic Forschungszentrum Karlsruhe GmbH, Karlsruhe 2006 Für diesen Bericht behalten wir uns alle Rechte vor Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) ISSN 0947-8620 urn:nbn:de:0005-072434 IDEAS General Guidelines – June 2006 Abstract Doses from intakes of radionuclides cannot be measured but must be assessed from monitoring, such as whole body counting or urinary excretion measurements.
    [Show full text]
  • Proton Radiobiology
    Cancers 2015, 7, 353-381; doi:10.3390/cancers7010353 OPEN ACCESS cancers ISSN 2072-6694 www.mdpi.com/journal/cancers Review Proton Radiobiology Francesco Tommasino 1 and Marco Durante 1,2,* 1 GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt 64291, Germany; E-Mail: [email protected] 2 Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt 64291, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-6159-71-2009. Academic Editor: Xiaodong Zhang Received: 3 December 2014 / Accepted: 9 February 2015 / Published: 12 February 2015 Abstract: In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed.
    [Show full text]
  • Radiobiology
    The Management of Gynecologic Cancers: Radiobiology Brian Marples PhD Beaumont Health Systems Overview of presentation • Assessment of normal tissue response • Radiobiology modeling • Role of HPV in tumor response • Hypoxic and tumor response Radiobiology and normal tissue response and tolerance • The Emami paper (IJROBP 21: 109–122 1991) – 1/3, 2/3, whole organs - some clinical, some laboratory data – Consensus of clinical experience and opinions – Concerns with delivered dose and measurements of dose – Out of date: Move from 2D to 3D treatment planning, higher energy beams, better penetration, improved ability to measure dose, increased use combined therapy • Quantitative – QUANTEC, CTCAE v4.0, LENT-SOMA, IIEF – Quantitative Analysis of Normal Tissue Effects in the Clinic – Updated guidelines published in Red Journal • IJROBP vol 76, No., 3 2010 (suppl.) – 16 organ-specific papers – Radiation dose-volume effects of the urinary bladder • Viswanathan et al. IJROBP 76: 3: S116–S122, 2010 • Cervix BRT: size of 60-Gy volume and dose rate have impact on late rectal complication BED = Biologically Effective Dose • BED commonly used for isoeffective dose calculations • BED is a measure of the true biological dose delivered by a particular combination of dose per fraction and total dose to a particular tissue characterized by a specific α/β ratio • BED is not Biologically Equivalent Dose • Biologically equivalent doses are calculated in 2-Gy equivalents using the EQD2 equation • Cumulative: brachytherapy dose added to the dose from external beam therapy Bentzen et al., Radiother Oncol 105: 266–268, 2012 Dale, Br J Radiol 58: 515–528, 1985 Biologically Effective Dose (BED) • BED compare effects fractionation schedules – need to know α/β ratio of the tissues concerned BED = total dose .
    [Show full text]
  • Risk of Acute Radiation Syndromes Due to Solar Particle Events
    Evidence Report: Risk of Acute Radiation Syndromes due to Solar Particle Events Human Research Program Space Radiation Program Element Approved for Public Release: April 6, 2016 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas CURRENT CONTRIBUTING AUTHORS: Lisa Carnell, PhD NASA Langley Research Center, Hampton, VA Steve Blattnig, PhD NASA Langley Research Center, Hampton, VA Shaowen Hu, PhD Wyle Science Technology & Engineering, Houston, TX Janice Huff, PhD Universities Space Research Association, Houston, TX Myung-Hee Kim, PhD Wyle Science Technology & Engineering, Houston, TX Ryan Norman, PhD NASA Langley Research Center, Hampton, VA Zarana Patel, PhD Wyle Science Technology & Engineering, Houston, TX Lisa Simonsen, PhD NASA Langley Research Center, Hampton, VA Honglu Wu, PhD NASA Johnson Space Center, Houston, TX PREVIOUS CONTRIBUTING AUTHORS: Honglu Wu NASA Johnson Space Center Janice L. Huff Universities Space Research Association Rachel Casey Universities Space Research Association Myung-Hee Kim Universities Space Research Association Francis A. Cucinotta NASA Johnson Space Center Reference for original report: Human Health and Performance Risks of Space Exploration Missions, (Jancy C. McPhee and John B. Charles, editors), NASA SP-2009- 3405, 2009. 1 Table of Contents I. PRD RISK TITLE: RISK OF ACUTE RADIATION SYNDROMES DUE TO SOLAR PARTICLE EVENTS ........................................................................................... 4 II. EXECUTIVE SUMMARY ................................................................................................
    [Show full text]
  • Radiobiology of Tissue Reactions
    Radiobiology of tissue reactions W. Do¨ rr Department of Radiation Oncology and Christian Doppler Laboratory for Medical Radiation Research for Radiooncology, Comprehensive Cancer Centre, Medical University Vienna/ Vienna General Hospital, Waehringer Guertel 18-20, A-1090 Vienna, Austria; e-mail: [email protected] Abstract–Tissue effects of radiation exposure are observed in virtually all normal tissues, with interactions when several organs are involved. Early reactions occur in turnover tissues, where proliferative impairment results in hypoplasia; late reactions, based on combined parenchy- mal, vascular, and connective tissue changes, result in loss of function within the exposed volume; consequential late effects develop through interactions between early and late effects in the same organ; and very late effects are dominated by vascular sequelae. Invariably, involvement of the immune system is observed. Importantly, latent times of late effects are inversely dependent on the biologically equieffective dose. Each tissue component and – importantly – each individual symptom/endpoint displays a specific dose–effect relationship. Equieffective doses are modulated by exposure conditions: in particular, dose-rate reduction – down to chronic levels – and dose fractionation impact on late responding tissues, while overall exposure time predominantly affects early (and consequential late) reactions. Consequences of partial organ exposure are related to tissue architecture. In ‘tubular’ organs (gastrointestinal tract, but also vasculature), punctual exposure affects function in downstream compartments. In ‘parallel’ organs, such as liver or lungs, only exposure of a significant (organ-dependent) fraction of the total volume results in clinical consequences. Forthcoming studies must address biomarkers of the individual risk for tissue reactions, and strategies to prevent/mitigate tissue effects after exposure.
    [Show full text]
  • Preliminary Program
    PRELIMINARY PROGRAM 55th Annual Meeting of the Health Physics Society 22nd Biennial Campus Radiation Safety Officers Meeting (American Conference of Radiological Safety) 27 June - 1 July 2010 Salt Palace Convention Center Salt Lake City, Utah Key Dates Current Events/Works-In-Progress Deadline . .28 May Social/Technical Preregistration Deadline . .31 May HPS Annual Meeting Preregistration Deadline . 31 May PEP Preregistration Deadline . .31 May Hotel Registration Deadline . 5 June AAHP Courses . 26 June Professional Enrichment Program . 27 June - 1 July HPS 55th Annual Meeting . 27 June - 1 July American Board of Health Physics Written Exam . 28 June Registration Hours and Location Registration at the Salt Palace Convention Center - Foyer of Exhibit Hall A Saturday, 26 June . 2:00 - 5:00 pm Sunday, 27 June . 10:00 am - 5:00 pm Monday, 28 June . 8:00 am - 4:00 pm Tuesday, 29 June . 8:00 am - 4:00 pm Wednesday, 30 June . 8:00 am - 4:00 pm Thursday, 1 July . 8:00 - 11:00 am Saturday Saturday AAHP Courses will take place in the Hilton Hotel Sunday - Thursday All PEPs, CELs and Sessions will be at the Salt Palace Convention Center HPS Secretariat 1313 Dolley Madison Blvd. Suite 402 McLean, VA22101 (703) 790-1745; FAX: (703) 790-2672 Email: [email protected]; Website: www.hps.org 1 Table of Contents Important Events . 6 General Information . 7 Hotel Reservation Information . 7 Tours and Events Listing . 9 Scientific Program . 12 Placement Information . 32 AAHP Courses . 33 Professional Enrichment Program . 34 Continuing Education Lecture Abstracts . 46 Annual Meeting Registration Form . 48-49 CURRENT EVENTS/WORKS-IN-PROGRESS The submission form for the Current Events/Works-in-Progress poster session is on the Health Physics Society Website at www .hps .org under the Salt Lake City Annual Meeting section .
    [Show full text]
  • Radiobiology of Radionuclide Therapy Prof Sarah Baatout [email protected]
    Radiobiology of radionuclide therapy Prof Sarah Baatout [email protected] Head of the Radiobiology Unit, SCK•CEN Faculty of Biosciences Engineering, Universiteit Gent, Belgium Faculté des Sciences, Université de Namur, Belgium International Course on THERANOSTICS AND RADIOTHERAPY, A Joint Initiative of IAEA-BELNUC-Institut Bordet 2-6/10/2017 © SCK•CEN Academy Cancer definition . Many definitions . Definition (used by ASC) : . Cancer is a large group of diseases characterized by the uncontrolled growth and spread of abnormal cells. If the spread is not controlled, it can result in death. Treatment requires a multidisciplinary approach © SCK•CEN Academy What is/causes cancer? . It is thought that several mutations need to occur to give rise to cancer. Mutations of normal genes : . oncogenes linked to accelerated cell proliferation . tumour suppressor genes linked to decreased cell death. over 100s forms of cancer © SCK•CEN Academy What causes cancer? . Cells that are old or not functioning properly normally self destruct and are replaced by new cells. However, cancerous cells do not self destruct and continue to divide rapidly producing millions of new cancerous cells. At least 5 mutations Normal Cell Cancer Cell Obeys strict rules Disobeys rules Divides only when told to Divides at will Dies rather than misbehaving Bad behavior doesn’t kill Stays close to home Wanders through body Careful with chromosomes Careless with chromosomes © SCK•CEN Academy Cancer cure = minimum killing of 99,9% cells 5 © SCK•CEN Academy Situation in Belgium In 2013, 65,847 new cancer diagnoses in Belgium 34,542 in men (53%) 30,945 in women (47%) Before 75th anniversary 59% 69% are still alive 5 years after diagnosis 3% of the Belgian population is living with cancer or has been diagnosed with cancer in the last 10 years 13% of patients with cancer have multiple tumours Estimation for 2025 12,000 more new diagnoses than in 2013.
    [Show full text]
  • THE PHYSICAL and BIOLOGICAL BASIS of RADIATION ONCOLOGY Ever Since the Discovery of X-Ray by Rontgen, a German Physicist in 1985
    THE PHYSICAL AND BIOLOGICAL BASIS OF RADIATION ONCOLOGY Ever since the discovery of x‐ray by Rontgen, a German physicist in 1985, x‐ray has been used in various types of medical procedures. The very first medical use of x‐rays was reported in January of 1896 which indicated that the x‐rays were used to locate a piece of a knife in the backbone of a drunken sailor who was paralyzed until the fragment was removed following its localization. At that time this new technology very rapidly spread through Europe and the United States and the field of diagnostic radiology was born. Not too long after that the radiation was used to treat shallow tumors of the skin by doctors. RADIOBIOLOGY Radiobiology is the study of the action of ionizing radiation on living things. This certainly involves a fair amount of radiation physics and a good understanding of various types of ionizing radiation as well as a description of the physics and chemistry of the processes by which radiation is absorbed. X‐ray was discovered in December 1895 by a German Physicist “Wilhelm Conrad Rontgen”. First medical use of X‐ray is reported as early as January 1896. After this time, the field of Radiology was born. Reports indicate the first therapeutic use of X‐ray was in 1897 to treat skin melanoma. Radioactivity was discovered by “Antonio Henri Becquerel” in 1898. Radium was isolated by “Pierre & Marie Curie” also in 1898. Rad_Bio; Physics and Chemistry of X‐ray absorption pg. 1 of 20 First recorded radiobiology experiment was performed by Becquerel, when he inadvertently left a Radium container in his pocket, resulting in skin erythema that came about 2 weeks later.
    [Show full text]
  • The Radiobiological Four "R"S of Hypofractionation
    The Radiobiological Four "R"s of Hypofractionation Brian Marples PhD Beaumont Health Systems Overview of the presentation • Definition of hypofractionation • Radiobiology – 4 R’s – Standard fraction dosing • Linear quadratic (LQ) model – is it valid? – Radiosensitivity – 5th R of radiobiology • 4 R’s radiobiology of SBRT/SRS – Cell cycle, vascular effects, hypoxia, DNA repair • Conclusions Hypofractionation, SRS, SBRT [SABR] • Conventional fractionation (1.8-2 Gy) • Hypofractionation – doses of 2.5 Gy and above • Stereotactic radiosurgery (SRS) – entire dose is given in a single fraction – extreme example of SBRT– ablative doses of RT • Stereotactic body radiation therapy (SBRT) – a.k.a. stereotactic ablative radiation therapy (SABR) – defined as treatment of tumors with 1 to 5/8 dose fractions – SBRT paradigm shift from the practice of radiation therapy – uncontested that conventional RT better for normal tissues 4 R’s of radiobiology • Repopulation, Redistribution, Repair & Reoxygenation • Enabled development of safe and effective dose- fractionation regimens – along with a rudimentary appreciation of why treatment may succeed or fail (CHART v EORTC22851) • Understanding the 4R’s allows the concomitant use of drugs: – Repopulation, redistribution, repair and re-oxygenation – EGFR blockade by cetuximab in Head and Neck • Bonner et al. N Engl J Med 2006;354(6): – Use of DNA repair inhibitor – Inhibitors of neo-vascularization in glioma 4(5) R’s of conventional fractionated RT “factors work in opposite directions” • Redistribution (Reassortment): Sensitize tumors – cell-cycle progression into RT-sensitive phases • Repopulation and Repair – tumors: decreases radiation sensitivity – early-reacting normal tissues: increase in radiation tolerance with increasing overall treatment time • Reoxygenation: Sensitize tumors – oxygenation of surviving hypoxic cells • Radiosensitivity (5th R) – intrinsic sensitivity of tumor: modeled by LQ Steel, McMillan, Peacock.
    [Show full text]
  • Bq = Becquerel Gy = Gray (Sv = Sievert)
    Louis Harold Gray He is honored by call- ing the physical dose Bq = becquerel unit "gray*" – abbrevi- Gy = gray ated Gy (Sv = sievert) Photo from 1957 Chapter 5 Activity and Dose The activity of a radioactive source When an atom disintegrates, radiation is emitted. If the rate of disintegrations is large, the radioactive source is considered to have a high activity. The unit for the activity of a radioactive source was named after Becquerel (abbreviated Bq) and is defined as: 1 Bq = 1 disintegration per sec. In a number of countries, the old unit, the curie (abbreviated Ci and named after Marie and Pierre Curie) is still used. The curie-unit was defined as the activity in one gram of radium. The number of disintegrations per second in one gram of radium is 37 billion. The relation between the curie and the becquerel is given by: 1 Ci = 3.7 • 1010 Bq The accepted practice is to give the activity of a radioactive source in becquerel. This is because Bq is the unit chosen for the system of international units (SI-units). But one problem is that the numbers in becquerel are always very large. Consequently the activity is given in kilo (103), mega (106), giga (109)and tera (1012) becquerel. If a source is given in curies the number is small. For example; when talking about radioactivity in food products, 3,700 Bq per kilogram of meat is a large number and consequently considered to be dangerous. If however, the same activity is given in Ci, it is only 0.0000001 curie per kilogram – "nothing to worry about?".
    [Show full text]