Radiation Biology: a Handbook for Teachers and Students
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Radiation Challenge Module 2: Radiation Damage in Living Organisms Educator Guide
National Aeronautics and Space Administration Space Faring The Radiation Challenge An Interdisciplinary Guide on Radiation and Human Space Flight Module 2: Radiation Damage in Living Organisms Educational Product Educators Grades and Students 9 – 12 EP-2007-08-117-MSFC Radiation Educator Guide Module 2: Radiation Damage in Living Organisms Prepared by: Jon Rask, M.S., ARC Education Specialist Wenonah Vercoutere, Ph.D., NASA ARC Subject Matter Expert Al Krause, MSFC Education Specialist BJ Navarro, NASA ARC Project Manager Space Faring: The Radiation Challenge i Table of Contents Module 2: Module 2: Radiation Damage in Living Organisms .............................................................................1 Why is NASA Studying the Biological Effects of Radiation? .........................................................1 How Do Scientists Study Biological Change During Spaceflight? .................................................1 Using Non-Human Organisms to Understand Radiation Damage ................................................2 What are the Risks and Symptoms of Radiation Exposure for Humans? .......................................3 What is DNA? ..............................................................................................................................3 What is the Structure of DNA? .....................................................................................................3 What is DNA’s Role in Protein Production? ..................................................................................4 -
Time, Dose and Fractionation in Radiotherapy
2/25/2013 The introduction of Fractionation 2-13/13 Radiobiology lecture Time, Dose and Fractionation in Radiotherapy The Four Rs of Radiobiology Repair of Sublethal Damage • Cells exposed to sparse radiation experience • Efficacy of fractionation based on the 4 Rs: sublethal injury that can be repaired – Repair of sublethal damage • Cell killing requires a greater total dose when given –Repopulation in several fractions – Reassortment of cells within the cell cycle • Most tissue repair occurs in about 3 hours and up –Reoxygenation to 24 hours post radiation • Allows for repair of injured normal tissue and gives a potential therapeutic advantage over tumor cells Reoxygenation Redistribution • Oxygen stabilizes free radicals • Position in cell cycle at time of radiation • Hypoxic cells require more radiation to kill determines sensitivity •Hypoxic tumors • S phase is radioresistant – Temporary vessel constriction •G2 phase delay results in increased radiation – Outgrowth of blood supply and capillary collapse resistance • Tumor shrinkage reduces hypoxic areas • Fractionated RT redistributes cells • Reinforces fractionated dosing • Rapidly cycling cells like mucosa, skin are more sensitive • Slower cyclers like connective tissue, brain are spared 1 2/25/2013 Repopulation • Increased regeneration of surviving fraction Basics of Fractionation • Rapidly proliferating tumors regenerate faster • Determines the length and timing of therapy course • Dividing a dose into several fractions spares normal tissues • Accelerated Repopulation – Repair -
Testing the Stand-Alone Microbeam at Columbia University G
Radiation Protection Dosimetry Advance Access published December 21, 2006 Radiation Protection Dosimetry (2006), 1 of 5 doi:10.1093/rpd/ncl454 TESTING THE STAND-ALONE MICROBEAM AT COLUMBIA UNIVERSITY G. GartyÃ, G. J. Ross, A. W. Bigelow, G. Randers-Pehrson and D. J. Brenner Columbia University, Radiological Research Accelerator Facility, 136 S. Broadway, Irvington, NY 10533, USA The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a ‘home made’ 6.5 mCi polonium source, a 1 alpha particle s–1,10lm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here. INTRODUCTION AND OVERALL DESIGN the lenses. In addition to providing a secondary user facility at RARAF, the design is simple and Columbia University’s Radiological Research Accel- inexpensive enough that the SAM can be reproduced erator Facility (RARAF) currently offers its users in any large radiation biology laboratory. -
Personal Radiation Monitoring
Personal Radiation Monitoring Tim Finney 2020 Radiation monitoring Curtin staff and students who work with x-ray machines, neutron generators, or radioactive substances are monitored for exposure to ionising radiation. The objective of radiation monitoring is to ensure that existing safety procedures keep radiation exposure As Low As Reasonably Achievable (ALARA). Personal radiation monitoring badges Radiation exposure is measured using personal radiation monitoring badges. Badges contain a substance that registers how much radiation has been received. Here is the process by which a user’s radiation dose is measured: 1. The user is given a badge to wear 2. The user wears the badge for a set time period (usually three months) 3. At the end of the set time, the user returns the badge 4. The badge is sent away to be read 5. A dose report is issued. These steps are repeated until monitoring is no longer required. Badges are supplied by a personal radiation monitoring service provider. Curtin uses a service provider named Landauer. In addition to user badges, the service provider sends control badges that are kept on site in a safe place away from radiation sources. The service provider reads each badge using a process that extracts a signal from the substance contained in the badge to obtain a dose measurement. (Optically stimulated luminescence is one such process.) The dose received by the control badge is subtracted from the user badge reading to obtain the user dose during the monitoring period. Version 1.0 Uncontrolled document when printed Health and Safety Page 1 of 7 A personal radiation monitoring badge Important Radiation monitoring badges do not protect you from radiation exposure. -
小型飛翔体/海外 [Format 2] Technical Catalog Category
小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history. -
Radiation Risk in Perspective
PS010-1 RADIATION RISK IN PERSPECTIVE POSITION STATEMENT OF THE HEALTH HEALTH PHYSICS SOCIETY* PHYSICS SOCIETY Adopted: January 1996 Revised: August 2004 Contact: Richard J. Burk, Jr. Executive Secretary Health Physics Society Telephone: 703-790-1745 Fax: 703-790-2672 Email: [email protected] http://www.hps.org In accordance with current knowledge of radiation health risks, the Health Physics Society recommends against quantitative estimation of health risks below an individual dose of 5 rem1 in one year or a lifetime dose of 10 rem above that received from natural sources. Doses from natural background radiation in the United States average about 0.3 rem per year. A dose of 5 rem will be accumulated in the first 17 years of life and about 25 rem in a lifetime of 80 years. Estimation of health risk associated with radiation doses that are of similar magnitude as those received from natural sources should be strictly qualitative and encompass a range of hypothetical health outcomes, including the possibility of no adverse health effects at such low levels. There is substantial and convincing scientific evidence for health risks following high-dose exposures. However, below 5–10 rem (which includes occupational and environmental exposures), risks of health effects are either too small to be observed or are nonexistent. In part because of the insurmountable intrinsic and methodological difficulties in determining if the health effects that are demonstrated at high radiation doses are also present at low doses, current radiation protection standards and practices are based on the premise that any radiation dose, no matter how small, may result in detrimental health effects, such as cancer and hereditary genetic damage. -
G20070354/G20070331 Fact Sheet, Biological Effects of Radiation
Fact Sheet 11 Ofice of Public Affairs Telephone: 301/415-8200 E-mail : opa @nrc.g ov I Biological Effects of Radiation Background Radiation is all around us. It is naturally present in our environment and has been since the birth of this planet. Consequently, life has evolved in an environment which has significant levels of ionizing radiation. It comes from outer space (cosmic), the ground (terrestrial), and even from within our own bodies. It is present in the air we breathe, the food we eat, the water we drink, and in the construction materials used to build our homes. Certain foods such as bananas and brazil nuts naturally contain higher levels of radiation than other foods. Brick and stone homes have higher natural radiation levels than homes made of other building materials such as wood. Our nation's Capitol, which is largely constructed of granite, contains higher levels of natural radiation than most homes. Levels of natural or background radiation can vary greatly from one location to the next. For example, people residing in Colorado are exposed to more natural radiation than residents of the east or west coast because Colorado has more cosmic radiation at a higher altitude and more terrestrial radiation from soils enriched in naturally occurring uranium. Furthermore, a lot of our natural exposure is due to radon, a gas from the earth's crust that is present in the air we breathe. The average annual radiation exposure from natural sources to an individual in the United States is about 300 millirem (3 millisieverts)*. Radon gas accounts for two-thirds of this exposure, while cosmic, terrestrial, and internal radiation account for the remainder. -
Estimation of the Collective Effective Dose to the Population from Medical X-Ray Examinations in Finland
Estimation of the collective effective dose to the population from medical x-ray examinations in Finland Petra Tenkanen-Rautakoskia, Hannu Järvinena, Ritva Blya aRadiation and Nuclear Safety Authority (STUK), PL 14, 00880 Helsinki, Finland Abstract. The collective effective dose to the population from all x-ray examinations in Finland in 2005 was estimated. The numbers of x-ray examinations were collected by a questionnaire to the health care units (response rate 100 %). The effective doses in plain radiography were calculated using a Monte Carlo based program (PCXMC), as average values for selected health care units. For computed tomography (CT), weighted dose length product (DLPw) in a standard phantom was measured for routine CT protocols of four body regions, for 80 % of CT scanners including all types. The effective doses were calculated from DPLw values using published conversion factors. For contrast-enhanced radiology and interventional radiology, the effective dose was estimated mainly by using published DAP values and conversion factors for given body regions. About 733 examinations per 1000 inhabitants (excluding dental) were made in 2005, slightly less than in 2000. The proportions of plain radiography, computed tomography, contrast-enhanced radiography and interventional procedures were about 92, 7, 1 and 1 %, respectively. From 2000, the frequencies (number of examinations per 1000 inhabitants) of plain radiography and contrast-enhanced radiography have decreased about 8 and 33 %, respectively, while the frequencies of CT and interventional radiology have increased about 28 and 38 %, respectively. The population dose from all x-ray examinations is about 0,43 mSv per person (in 1997 0,5 mSv). -
Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams
Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams Frequently Asked Questions Introduction In August of 2021, the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) jointly released the following position statement advising against using information about a patient’s previous cumulative dose information from medical imaging exams to decide the appropriateness of future imaging exams. This statement was also endorsed by the Radiological Society of North America (RSNA). It is the position of the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) that the decision to perform a medical imaging exam should be based on clinical grounds, including the information available from prior imaging results, and not on the dose from prior imaging-related radiation exposures. AAPM has long advised, as recommended by the International Commission on Radiological Protection (ICRP), that justification of potential patient benefit and subsequent optimization of medical imaging exposures are the most appropriate actions to take to protect patients from unnecessary medical exposures. This is consistent with the foundational principles of radiation protection in medicine, namely that patient radiation dose limits are inappropriate for medical imaging exposures. Therefore, the AAPM recommends against using dose values, including effective dose, from a patient’s prior imaging exams for the purposes of medical decision making. Using quantities such as cumulative effective dose may, unintentionally or by institutional or regulatory policy, negatively impact medical decisions and patient care. This position statement applies to the use of metrics to longitudinally track a patient’s dose from medical radiation exposures and infer potential stochastic risk from them. -
Influence of Radiation Damage on Xenon Diffusion in Silicon Carbide
Influence of radiation damage on xenon diffusion in silicon carbide E. Friedland*a, K. Gärtnerb, T.T. Hlatshwayoa, N.G. van der Berga, T.T. Thabethea a Physics Department, University of Pretoria, Pretoria, South Africa b Institut für Festkörperphysik, Friedrich-Schiller-Universität, Jena, Germany Keywords silicon carbide, diffusion, radiation damage *Corresponding author. E mail: [email protected], Phone: +27-12-4202453, Fax: +27-12-3625288 Diffusion of xenon in poly and single crystalline silicon carbide and the possible influence of radiation damage on it are investigated. For this purpose 360 keV xenon ions were implanted in commercial 6H-SiC and CVD-SiC wafers at room temperature, 350 °C and 600 °C. Width broadening of the implantation pro- files and xenon retention during isochronal and isothermal annealing up to temperatures of 1500 °C was de- termined by RBS-analysis, whilst in the case of 6H-SiC damage profiles were simultaneously obtained by a- particle channelling. No diffusion or xenon loss was detected in the initially amorphized and eventually re- crystallized surface layer of cold implanted 6H-SiC during annealing up to 1200 °C. Above that temperature serious erosion of the implanted surface occurred, which made any analysis impossible. No diffusion or xen- on loss is detected in the hot implanted 6H-SiC samples during annealing up to 1400 °C. Radiation damage dependent grain boundary diffusion is observed at 1300 °C in CVD-SiC. 1 Introduction Modern high-temperature nuclear reactors (HTR’s) commonly use fuel elements containing triple isotropic cladded (TRISO) fuel particles. These are fuel kernels surrounded by four successive lay- ers of low-density pyrolitic carbon, high-density pyrolitic carbon, silicon carbide and high-density pyrolitic carbon, with silicon carbide being the main barrier to prevent the release of fission prod- ucts. -
Uranium Fact Sheet
Fact Sheet Adopted: December 2018 Health Physics Society Specialists in Radiation Safety 1 Uranium What is uranium? Uranium is a naturally occurring metallic element that has been present in the Earth’s crust since formation of the planet. Like many other minerals, uranium was deposited on land by volcanic action, dissolved by rainfall, and in some places, carried into underground formations. In some cases, geochemical conditions resulted in its concentration into “ore bodies.” Uranium is a common element in Earth’s crust (soil, rock) and in seawater and groundwater. Uranium has 92 protons in its nucleus. The isotope2 238U has 146 neutrons, for a total atomic weight of approximately 238, making it the highest atomic weight of any naturally occurring element. It is not the most dense of elements, but its density is almost twice that of lead. Uranium is radioactive and in nature has three primary isotopes with different numbers of neutrons. Natural uranium, 238U, constitutes over 99% of the total mass or weight, with 0.72% 235U, and a very small amount of 234U. An unstable nucleus that emits some form of radiation is defined as radioactive. The emitted radiation is called radioactivity, which in this case is ionizing radiation—meaning it can interact with other atoms to create charged atoms known as ions. Uranium emits alpha particles, which are ejected from the nucleus of the unstable uranium atom. When an atom emits radiation such as alpha or beta particles or photons such as x rays or gamma rays, the material is said to be undergoing radioactive decay (also called radioactive transformation). -
THE COLLECTIVE EFFECTIVE DOSE RESULTING from RADIATION EMITTED DURING the FIRST WEEKS of the FUKUSHIMA DAIICHI NUCLEAR ACCIDENT Matthew Mckinzie, Ph.D
THE COLLECTIVE EFFECTIVE DOSE RESULTING FROM RADIATION EMITTED DURING THE FIRST WEEKS OF THE FUKUSHIMA DAIICHI NUCLEAR ACCIDENT Matthew McKinzie, Ph.D. and Thomas B. Cochran, Ph.D., Natural Resources Defense Council April 10, 2011 The Magnitude 9.0 earthquake off Japan’s Pacific Coast, which was the initiating event for accidents at four of the six reactors at the Fukushima Daiichi nuclear power plant, occurred at 14:46 local time on March 11th. At 15:41 a tsunami hit the plant and a station blackout ensued. A reconstruction of the accident progression by Areva1 posited that the final option for cooling the reactors – the reactor core isolation pumps – failed just hours later in Unit 1 (at 16:36), failed in the early morning of March 13th in Unit 3 (at 02:44), and failed early in the afternoon of March 14th in Unit 2 (at 13:25). Radiological releases spiked beginning on March 15th and in the Areva analysis are attributed to the venting of the reactor pressure vessels, explosion in Unit 2, and – significantly – explosion and fire in Unit 4. Fuel had been discharged from the Unit 4 reactor core to the adjacent spent fuel pool on November 30, 2010, raising the possibility of a core melt “on fresh air.” The Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) has posted hourly dose rates by prefecture2 on its website. We do not currently know the geographic coordinates of these radiation monitoring sites. The English language versions of the hourly dose rate measurements by prefecture begin in table form at 17:00 on March 16th, and hourly dose rates are provided as charts3 beginning at 00:00 on March 14th.