Exterior Lighting Guide for Federal Agencies

Total Page:16

File Type:pdf, Size:1020Kb

Exterior Lighting Guide for Federal Agencies EXTERIOR LIGHTING GUIDE FOR FederAL AgenCieS SPONSORS TABLE OF CONTENTS The U.S. Department of Energy, the Federal Energy Management Program, page 02 INTRODUctiON page 44 EMERGING TECHNOLOGIES Lawrence Berkeley National Laboratory (LBNL), and the California Lighting Plasma Lighting page 04 REASONS FOR OUTDOOR Technology Center (CLTC) at the University of California, Davis helped fund and Networked Lighting LiGHtiNG RETROFitS create the Exterior Lighting Guide for Federal Agencies. Photovoltaic (PV) Lighting & Systems Energy Savings LBNL conducts extensive scientific research that impacts the national economy at Lowered Maintenance Costs page 48 EXTERIOR LiGHtiNG RETROFit & $1.6 billion a year. The Lab has created 12,000 jobs nationally and saved billions of Improved Visual Environment DESIGN BEST PRActicES dollars with its energy-efficient technologies. Appropriate Safety Measures New Lighting System Design Reduced Lighting Pollution & Light Trespass Lighting System Retrofit CLTC is a research, development, and demonstration facility whose mission is Lighting Design & Retrofit Elements page 14 EVALUAtiNG THE CURRENT to stimulate, facilitate, and accelerate the development and commercialization of Structure Lighting LIGHtiNG SYSTEM energy-efficient lighting and daylighting technologies. This is accomplished through Softscape Lighting Lighting Evaluation Basics technology development and demonstrations, as well as offering outreach and Hardscape Lighting Conducting a Lighting Audit education activities in partnership with utilities, lighting manufacturers, end users, Automobile Spaces Lighting Audit Guidelines builders, designers, researchers, academics, and government agencies. Pedestrian Spaces Lighting Audit Log Outdoor Sport Lighting page 20 LiGHtiNG LiFESPAN & Outdoor Retail Lighting MAINTENANCE PLANNING page 58 Retrofit Economics CONCLUSION Life-Cycle Cost-Benefit Analysis page 60 APPENDIX Relamping Best Practices Funding Your Project page 67 GLOSSARY Recycling Tips Case Studies Lighting System Maintenance Log page 28 LiGHtiNG CONTROLS Daylighting Control Systems Occupancy Controls Lighting Controls / Implementation page 34 SOURCE TECHNOLOGIES Filament-Based Light Sources Fluorescent Light Sources High Intensity Discharge (HID) Lamps Light Emitting Diodes (LED) Best Practices for Selecting Products Exterior Lighting: Source Technologies Exterior Lighting Guide for FederAL AgenCieS 3 INTRODUCTION Exterior lighting comprises a large portion of energy This document provides overviews of exterior lighting technologies that would use at national parks. This guide should assist best be integrated into national parks as retrofits or new designs, as well as tips for evaluating light sources, performing a lighting audit, and pairing lamps with lighting facilities managers in choosing the correct luminaires controls. The key issues to consider when performing a retrofit or new lighting and practices for their spaces to reduce energy use design are energy, cost, and maintenance savings, and this guide is intended to and make their spaces more visually appealing and help make these decisions easier. safe for visitors. Lighting in national parks plays a significant role in keeping visitors safe and enhancing their stays. For example, using the correct sources to light paths and trails can contribute to visitors’ safety without upsetting the natural beauty of the park. And illuminating key attractions with energy-efficient luminaires can make their trips more memorable. Exterior lighting often is on for extended periods of time, if not 24 hours a day. By combining high-quality sources with occupant-responsive controls, the energy use can be reduced with immediate results. In the past, high pressure sodium lamps were the most efficient choice. However, the quality of light was sacrificed for efficiency. Improved ballasts for induction lamps, emerging LED luminaires, and new improvements in HID sources broaden the scope of choices. When combined with the right sensors to maximize efficiency without compromising safety, exterior lighting can be vastly improved, typically saving more than 50% in retrofit applications. © Kathreen Fontecha TABle of ContentS 4 Lighting Retrofit Guide for FederAL AgenCieS REASonS for Outdoor Lighting RetrofitS 5 REASONS FOR OUTDOOR LIGHTING RETROFITS In the United states today, most residents seldom Pervasive outdoor lighting, which allows myriad activities to continue outside even experience truly dark skies, no matter what after the sun goes down, obstructs the view of the night sky. time of night they find themselves outdoors. People rely on exterior lighting for safety, security, guidance, and recreation. Although traditional technologies and lighting designs initially met these fundamental needs, light sources, controls, and lighting designs have improved in recent years. These improvements, coupled with a nationwide push toward increased energy efficiency, have prompted widespread implementation of lighting retrofit programs. Advancements in exterior lighting technologies include increased energy savings, reduced maintenance costs, improved visual environment, enhanced safety measures, and reduced light pollution. ENERGY SAVINGS Lighting retrofits can lower energy use and costs without sacrificing light levels or quality. In addition, switching to more advanced technologies may allow users to implement lighting controls, which deliver increase functionality and energy savings. The Energy Information Administration estimates residential and commercial sectors used about 526 billion kilowatt-hours (kWh) of electricity for lighting in 2007 — enough energy to power all homes in New York state for 107 years. This amount represents 19% of total electricity consumed by both sectors and 14% of total U.S. electricity consumption.1 Residences consumed about 215 billion kWh — about 15% of residential electricity consumption.2 The commercial sector consumed about 311 billion kWh for lighting, which is 23% of that sector’s electricity consumption. Exterior lighting is included in this use and is an excellent opportunity for national parks to reduce electricity consumption. 1 U.S. Energy Information Administration: http://tonto.eia.doe.gov/ask/electricity_faqs.asp. 2 U.S. Energy Information Administration. © California Lighting Technology Center, UC Davis CREDIT . Kathreen Fontecha TABle of ContentS 6 Lighting Retrofit Guide for FederAL AgenCieS REASonS for Outdoor Lighting RetrofitS 7 FIGURE 1. Low pressure sodium CAliforniA: CASE StudieS In another notable case study by Pacific Gas and Electric Company (PG&E) for the Lighting Energy Quick Facts streetlights (top) were retrofitted Although California’s energy use per capita is the third lowest in the nation, Emerging Technologies Program, several low pressure sodium (LPS) streetlights 1. The United States Energy with LED luminaires (bottom) in San Jose (Figure 1) were retrofitted with LED systems. Lighting retrofits in San Jose, CA, for 62% there is a growing movement to further reduce this use by implementing Information Administration consisted of a one-to-one replacement of 118 55 W nominal LPS fixtures with energy savings. energy-efficient technology. Lighting is one sector targeted for improvement. reports that 19% of lighting is continuously dimmable LED luminaires rated at 75 W. The LED streetlight California Assembly Bill 1109 (Huffman, Chapter 534, Statutes of 2007), for residential and commercial systems, operating at 50% power, had an energy savings of 62% over the in combination with federal lighting standards, requires inefficient exterior lighting use, and those sectors incumbent LPS system.4 technologies to be replaced with improved devices to reduce electricity use by no account for 14% of total U.S. less than 25% from 2007 levels by 2018. To accomplish this goal, exterior lighting In a last case study by the San Diego Gas & Electric Company (SDG&E) for the electricity consumption. retrofits for public and private properties are increasing across the state. city of San Diego, advanced street lighting technologies, including induction and 2. Consumers who retrofit LED lighting systems, replaced high pressure sodium (HPS) lighting systems. CAliforniA CoMMerCIAL And InduStriAL Outdoor Lighting existing lighting systems, use In this study, one-to-one replacements of HPS were made using induction and more efficient luminaires, Consumption 3067 GWh LED systems. The LED and induction streetlight systems had average energy and use bi-level and savings of 31% and 43% over the incumbent HPS lighting systems.5 Winter peak 7 – 8 p.m. occupancy control systems Implementing the knowledge from these case studies at national parks depends on can expect energy savings of Summer peak 9 p.m. the setting. Bollards could be effective outside park visitors centers and along trails more than 50% compared to www.fypower.org/bpg/module.html?b=institutional&m=Lighting&s=Outdoor_Areas and pathways. Choosing one new technology over another to replace older lamps existing systems. will vary by location, and determining which light source will work best in a space is The following summaries of four California case studies provide tangible examples 3. Many new lighting systems addressed later in the guide, in “Evaluating the Current Lighting System.” of the potential reductions in energy consumption that can result from exterior offer significant increases lighting retrofits. in system lifetimes, resulting LOWERED MAINTENANCE COSTS in lower maintenance costs In one California
Recommended publications
  • Fluorescence Spectroscopy and Chemometrics in the Food Classification − a Review
    Czech J. Food Sci. Vol. 25, No. 4: 159–173 Fluorescence Spectroscopy and Chemometrics in the Food Classification − a Review Jana SÁDECKÁ and Jana TÓTHOVÁ Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic Abstract Sádecká J., Tóthová J. (2007): Fluorescence spectroscopy and chemometrics in the food classification − a review. Czech J. Food Sci., 25: 159–173. This review deals with the last few years’ articles on various fluorescence techniques (conventional, excitation-emis- sion matrix, and synchronous fluorescence spectroscopy) as a tool for the classification of food samples. Chemometric methods as principal component analysis, hierarchical cluster analysis, parallel factor analysis, and factorial discrimi- nate analysis are briefly reminded. The respective publications are then listed according to the food samples: dairy products, eggs, meat, fish, edible oils, and others. Keywords: chemometrics; fluorescence spectroscopy; food analysis Fluorescence spectroscopy is a rapid, sensitive, distinguish. The analytical information contained and non-destructive analytical technique pro- in fluorescence spectra can be extracted by using viding in a few seconds spectral signatures that various multivariate analysis techniques that relate can be used as fingerprints of the food products several analytical variables to the properties of (dairy products, fishes, edible oils, wines, etc.). the analyte(s). The multivariate techniques most The application of fluorescence in food analysis frequently used allow to group the samples with has increased during the last decade, probably similar characteristics, to establish classification due to the propagated use of chemometrics. The methods for unknown samples (qualitative analysis) study by Norgaard (1995) can serve as a general or to perform methods determining some proper- investigation of how to enhance the potential of ties of unknown samples (quantitative analysis).
    [Show full text]
  • Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp
    Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp Laurie Ramroth Rocky Mountain Institute February 2008 Image: Compact Fluorescent Lamp. From Mark Stozier on istockphoto. Abstract This paper addresses the debate over compact fluorescent lamps (CFLs) and incandescents through life-cycle analyses (LCA) conducted in the SimaPro1 life-cycle analysis program. It compares the environmental impacts of providing a given amount of light (approximately 1,600 lumens) from incandescents and CFLs for 10,000 hours. Special attention has been paid to recently raised concerns regarding CFLs—specifically that their complex manufacturing process uses so much energy that it outweighs the benefits of using CFLs, that turning CFLs on and off frequently eliminates their energy-efficiency benefits, and that they contain a large amount of mercury. The research shows that the efficiency benefits compensate for the added complexity in manufacturing, that while rapid on-off cycling of the lamp does reduce the environmental (and payback) benefits of CFLs they remain a net “win,” and that the mercury emitted over a CFL’s life—by power plants to power the CFL and by leakage on disposal—is still less than the mercury that can be attributed to powering the incandescent. RMI: Life Cycle of CFL and Incandescent 2 Heading Page Introduction................................................................................................................... 5 Background...................................................................................................................
    [Show full text]
  • Fluorescent Light-Emitting Diode (LED) Microscopy for Diagnosis of Tuberculosis
    Fluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis —Policy statement— March 2010 Contents Abbreviations Executive summary 1. Background 2. Evidence for policy formulation 2.1 Synthesis of evidence 2.2 Management of declarations of interest 3. Summary of results 4. Policy recommendations 5. Intended audience References Abbreviations CI confidence interval GRADE grades of recommendation assessment, development and evaluation LED light-emitting diode STAG-TB Strategic and Technical Advisory Group for Tuberculosis TB tuberculosis WHO World Health Organization Executive summary Conventional light microscopy of Ziehl-Neelsen-stained smears prepared directly from sputum specimens is the most widely available test for diagnosis of tuberculosis (TB) in resource-limited settings. Ziehl-Neelsen microscopy is highly specific, but its sensitivity is variable (20–80%) and is significantly reduced in patients with extrapulmonary TB and in HIV-infected TB patients. Conventional fluorescence microscopy is more sensitive than Ziehl-Neelsen and takes less time, but its use has been limited by the high cost of mercury vapour light sources, the need for regular maintenance and the requirement for a dark room. Light-emitting diodes (LED) have been developed to offer the benefits of fluorescence microscopy without the associated costs. In 2009, the evidence for the efficacy of LED microscopy was assessed by the World Health Organization (WHO), on the basis of standards appropriate for evaluating both the accuracy and the effect of new TB diagnostics on patients and public health. The results showed that the accuracy of LED microscopy was equivalent to that of international reference standards, it was more sensitive than conventional Ziehl-Neelsen microscopy and it had qualitative, operational and cost advantages over both conventional fluorescence and Ziehl- Neelsen microscopy.
    [Show full text]
  • Article Soot Photometer Using Supervised Machine Learning
    Atmos. Meas. Tech., 12, 3885–3906, 2019 https://doi.org/10.5194/amt-12-3885-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning Kara D. Lamb1,2 1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA 2NOAA Earth System Research Laboratory Chemical Sciences Division, Boulder, CO, USA Correspondence: Kara D. Lamb ([email protected]) Received: 15 March 2019 – Discussion started: 22 March 2019 Revised: 20 June 2019 – Accepted: 21 June 2019 – Published: 15 July 2019 Abstract. Single particle soot photometers (SP2) use laser- each class are compared with the true class for those particles induced incandescence to detect aerosols on a single particle to estimate generalization performance. While the specific basis. SP2s that have been modified to provide greater spec- class approach performed well for rBC and Fe3O4 (≥ 99 % tral contrast between their narrow and broad-band incandes- of these aerosols are correctly identified), its classification of cent detectors have previously been used to characterize both other aerosol types is significantly worse (only 47 %–66 % refractory black carbon (rBC) and light-absorbing metallic of other particles are correctly identified). Using the broader aerosols, including iron oxides (FeOx). However, single par- class approach, we find a classification accuracy of 99 % for ticles cannot be unambiguously identified from their incan- FeOx samples measured in the laboratory. The method al- descent peak height (a function of particle mass) and color lows for classification of FeOx as anthropogenic or dust-like ratio (a measure of blackbody temperature) alone.
    [Show full text]
  • Introduction 1
    1 1 Introduction . ex arte calcinati, et illuminato aeri [ . properly calcinated, and illuminated seu solis radiis, seu fl ammae either by sunlight or fl ames, they conceive fulgoribus expositi, lucem inde sine light from themselves without heat; . ] calore concipiunt in sese; . Licetus, 1640 (about the Bologna stone) 1.1 What Is Luminescence? The word luminescence, which comes from the Latin (lumen = light) was fi rst introduced as luminescenz by the physicist and science historian Eilhardt Wiede- mann in 1888, to describe “ all those phenomena of light which are not solely conditioned by the rise in temperature,” as opposed to incandescence. Lumines- cence is often considered as cold light whereas incandescence is hot light. Luminescence is more precisely defi ned as follows: spontaneous emission of radia- tion from an electronically excited species or from a vibrationally excited species not in thermal equilibrium with its environment. 1) The various types of lumines- cence are classifi ed according to the mode of excitation (see Table 1.1 ). Luminescent compounds can be of very different kinds: • Organic compounds : aromatic hydrocarbons (naphthalene, anthracene, phenan- threne, pyrene, perylene, porphyrins, phtalocyanins, etc.) and derivatives, dyes (fl uorescein, rhodamines, coumarins, oxazines), polyenes, diphenylpolyenes, some amino acids (tryptophan, tyrosine, phenylalanine), etc. + 3 + 3 + • Inorganic compounds : uranyl ion (UO 2 ), lanthanide ions (e.g., Eu , Tb ), doped glasses (e.g., with Nd, Mn, Ce, Sn, Cu, Ag), crystals (ZnS, CdS, ZnSe, CdSe, 3 + GaS, GaP, Al 2 O3 /Cr (ruby)), semiconductor nanocrystals (e.g., CdSe), metal clusters, carbon nanotubes and some fullerenes, etc. 1) Braslavsky , S. et al . ( 2007 ) Glossary of terms used in photochemistry , Pure Appl.
    [Show full text]
  • 2. Making Fires Burn Or Go out 1: Introduction to the Fire Triangle
    2. Making Fires Burn or Go Out 1: Introduction to the Fire Triangle Lesson Overview: In this activity, students describe and organize what they already know Subjects: Science, Mathematics, Writing, about fire so it fits into the conceptual model of Speaking and Listening, Health and the Fire Triangle. They examine the geometric Safety stability of a triangle and how that property Duration: one half-hour session applies to fire. Group size: Whole class. Students work in groups of 2-3. Lesson Goal: Increase students’ understanding of Setting: Indoors how fires burn and why they go out. Vocabulary: Fire Triangle, fuel, heat, ignition, oxygen, model Objectives: • Students can construct a triangle out of toothpicks and gumdrops, and can label its legs with the three components of the Fire Triangle. • Students can demonstrate that removing one side of the triangle makes it collapse. • Students can identify the component(s) of the Fire Triangle that are removed in various scenarios, and explain how this makes the fire go out. Standards: 1st 2nd 3rd 4th 5th CCSS Writing 2, 7, 8 2, 7, 8 2, 7, 10 2,7, 9, 10 2,7, 9, 10 Speaking/Listening 1, 2, 4, 6 1, 2, 4, 6 1, 2, 4, 6 1, 2, 4, 6 1, 2, 4, 6 1, 2, 3, 4, Language 1, 2, 4, 6 1, 2, 4, 6 6 1, 2, 3, 4, 6 1, 2, 3, 4, 6 MP.4, MP.4, MP.4, MP.4, Math MP.5 MP.5, MP.5 MP.5 MP.4, MP.5 Matter and Its PS1.A, NGSS Interactions PS1.B PS1.B From Molecules to Organisms: Structure/Processes LS1.C Engineering Design ETS1.B ETS1.B EEEGL Strand 1 A, B, C, E, F, G A, B, C, E, F, G Teacher Background: This activity explores the chemistry of combustion as described by a conceptual model called the Fire Triangle.
    [Show full text]
  • Energy Efficiency Lighting Hearing Committee On
    S. HRG. 110–195 ENERGY EFFICIENCY LIGHTING HEARING BEFORE THE COMMITTEE ON ENERGY AND NATURAL RESOURCES UNITED STATES SENATE ONE HUNDRED TENTH CONGRESS FIRST SESSION TO RECEIVE TESTIMONY ON THE STATUS OF ENERGY EFFICIENT LIGHT- ING TECHNOLOGIES AND ON S. 2017, THE ENERGY EFFICIENT LIGHT- ING FOR A BRIGHTER TOMORROW ACT SEPTEMBER 12, 2007 ( Printed for the use of the Committee on Energy and Natural Resources U.S. GOVERNMENT PRINTING OFFICE 39–385 PDF WASHINGTON : 2007 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate 0ct 09 2002 11:58 Feb 20, 2008 Jkt 040443 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 G:\DOCS\39385.XXX SENERGY2 PsN: MONICA COMMITTEE ON ENERGY AND NATURAL RESOURCES JEFF BINGAMAN, New Mexico, Chairman DANIEL K. AKAKA, Hawaii PETE V. DOMENICI, New Mexico BYRON L. DORGAN, North Dakota LARRY E. CRAIG, Idaho RON WYDEN, Oregon LISA MURKOWSKI, Alaska TIM JOHNSON, South Dakota RICHARD BURR, North Carolina MARY L. LANDRIEU, Louisiana JIM DEMINT, South Carolina MARIA CANTWELL, Washington BOB CORKER, Tennessee KEN SALAZAR, Colorado JOHN BARRASSO, Wyoming ROBERT MENENDEZ, New Jersey JEFF SESSIONS, Alabama BLANCHE L. LINCOLN, Arkansas GORDON H. SMITH, Oregon BERNARD SANDERS, Vermont JIM BUNNING, Kentucky JON TESTER, Montana MEL MARTINEZ, Florida ROBERT M. SIMON, Staff Director SAM E. FOWLER, Chief Counsel FRANK MACCHIAROLA, Republican Staff Director JUDITH K. PENSABENE, Republican Chief Counsel (II) VerDate 0ct 09 2002 11:58 Feb 20, 2008 Jkt 040443 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 G:\DOCS\39385.XXX SENERGY2 PsN: MONICA C O N T E N T S STATEMENTS Page Bingaman, Hon.
    [Show full text]
  • Networked Indoor Lighting Controls with Visible Light Communication
    Delft University of Technology Master’s Thesis in Embedded Systems Networked Indoor Lighting Controls with Visible Light Communication Kevin Warmerdam Networked Indoor Lighting Controls with Visible Light Communication Master's Thesis in Embedded Systems Embedded Software Section Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology Mekelweg 4, 2628 CD Delft, The Netherlands Kevin Warmerdam 1505343 [email protected] September 10, 2015 Author Kevin Warmerdam ([email protected]) Title Networked Indoor Lighting Controls with Visible Light Communication MSc presentation September 23, 2015 Graduation Committee Prof. Dr. Koen Langendoen (chair) Delft University of Technology Dr. Zaid Al-Ars Delft University of Technology Dr. Ashish Pandharipande Philips Research Dr. Marco Zuniga Delft University of Technology Abstract Intelligent lighting systems employ dimmable luminaires, photosensors, and occupancy sensors to adapt to daylight and user presence conditions in in- door environments. By providing the illumination required for users and no more, significant energy savings can be made. The state of the art in these lighting systems currently relies on dedicated communication hardware such as radio networking modules. Additionally, the state of the art relies on pa- rameters specific for the environment to be known called the optical channel gains. Although these may be measured in a calibration step while the sys- tem is offline, occupants interacting with the environment affect the optical channel gains. Currently, such environment changes can compromise the desired control behavior of intelligent lighting systems. Visible light communication (VLC) presents an alternative to radio com- munication in networked lighting control systems. It reuses the system's luminaires as transmitters and its photosensors as receivers.
    [Show full text]
  • Characterisation of a Deep-Ultraviolet Light-Emitting Diode Emission Pattern Via Fluorescence
    Characterisation of a deep-ultraviolet light-emitting diode emission pattern via fluorescence Mollie McFarlane* and Gail McConnell1 *[email protected] 1Department of Physics, University of Strathclyde, SUPA, Glasgow, U.K. November 2019 Abstract Recent advances in LED technology have allowed the development of high-brightness deep- UV LEDs with potential applications in water purification, gas sensing and as excitation sources in fluorescence microscopy. The emission pattern of an LED is the angular distribution of emission intensity and can be mathematically modelled or measured using a camera, although a general model is difficult to obtain and most CMOS and CCD cameras have low sensitivity in the deep-UV. We report a fluorescence-based method to determine the emission pattern of a deep-UV LED, achieved by converting 280 nm radiation into visible light via fluorescence such that it can be detected by a standard CMOS camera. We find that the emission pattern of the LED is consistent with the Lambertian trend typically obtained in planar LED packages to an accuracy of 99.6%. We also demonstrate the ability of the technique to distinguish between LED packaging types. arXiv:1911.11669v1 [physics.ins-det] 26 Nov 2019 1 1 Introduction Recent developments in light-emitting diode (LED) technology have produced deep-ultraviolet alu- minium gallium nitride (AlGaN) LEDs with wavelengths ranging between 220-280 nm emitting in the 100 mW range [1]. These LEDs have applications in sterilisation, water purification [2] and gas-sensing [3]. Deep-UV LEDs also have potential applications as excitation sources in fluorescence microscopy. In particular, 280 nm LEDs have an electroluminescence spectrum which overlaps well with the excitation spectrum of many fluorophores including semiconductor quantum dots, aromatic amino acids tryptophan and tyrosine [4] and even standard dyes such as eosin, rhodamine and DAPI [5] [6].
    [Show full text]
  • Biofluorescence
    Things That Glow In The Dark Classroom Activities That Explore Spectra and Fluorescence Linda Shore [email protected] “Hot Topics: Research Revelations from the Biotech Revolution” Saturday, April 19, 2008 Caltech-Exploratorium Learning Lab (CELL) Workshop Special Guest: Dr. Rusty Lansford, Senior Scientist and Instructor, Caltech Contents Exploring Spectra – Using a spectrascope to examine many different kinds of common continuous, emission, and absorption spectra. Luminescence – A complete description of many different examples of luminescence in the natural and engineered world. Exploratorium Teacher Institute Page 1 © 2008 Exploratorium, all rights reserved Exploring Spectra (by Paul Doherty and Linda Shore) Using a spectrometer The project Star spectrometer can be used to look at the spectra of many different sources. It is available from Learning Technologies, for under $20. Learning Technologies, Inc., 59 Walden St., Cambridge, MA 02140 You can also build your own spectroscope. http://www.exo.net/~pauld/activities/CDspectrometer/cdspectrometer.html Incandescent light An incandescent light has a continuous spectrum with all visible colors present. There are no bright lines and no dark lines in the spectrum. This is one of the most important spectra, a blackbody spectrum emitted by a hot object. The blackbody spectrum is a function of temperature, cooler objects emit redder light, hotter objects white or even bluish light. Fluorescent light The spectrum of a fluorescent light has bright lines and a continuous spectrum. The bright lines come from mercury gas inside the tube while the continuous spectrum comes from the phosphor coating lining the interior of the tube. Exploratorium Teacher Institute Page 2 © 2008 Exploratorium, all rights reserved CLF Light There is a new kind of fluorescent called a CFL (compact fluorescent lamp).
    [Show full text]
  • Fluorescence of Tonic Water Introduction SCIENTIFIC Color Is a Result of the Interaction of Light with Matter
    Fluorescence of Tonic Water Introduction SCIENTIFIC Color is a result of the interaction of light with matter. The color that a solution appears to the human eye can change depending on the nature of the light source used to illuminate it. Tonic water appears clear and colorless under normal classroom lights, but is brightly colored when exposed to an ultraviolet (black) light. Concepts • Fluorescence • Absorbance • Transmittance • Emission Materials Tonic water, 500 mL Visible light source—classroom lights work well Beaker, 600-mL Ultraviolet light source—black light Safety Precautions Do not look directly at the black light; its high-energy output can be damaging to eyes. Any food-grade item brought into the lab is con- sidered a laboratory chemical and may not be removed from the lab and later consumed. Wash hands thoroughly with soap and water before leaving the laboratory. Please review current Material Safety Data Sheets for additional safety, handling, and disposal informa- tion. Procedure 1. Pour approximately 500 mL of tonic water into the 600-mL beaker. Observe that the tonic water is clear and colorless. 2. Turn off all the lights and completely darken the room. Turn on the black light and shine it on the tonic water. Observe that the tonic water now appears fluorescent blue in color! Disposal Please consult your current Flinn Scientific Catalog/Reference Manual for general guidelines and specific procedures, and review all federal, state and local regulations that may apply, before proceeding. Tonic water may be rinsed down
    [Show full text]
  • Basic Physics of the Incandescent Lamp (Lightbulb) Dan Macisaac, Gary Kanner,Andgraydon Anderson
    Basic Physics of the Incandescent Lamp (Lightbulb) Dan MacIsaac, Gary Kanner,andGraydon Anderson ntil a little over a century ago, artifi- transferred to electronic excitations within the Ucial lighting was based on the emis- solid. The excited states are relieved by pho- sion of radiation brought about by burning tonic emission. When enough of the radiation fossil fuels—vegetable and animal oils, emitted is in the visible spectrum so that we waxes, and fats, with a wick to control the rate can see an object by its own visible light, we of burning. Light from coal gas and natural say it is incandescing. In a solid, there is a gas was a major development, along with the near-continuum of electron energy levels, realization that the higher the temperature of resulting in a continuous non-discrete spec- the material being burned, the whiter the color trum of radiation. and the greater the light output. But the inven- To emit visible light, a solid must be heat- tion of the incandescent electric lamp in the ed red hot to over 850 K. Compare this with Dan MacIsaac is an 1870s was quite unlike anything that had hap- the 6600 K average temperature of the Sun’s Assistant Professor of pened before. Modern lighting comes almost photosphere, which defines the color mixture Physics and Astronomy at entirely from electric light sources. In the of sunlight and the visible spectrum for our Northern Arizona University. United States, about a quarter of electrical eyes. It is currently impossible to match the He received B.Sc.
    [Show full text]