Nrf2 Activation Attenuates Genetic Endoplasmic Reticulum Stress Induced by a Mutation in the Phosphomannomutase 2 Gene in Zebrafish

Total Page:16

File Type:pdf, Size:1020Kb

Nrf2 Activation Attenuates Genetic Endoplasmic Reticulum Stress Induced by a Mutation in the Phosphomannomutase 2 Gene in Zebrafish Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish Katsuki Mukaigasaa,1,2, Tadayuki Tsujitaa,b,1,3, Vu Thanh Nguyena,1,LiLia,1,4, Hirokazu Yagic, Yuji Fusea, Yaeko Nakajima-Takagia,5, Koichi Katoc,d,e, Masayuki Yamamotob,f, and Makoto Kobayashia,b,6 aDepartment of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 305-8575 Tsukuba, Japan; bExploratory Research for Advanced Technology Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 305-8575 Tsukuba, Japan; cGraduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, 467-8603 Nagoya, Japan; dOkazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, 444-8787 Aichi, Japan; eInstitute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8787 Aichi, Japan; and fDepartment of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, 980-8575 Sendai, Japan Edited by Igor B. Dawid, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and approved January 31, 2018 (received for review August 9, 2017) Nrf2 plays critical roles in animals’ defense against electrophiles the novel Nrf2-inducing cellular stresses and elucidate the mo- and oxidative stress by orchestrating the induction of cytoprotec- lecular basis of their regulation. tive genes. We previously isolated the zebrafish mutant it768,which In this study, we identified the gene responsible for it768, one displays up-regulated expression of Nrf2 target genes in an uninduced of the six mutant lines, and elucidated the molecular mechanism state. In this paper, we determine that the gene responsible for it768 for how the mutation activates the Keap1–Nrf2 system. The was the zebrafish homolog of phosphomannomutase 2 (Pmm2), gene responsible for it768 was phosphomannomutase 2 (pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its which encodes the enzyme required for the biosynthesis of mutation in humans leads to PMM2-CDG (congenital disorders of gly- mannose-1-phosphate, an essential metabolite for an early step cosylation), the most frequent type of CDG. The pmm2it768 larvae in the N-glycosylation process. pmm2it768 homozygous larvae exhibited mild defects in N-glycosylation, indicating that the showed impaired and insufficient N-glycosylation, followed by an pmm2it768 mutation is a hypomorph, as in human PMM2-CDG pa- increase in the endoplasmic reticulum (ER) stress. We found tients. A gene expression analysis showed that pmm2it768 larvae that the ER stress induces the up-regulation of the Keap1– display up-regulation of endoplasmic reticulum (ER) stress, sug- Nrf2 system through the double-stranded RNA-activated protein gesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up- Significance regulated the gstp1 expression in an Nrf2-dependent manner. Fur- thermore, the up-regulation of gstp1 by the pmm2 inactivation Nrf2 is a master regulator of the antioxidant response and xeno- was diminished by knocking down or out double-stranded RNA- biotic metabolism. In this paper, we demonstrate that Nrf2 also activated protein kinase (PKR)-like ER kinase (PERK), one of the main plays a critical role in the endoplasmic reticulum (ER) stress response ER stress sensors, suggesting that Nrf2 was activated in response to usingazebrafishmutantinwhichNrf2isspontaneouslyactivated. the ER stress via the PERK pathway. ER stress-induced activation of The gene responsible for this mutant was phosphomannomutase 2 Nrf2 was reported previously, but the results have been controver- (pmm2), the enzyme required for the N-glycosylation. Human sial. Our present study clearly demonstrated that ER stress can indeed PMM2 is known to be the gene responsible for PMM2-CDG activate Nrf2 and this regulation is evolutionarily conserved among (congenital disorders of glycosylation), which currently has no vertebrates. Moreover, ER stress induced in pmm2it768 mutants was therapeutic options. pmm2 mutant larvae showed up-regulated ameliorated by the treatment of the Nrf2-activator sulforaphane, in- ER stress and ER stress-dependent Nrf2 activation. Of note, the dicating that Nrf2 plays significant roles in the reduction of ER stress. ER stress in mutant larvae was attenuated following treatment with the Nrf2 activator sulforaphane, suggesting that the ER stress | Nrf2 | PMM2-CDG | sulforaphane | zebrafish mutant pathological conditions of ER stress-associated diseases may be improved by taking Nrf2-activating foods. he Keap1–Nrf2 system senses various environmental stresses Tand induces cytoprotective genes to protect cells from these Author contributions: K.M., T.T., V.T.N., L.L., M.Y., and M.K. designed research; K.M., T.T., stresses (1–3). The main components of the system are Nrf2 and V.T.N., L.L., H.Y., Y.F., Y.N.-T., K.K., and M.K. performed research; K.M., T.T., V.T.N., and Keap1; Nrf2 heterodimerizes with small Maf proteins and func- L.L. analyzed data; and M.K. wrote the paper. tions as a transcription activator while Keap1 represses Nrf2 The authors declare no conflict of interest. functions as an adaptor for Cul3-based E3 ligase to regulate This article is a PNAS Direct Submission. the proteasomal degradation of Nrf2. In addition to the Nrf2- Published under the PNAS license. inhibiting effects, Keap1 also functions as a sensor molecule for a 1K.M., T.T., V.T.N., and L.L. contributed equally to this work. variety of Nrf2-activating compounds. One of the most interesting 2Present address: Department of Neuroanatomy and Embryology, School of Medicine, points in the Keap1–Nrf2 system is that it can respond to cellular Fukushima Medical University, 960-1295 Fukushima, Japan. stresses, such as autophagy impairment and mitochondria stress 3Present address: Department of Applied Biochemistry and Food Science, Saga University, (4, 5), in addition to well-studied oxidative stress and electrophiles. 840-8502 Saga, Japan. The Keap1–Nrf2 system is well conserved among vertebrates, 4Present address: School of Life Science and Technology, Harbin Institute of Technology, including zebrafish (6–8), in light of its molecular basis (9–11), 150080 Harbin, China. activating chemicals and stress (12–15), target genes (16–18), 5Present address: Department of Cellular and Molecular Medicine, Graduate School of and physiological functions (15, 19). We previously isolated six Medicine, Chiba University, 260-8670 Chiba, Japan. mutant zebrafish lines in which Nrf2 is activated without treat- 6To whom correspondence should be addressed. Email: [email protected]. ment with Nrf2 activators (12). We concluded that the mutations This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. in these lines generate some endogenous cellular stresses that 1073/pnas.1714056115/-/DCSupplemental. can activate Nrf2. The analysis of these mutants will help clarify Published online February 22, 2018. 2758–2763 | PNAS | March 13, 2018 | vol. 115 | no. 11 www.pnas.org/cgi/doi/10.1073/pnas.1714056115 Downloaded by guest on September 29, 2021 kinase (PKR)-like ER kinase (PERK) pathway. The Nrf2 acti- type (5mis-pmm2MO). Conversely, the overexpression of pmm2 vation by ER stress has been demonstrated previously using cultured reduced the up-regulated expression of gstp1 in pmm2it768 homo- cells (20), but whether or not this is part of general regulation is zygous larvae (Fig. S2D). These results indicated that the mutation controversial, since negative data were also reported by other groups of pmm2 is indeed the reason why the gstp1 expression was up- (21–23). regulated in it768 mutants. Genomic sequencing of pmm2 demonstrated that there were Results no marked differences in the coding region between WT and pmm2 Is the Gene Responsible for it768. it768 mutant embryos and it768 mutants, but the G in the beginning of intron 5 was A in the larvae showed no obvious defects during embryogenesis and mutant (Fig. 1B). Since it is the first G in the GU–AG rule (25), hatching process in bright-field images while the gstp1 expression a splicing defect was suggested. We therefore next analyzed the in the gills was up-regulated in 5-d-postfertilization (dpf) larvae pmm2 mRNA in WT and mutant larvae by reverse transcription- (Fig. 1A). The up-regulation of other Nrf2 targets, such as PCR (RT-PCR) and found that the WT mRNA was a bit longer hmox1a, was also observed in the liver of 7-dpf larvae so Nrf2 may than that from the it768 larvae, which lost the corresponding have been activated constitutively in the mutants. The expression sequences to exon 5, including the EcoRI site (Fig. S2E). To of gstp1 and hmox1a in the mutant larvae was reduced when nrf2a investigate this splicing defect in detail, we subcloned cDNA was knocked down by morpholino oligonucleotide injection from 2-dpf embryos and 5-dpf larvae and determined their nu- (nrf2aMO) (Fig. 1A), suggesting that up-regulation of these genes cleotide sequences (Fig. S2F). Normal type was not observed in is indeed mediated by the Keap1–Nrf2 system. To confirm the the homozygous mutants; instead, four types of abnormal pmm2 Nrf2 dependence of the up-regulation, we crossed the it768 mu- cDNAs with different splicing types were identified, including fh318 “+3,” which is probably translated into enzymatic-active
Recommended publications
  • Annual Report DDUV 2009
    Research at the de Duve Institute and Brussels Branch of the Ludwig Institute for Cancer Research August 2009 de Duve Institute Introduction 5 Miikka Vikkula 12 Frédéric Lemaigre 20 Annabelle Decottignies and Charles de Smet 25 Emile Vanschaftingen 31 Françoise Bontemps 37 Jean-François Collet 42 Guido Bommer 47 Mark Rider 50 Fred Opperdoes 56 Pierre Courtoy 62 Etienne Marbaix 69 Jean-Baptiste Demoulin 75 Jean-Paul Coutelier 80 Thomas Michiels 84 Pierre Coulie 89 LICR Introduction 95 Benoît Van den Eynde 98 Pierre van der Bruggen 106 Nicolas Van Baren 114 Jean-Christophe Renauld 119 Stefan Constantinescu 125 The de Duve Institute 5 THE DE DUVE INSTITUTE: AN INTERNATIONAL BIOMEDICAL RESEARCH INSTITUTE In 1974, when Christian de Duve founded the Institute of Cellular Pathology (ICP), now rena- med the de Duve Institute, he was acutely aware of the constrast between the enormous progress in biological sciences that had occurred in the 20 preceding years and the modesty of the medical advances that had followed. He therefore crea- ted a research institution based on the principle that basic research in biology would be pursued by the investigators with complete freedom, but that special attention would be paid to the exploi- tation of basic advances for medical progress. It was therefore highly appropriate for the Institute to be located on the campus of the Faculty of Emile Van Schaftingen Medicine of the University of Louvain (UCL). This campus is located in Brussels. The Univer- sity hospital (Clinique St Luc) is located within walking distance of the Institute. The main commitment of the members of the de Duve Institute is research.
    [Show full text]
  • Articles Catalytic Cycling in Β-Phosphoglucomutase: a Kinetic
    9404 Biochemistry 2005, 44, 9404-9416 Articles Catalytic Cycling in â-Phosphoglucomutase: A Kinetic and Structural Analysis†,‡ Guofeng Zhang, Jianying Dai, Liangbing Wang, and Debra Dunaway-Mariano* Department of Chemistry, UniVersity of New Mexico, Albuquerque, New Mexico 87131-0001 Lee W. Tremblay and Karen N. Allen* Department of Physiology and Biophysics, Boston UniVersity School of Medicine, Boston, Massachusetts 02118-2394 ReceiVed March 26, 2005; ReVised Manuscript ReceiVed May 18, 2005 ABSTRACT: Lactococcus lactis â-phosphoglucomutase (â-PGM) catalyzes the interconversion of â-D-glucose 1-phosphate (â-G1P) and â-D-glucose 6-phosphate (G6P), forming â-D-glucose 1,6-(bis)phosphate (â- G16P) as an intermediate. â-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function. In this paper, we examine â-PGM activation by the Mg2+ cofactor, â-PGM activation by Asp8 phosphorylation, and the role of cap domain closure in substrate discrimination. First, the 1.90 Å resolution X-ray crystal structure of the Mg2+-â-PGM complex is examined in the context of + + previously reported structures of the Mg2 -R-D-galactose-1-phosphate-â-PGM, Mg2 -phospho-â-PGM, and Mg2+-â-glucose-6-phosphate-1-phosphorane-â-PGM complexes to identify conformational changes that occur during catalytic turnover. The essential role of Asp8 in nucleophilic catalysis was confirmed by demonstrating that the D8A and D8E mutants are devoid of catalytic activity.
    [Show full text]
  • Diagnosis, Treatment and Follow Up
    DOI: 10.1002/jimd.12024 REVIEW International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up Ruqaiah Altassan1,2 | Romain Péanne3,4 | Jaak Jaeken3 | Rita Barone5 | Muad Bidet6 | Delphine Borgel7 | Sandra Brasil8,9 | David Cassiman10 | Anna Cechova11 | David Coman12,13 | Javier Corral14 | Joana Correia15 | María Eugenia de la Morena-Barrio16 | Pascale de Lonlay17 | Vanessa Dos Reis8 | Carlos R Ferreira18,19 | Agata Fiumara5 | Rita Francisco8,9,20 | Hudson Freeze21 | Simone Funke22 | Thatjana Gardeitchik23 | Matthijs Gert4,24 | Muriel Girad25,26 | Marisa Giros27 | Stephanie Grünewald28 | Trinidad Hernández-Caselles29 | Tomas Honzik11 | Marlen Hutter30 | Donna Krasnewich18 | Christina Lam31,32 | Joy Lee33 | Dirk Lefeber23 | Dorinda Marques-da-Silva9,20 | Antonio F Martinez34 | Hossein Moravej35 | Katrin Õunap36,37 | Carlota Pascoal8,9 | Tiffany Pascreau38 | Marc Patterson39,40,41 | Dulce Quelhas14,42 | Kimiyo Raymond43 | Peymaneh Sarkhail44 | Manuel Schiff45 | Małgorzata Seroczynska29 | Mercedes Serrano46 | Nathalie Seta47 | Jolanta Sykut-Cegielska48 | Christian Thiel30 | Federic Tort27 | Mari-Anne Vals49 | Paula Videira20 | Peter Witters50,51 | Renate Zeevaert52 | Eva Morava53,54 1Department of Medical Genetic, Montréal Children's Hospital, Montréal, Québec, Canada 2Department of Medical Genetic, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia 3Department of Human Genetics, KU Leuven, Leuven, Belgium 4LIA GLYCOLAB4CDG (International
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • PMM2 Gene Phosphomannomutase 2
    PMM2 gene phosphomannomutase 2 Normal Function The PMM2 gene provides instructions for making an enzyme called phosphomannomutase 2 (PMM2). This enzyme is involved in a process called glycosylation, which attaches groups of sugar molecules (oligosaccharides) to proteins. Oligosaccharides are made up of many small sugar molecules that are attached to one another in a long chain. Glycosylation modifies proteins so they can perform a wider variety of functions. In one of the early steps of glycosylation, the PMM2 enzyme converts a molecule called mannose-6-phosphate to mannose-1-phosphate. Subsequently, mannose-1-phosphate is converted into GDP-mannose, which can transfer its small sugar molecule called mannose to the growing oligosaccharide chain. Once the correct number of small sugar molecules are linked together to form the oligosaccharide, it can be attached to a protein. Health Conditions Related to Genetic Changes PMM2-congenital disorder of glycosylation More than 115 mutations in the PMM2 gene have been found to cause PMM2- congenital disorder of glycosylation (PMM2-CDG, also known as congenital disorder of glycosylation type Ia). This is a severe condition that is characterized by developmental delay, weak muscle tone (hypotonia), abnormal distribution of fat, and various other signs and symptoms. The mutations that cause PMM2-CDG change the structure of the PMM2 enzyme in different ways; however, all of the mutations appear to result in reduced enzyme activity. Decreased activity of the PMM2 enzyme leads to a shortage of GDP-mannose within cells. As a result, there is not enough activated mannose to form oligosaccharides. Glycosylation cannot proceed normally because incorrect oligosaccharides are produced.
    [Show full text]
  • 'Improvement of Dolichol-Linked Oligosaccharide Biosynthesis by The
    IMPROVEMENT OF DOLICHOL-LINKED OLIGOSACCHARIDE BIOSYNTHESIS BY THE SQUALENE SYNTHASE INHIBITOR ZARAGOZIC ACID Micha A. Haeuptle1,3, Michael Welti1,3, Heinz Troxler2, Andreas J. Hülsmeier1, Timo Imbach1, and Thierry Hennet1 1Institute of Physiology, University of Zürich, Zürich, Switzerland; 2Division of Clinical Chemistry and Biochemistry, Children Hospital Zurich, Switzerland 3These authors contributed equally Running head: Zaragozic acid improves N-glycosylation Address correspondence to: Thierry Hennet, Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. Phone: +41-44-635-5080. Fax: +41-44-635-6814. E-mail: [email protected] The majority of Congenital Disorders of involved in biosynthesis of lipid-linked Glycosylation (CDG) are caused by defects of oligosaccharide (LLO) required for N- dolichol (Dol)-linked oligosaccharide assembly, glycosylation (2) or proteins involved in glycan which lead to under-occupancy of N- processing (3,4) or transport of N-glycoproteins (5) glycosylation sites. Most mutations encountered form the molecular basis of CDG. The majority of in CDG are hypomorphic, thus leaving residual CDG encompass disorders affecting the assembly activity to the affected biosynthetic enzymes. We of the LLO precursor dolichol-pyrophosphate (Dol- hypothesized that increased cellular levels of PP)-GlcNAc2Man9Glc3, which leads to under- Dol-linked substrates might compensate for the occupancy of N-glycosylation sites (6). The low biosynthetic activity and thereby improve stepwise biosynthesis of the LLO precursor begins the output of protein N-glycosylation in CDG. at the cytosolic side of the endoplasmic reticulum To this end, we have investigated the potential of (ER) membrane by transfer of GlcNAc-P to the squalene synthase inhibitor zaragozic acid to dolichol-P (Dol-P) and completes at the luminal redirect the flow of the poly-isoprene pathway side of the ER membrane.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • The Reaction Mechanism of Phosphomannomutase in Plants
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector FEBS 18031 FEBS Letters 401 (1997) 35-37 The reaction mechanism of phosphomannomutase in plants Christine Oesterhelt, Claus Schnarrenberger, Wolfgang Gross* Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str. 12-16a, D-14195 Berlin, Germany Received 11 November 1996 the presence of an excess of GIC-I.6-P2, purified PMM from G. sul- Abstract The enzyme phosphomannomutase catalyzes the phuraria, pig brain, and yeast was incubated with 1 mM GIC-I.6-P2 interconversion of mannose-1-phosphate (Man-l-P) and man- and 0.1 mM Man-l-P for 3 h at room temperature. The reaction nose-6-phosphate (Man-6-P). In mammalian cells the enzyme products were separated by TLC at pH 10 as described [8]. The has to be activated by transfer of a phosphate group from a corresponding regions for Man-l-P, Man-6-P, and Glc-6-P were sugar-1.6-P2 (Guha, S.K. and Rose, Z.B. (1985) Arch. Biochem. scraped off, the sugar phosphates eluted, and identified enzymatically. Biophys. 243, 168). In contrast, in the red alga Galdieria The concentration of Glc-6-P was determined by the addition of Glc- sulphuraria the co-substrate (Man-1.6-P2 or GIC-I.6-P2) is 6-P dehydrogenase and NADP. For Man-6-P determination PGI and PMI were included and for Man-l-P purified PMM from G. sulphu- converted to the corresponding sugar monophosphate while the raria was added.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagno
    International Journal of Molecular Sciences Article The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers Valentina Citro 1, Chiara Cimmaruta 1, Maria Monticelli 1, Guglielmo Riccio 1, Bruno Hay Mele 1,2, Maria Vittoria Cubellis 1,* ID and Giuseppina Andreotti 3 ID 1 Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy; [email protected] (V.C.); [email protected] (C.C.); [email protected] (M.M.); [email protected] (G.R.); [email protected] (B.H.M.) 2 Dipartimento di Scienze Agrarie ed Agroalimentari, Università Federico II, 80055 Napoli, Italy 3 Istituto di Chimica Biomolecolare—CNR, 80078 Pozzuoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-679118; Fax: +39-081-679233 Received: 30 May 2018; Accepted: 26 July 2018; Published: 30 July 2018 Abstract: Type I disorders of glycosylation (CDG), the most frequent of which is phosphomannomutase 2 (PMM2-CDG), are a group of diseases causing the incomplete N-glycosylation of proteins. PMM2-CDG is an autosomal recessive disease with a large phenotypic spectrum, and is associated with mutations in the PMM2 gene. The biochemical analysis of mutants does not allow a precise genotype–phenotype correlation for PMM2-CDG. PMM2 is very tolerant to missense and loss of function mutations, suggesting that a partial deficiency of activity might be beneficial under certain circumstances. The patient phenotype might be influenced by variants in other genes associated with the type I disorders of glycosylation in the general population.
    [Show full text]