Protected Areas in the Russian Arctic Download

Total Page:16

File Type:pdf, Size:1020Kb

Protected Areas in the Russian Arctic Download PROTECTED AREAS IN THE RUSSIAN ARCTIC: CURRENT STATE AND PROSPECTS FOR DEVELOPMENT УДК 502.21(985-751.1) ББК 28.088л6 CONTENTS C PREFACE 4 Protected Areas in the Russian Arctic: Current State and Prospects for Development C by M.S. Stishov INTRODUCTION 6 ISBN 978-5-906219-06-0 1. THE EXISTING NETWORK OF PROTECTED AREAS IN THE RUSSIAN ARCTIC 11 This book is a contribution towards fulfilling the Russian Federation’s commitment in the field of protected areas under the Convention on Biological Diversity. It includes analyses of the representativeness of protected areas in the 2. REPRESENTATIVENESS, COMPLETENESS AND MAIN GAPS arctic region of Russia and assessment of their role in the conservation of rare and valuable species of flora and fauna. OF THE PROTECTED AREA NETWORK IN THE RUSSIAN ARCTIC 32 The book is the first study of the representativeness of regional protected areas that includes a comprehensive analysis 2.1. Representativeness and completeness of the Russian Arctic protected area network for of protected areas of all categories. Problems related to regional protected areas, options for solving the identified problems, and prospects for enhancing Russia’s arctic protected area networks are all based on the analyses of the landscapes and ecosystems 33 representativeness and completeness that are presented in this book. 2.1.1. Polar desert and tundra zones 33 The book’s target audiences are experts working in regional and federal governmental bodies responsible for the 2.1.3. Pacific maritime subarctic zone 58 functioning of protected areas, staff of existing protected areas, and all those interested in wildlife conservation in Russia. 2.1.4. Representativeness of the existing PA network for landscape-ecosystem diversity and main Suggested citation: network gaps 64 Stishov, M.S. 2013. Protected Areas in the Russian Arctic: Current State and Prospects for Development. WWF 2.2 Representativeness, completeness and main gaps of the Russian Arctic protected areas Russia. network for rare animals, plants and lichens 74 УДК 502.21(985-751.1) 2.2.1. Mammals 75 ББК 28.088л6 2.2.2. Birds 82 2.2.3. Amphibians and reptiles 89 Acknowledgements 2.2.4. Fishes of inland waters 89 Project coordinator and author: M.S. Stishov Authors of network-wide syntheses and analyses 2.2.5. Insects 96 Existing network of protected areas – M.S. Stishov, P.I. Zbanova 2.2.6. Freshwater and land molluscs 98 Key problems in the existing protected area network – M.S. Stishov 2.2.7. Vascular plants 99 Prospects for development of protected areas – M.S. Stishov, P.I. Zhbanova 2.2.8. Bryophytes (mosses and liverworts) 129 The information and analyses presented in this book are drawn from a number of regional and thematic reviews. 2.2.9. Lichens 134 Authors of regional reviews 2.2.10. Representativeness of the existing PA network for rare species, and unprotected areas key to Murmansk Oblast – V.N. Petrov rare species conservation 137 Arkhangelsk Oblast – A.G. Kirilov Nenets Autonomous Okrug – I.A. Lavrienko, O.V. Lavrienko 2.3. Representativeness and completeness of the Russian Arctic protected areas network Komi Republic – S.V. Degteva, A.K. Blagovidov with respect to areas with high nature conservation value 147 Yamalo-Nenets Autonomous Okrug – M.V. Mirutenko, E.S. Ravkin, O.V. Brigadirova, V.B. Petrunin 2.3.1. Wetlands of international importance 148 Krasnoyarsk Krai – O.N. Nogina, E.B. Pospelova Sakha Republic – L.S.Volkova, Y.S.Sivtsev 2.3.2. Important bird areas 156 Magadan Oblast – A.V. Andreev 2.3.3. Seabird nesting colonies and nesting areas 168 Chukotka Autonomous Okrug – N.G. Shevchenko, M.S. Stishov 2.3.4. Coastal sea mammal rookeries 177 Kamchatka Krai – O.V. Chernyiagina, E.G.Lobkov, V.E. Kirichenko, J.N. Gerasimov 2.3.5. Main calving areas of wild reindeer herds 179 Authors of thematic reviews 2.3.6. Nesting, moulting and migratory staging areas for game species of waterfowl 184 Landscapes and ecosystems – M.S. Stishov, G.M. Tertitskiy 2.3.7. Spawning and rearing grounds, feeding areas and migratory routes of commercial Rare mammal species – B.I. Sheftel fish species 186 Rare bird species – V.V. Morozov, S.A. Bukreev, M.S. Stishov Rare fish species – M.S. Stishov 2.3.8. Coastal marshes 188 Rare invertebrate species – A.K. Blagovidov, M.S. Stishov 2.3.9. Intact forest landscapes 188 Rare species of plantae vesculares – V.J.Razevin 2.3.10. Rare and relict communities and ecosystems 192 Rare bryophyte species - M.S. Ignatov Forest, open woodland and shrub communities 192 Rare lichen species – G.P. Urbanavichus, I.N. Urabanavichene Key bird habitats – T.V.Sviridova, S.A. Bukreev Steppe, cryophytic-steppe and tundra-steppe communities 193 Wetlands – O.J. Anisimova, I.E. Kamenova Communities associated with distinctive substrates 193 Seabird nesting colonies – M.V. Gavrilo, M.S. Stishov Thermophilic communities 195 Coastal breeding-grounds of sea mammals – M.V. Gavrilo, A.A. Kochnev Wild caribou – L.M. Baskin, P.I. Danilov, V.V. Larin, V.V. Mosolov, V.P. Novikov, I.M Ohlopkov, V.M. Safronov 2.3.11 Completeness of the Russian Arctic PA network for areas of high nature conservation value 196 Swampland communities – G.A. Sergienko, M.A. Shreders Virgin forest areas – D.A. Aksenov, I.V. Glushkov, M.L. Karpachevskiy, T.O. Yanitskaya, A.J. Yaroshenko 3. PROSPECTS FOR IMPROVEMENT OF THE PROTECTED AREA NETWORK Rare and relict species and ecosystems – M.S. Stishov, A.K. Blagovidov IN THE RUSSIAN ARCTIC 207 Russian translator: Denis Maksimov 3.1. Existing plans and proposals for development of federal and regional PA networks Editor of translated texted: Joan Eamer in the Russian Arctic 207 Cartography: M.S. Stishov, I.A. Yaroshenko 3.2. Proposed PA network in the Russian Arctic based on evaluation of the existing network’s completeness and representativeness 219 Published by WWF-Russia Printed by Skorost Tsveta Number of copies: 1 000 For free destribution Text: © WWF-Russia, 2014. All rights reserved. Cover: © WWF-Russia The Programme of Work on Protected Areas was signed in 2004 and the country exceed any plausible exploitation quotas. This undermines the PREFACE at the 7th meeting of the Conference of the Parties to the Convention populations of mammals, birds and fish. on Biological Diversity (COP 7). This programme largely defines In The Foundations of Governmental Policy in the Arctic for the Period until the requirements and approaches for the establishment and maintenance of protected 2020 and Further Prospects (approved by the President of the Russian Federation areas (PAs) for all the signing parties. on September 18, 2008 – #1969), the “conservation of unique arctic ecosystems” is One of the key goals of the program is the planning and creation of a listed as one of the top national priorities. There are two goals outlined as central in representative network of protected areas both at the national and regional levels. assuring ecological integrity for the arctic environment. The first is the conservation From 2005 to 2012, WWF Russia completed projects on protected areas for the and the protection of the arctic environment. The second is the eradication of whole of the Russian Federation (www.wwf.ru/resources/publ/book/292), as ecological consequences that result from human activity and global climate change. well as for specific regions of Russia and neighboring countries. The following There are two main tools for implementation of the second of these goals. The first regions were targeted: the Altai-Sayan Ecoregion (www.wwf.ru/resources/publ/ is the development of concrete guidelines for the use of bioresources in the Russian book/292), the Republic of Altai (www.wwf.ru/resources/publ/book/764) and Arctic, as well as undertaking specific actions to preserve the arctic environment, countries of Central Asia (www.wwf.ru/resources/publ/book/179). Current such as pollution monitoring. The second is the creation of protected areas, a key projects focus on perspectives on protected area development in the Russian element of the environmental policies of the Russian Federation. Arctic. The goal of the current WWF Russia effort is the development of a network The circumpolar Arctic occupies approximately 4 per cent of the surface area of of protected areas in the Russian Arctic. Protected areas must be representative the Earth but is home to only 1 per cent of global biological species. Although there of the biological diversity present in the region and work towards conserving the is a relative low level of biodiversity in the Arctic, it plays a key role in conserving biological and landscape diversity of the Arctic in the context of future socio- global biodiversity. The low biological diversity of the Arctic sharply increases economic developments. The main steps in development of this network are: the evolutionary-ecological significance of each individual species as well the 1. Analysis of the representativeness of the existing network of federal and regional importance of many of these species to humans. It also enhances the community- protected areas, followed by assessment of the efficiency of the protected areas forming role of many species in the structure of habitats and ecosystems. in the protection of regional biological diversity The Russian sector of the Arctic takes up no less than a third of the entire Arctic 2. Identification of gaps in the current PA system, based on the above analysis and plays a globally important role in the conservation of ecosystems because it hosts 3. Identification of areas that require the creation of new protected areas to close the most typical Arctic landscapes. The Russian Arctic is home to approximately 80 these gaps per cent of all species typically found in arctic landscapes and 90 per cent of the estimated 2,000 species found in the circumpolar Arctic.
Recommended publications
  • Title Post-Soviet Period Changes in Resource Utilization and Their
    Post-Soviet Period Changes in Resource Utilization Title and Their Impact on Population Dynamics: Chukotka Autonomous Okrug Author(s) Litvinenko, Tamara Vitalyevna; Kumo, Kazuhiro Citation Issue Date 2017-08 Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/28761 Right Hitotsubashi University Repository Center for Economic Institutions Working Paper Series No. 2017-3 “Post-Soviet Period Changes in Resource Utilization and Their Impact on Population Dynamics: Chukotka Autonomous Okrug” Tamara Vitalyevna Litvinenko and Kazuhiro Kumo August 2017 Center for Economic Institutions Working Paper Series Institute of Economic Research Hitotsubashi University 2-1 Naka, Kunitachi, Tokyo, 186-8603 JAPAN http://cei.ier.hit-u.ac.jp/English/index.html Tel:+81-42-580-8405/Fax:+81-42-580-8333 Post-Soviet Period Changes in Resource Utilization and Their Impact on Population Dynamics: Chukotka Autonomous Okrug Tamara Vitalyevna Litvinenko Institute of Geography, Russian Academy of Sciences Kazuhiro Kumo Institute of Economic Research, Hitotsubashi University, Japan Abstract This study examines changes that have occurred in the resource utilization sector and the impact of these changes on population dynamics in the Chukotka Autonomous Okrug during the post-Soviet period. This paper sheds light on the sorts of population-dynamics-related differences that have emerged in the region and how these differences relate to the use of natural resources and the ethnic composition of the population. Through this study, it was shown that changes have tended to be small in local areas where indigenous peoples who have engaged in traditional natural resource use for a large proportion of the population, while changes have been relatively large in areas where the proportion of non-indigenous people is high and the mining industry has developed.
    [Show full text]
  • Contemporary State of Glaciers in Chukotka and Kolyma Highlands ISSN 2080-7686
    Bulletin of Geography. Physical Geography Series, No. 19 (2020): 5–18 http://dx.doi.org/10.2478/bgeo-2020-0006 Contemporary state of glaciers in Chukotka and Kolyma highlands ISSN 2080-7686 Maria Ananicheva* 1,a, Yury Kononov 1,b, Egor Belozerov2 1 Russian Academy of Science, Institute of Geography, Moscow, Russia 2 Lomonosov State University, Faculty of Geography, Moscow, Russia * Correspondence: Russian Academy of Science, Institute of Geography, Moscow, Russia. E-mail: [email protected] a https://orcid.org/0000-0002-6377-1852, b https://orcid.org/0000-0002-3117-5554 Abstract. The purpose of this work is to assess the main parameters of the Chukotka and Kolyma glaciers (small forms of glaciation, SFG): their size and volume, and changes therein over time. The point as to whether these SFG can be considered glaciers or are in transition into, for example, rock glaciers is also presented. SFG areas were defined from the early 1980s (data from the catalogue of the glaciers compiled by R.V. Sedov) to 2005, and up to 2017: these data were retrieved from sat- Key words: ellite images. The maximum of the SGF reduction occurred in the Chantalsky Range, Iskaten Range, Chukotka Peninsula, and in the northern part of Chukotka Peninsula. The smallest retreat by this time relates to the gla- Kolyma Highlands, ciers of the southern part of the peninsula. Glacier volumes are determined by the formula of S.A. satellite image, Nikitin for corrie glaciers, based on in-situ volume measurements, and by our own method: the av- climate change, erage glacier thickness is calculated from isogypsum patterns, constructed using DEMs of individu- glacier reduction, al glaciers based on images taken from a drone during field work, and using ArcticDEM for others.
    [Show full text]
  • CRYOSTRATIGRAPHY of the FIRST TERRACE in BELY ISLAND, KARA SEA: PERMAFROST and CLIMATE HISTORY (Part 3) E.A
    Kriosfera Zemli, 2014, vol. XVIII, No. 3, pp. 32–43 http://www.izdatgeo.ru CRYOSTRATIGRAPHY OF THE FIRST TERRACE IN BELY ISLAND, KARA SEA: PERMAFROST AND CLIMATE HISTORY (Part 3) E.A. Slagoda1,2, A.N. Kurchatova1,2, O.L. Opokina1,2, I.V. Tomberg3, T.V. Khodzher3, A.D. Firsova3, E.V. Rodionova3, K.A. Popov1, E.L. Nikulina1 1 Earth Cryosphere Institute, Siberian Branch of the Russian Academy of Sciences, P/O box 1230 Tyumen, 625000, Russia; [email protected] 2Tyumen State Oil and Gas University, 56 Volodarskogo str., Tyumen, 625000, Russia 3Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya str., Irkutsk, 664033, Russia The distribution of lithological and permafrost facies deposited on the first terrace of Bely Island in the Kara Sea record alternated freezing and thawing cycles. The cryostratigraphy of the terrace, with constraints from data on the taxonomic diversity and habitats of microphytes found in the sediments, allows detailed reconstructions of the permafrost and deposition history associated with Late Pleistocene-Holocene climate and sea level changes. Cryostratigraphy, lithology, сryofacies, microphyte, thermokarst, taberal deposits, sealevel, Kara Sea INTRODUCTION The deposition history of frozen coastal and shelf In the West Arctic, however, the late Quaternary facies and formation of thermokarst in the context of climate and sealevel correlations remain more contro- latest Cenozoic sealevel changes in the Arctic Kara versial (Fig. 1) being interfered with a warming effect Sea area has been much less studied than in the East from the Atlantic water penetrated into the Barents- Arctic shelf. Freezing of shelf sediments in most of the Kara region [Polyakova, 1997].
    [Show full text]
  • Chapter 7. Cities of the Russian North in the Context of Climate Change
    ? chapter seven Cities of the Russian North in the Context of Climate Change Oleg Anisimov and Vasily Kokorev Introduction In addressing Arctic urban sustainability, one has to deal with the com- plex interplay of multiple factors, such as governance and economic development, demography and migration, environmental changes and land use, changes in the ecosystems and their services, and climate change.1 While climate change can be seen as a factor that exacerbates existing vulnerabilities to other stressors, changes in temperatures, precipitation, snow accumulation, river and lake ice, and hydrological conditions also have direct implications for Northern cities. Climate change leads to a reduction in the demand for heating energy, on one hand, and heightens concerns about the fate of the infrastruc- ture built upon thawing permafrost, on the other. Changes in snowfall are particularly important and have direct implications for the urban economy, because, together with heating costs, expenses for snow removal from streets, airport runways, roofs, and ventilation spaces underneath buildings standing on pile foundations built upon perma- frost constitute the bulk of a city’s maintenance budget during the long cold period of the year. Many cities are located in river valleys and are prone to fl oods that lead to enormous economic losses, inju- ries, and in some cases human deaths. The severity of the northern climate has a direct impact on the regional migration of labor. Climate could thus potentially be viewed as an inexhaustible public resource that creates opportunities for sustainable urban development (Simp- 142 | Oleg Anisimov and Vasily Kokorev son 2009). Long-term trends show that climate as a resource is, in fact, becoming more readily available in the Russian North, notwith- standing the general perception that globally climate change is one of the greatest challenges facing humanity in the twenty-fi rst century.
    [Show full text]
  • Chapter 4 Phytogeography of Northeast Asia
    Chapter 4 Phytogeography of Northeast Asia Hong QIAN 1, Pavel KRESTOV 2, Pei-Yun FU 3, Qing-Li WANG 3, Jong-Suk SONG 4 and Christine CHOURMOUZIS 5 1 Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA, e-mail: [email protected]; 2 Institute of Biology and Soil Science, Russian Academy of Sciences, Vladivostok, 690022, Russia, e-mail: [email protected]; 3 Institute of Applied Ecology, Chinese Academy of Sciences, P.O. Box 417, Shenyang 110015, China; 4 Department of Biological Science, College of Natural Sciences, Andong National University, Andong 760-749, Korea, e-mail: [email protected]; 5 Department of Forest Sciences, University of British Columbia, 3041-2424 mail Mall, Vancouver, B.C., V6T 1Z4, Canada, e-mail: [email protected] Abstract: Northeast Asia as defined in this study includes the Russian Far East, Northeast China, the northern part of the Korean Peninsula, and Hokkaido Island (Japan). We determined the species richness of Northeast Asia at various spatial scales, analyzed the floristic relationships among geographic regions within Northeast Asia, and compared the flora of Northeast Asia with surrounding floras. The flora of Northeast Asia consists of 971 genera and 4953 species of native vascular plants. Based on their worldwide distributions, the 971 gen- era were grouped into fourteen phytogeographic elements. Over 900 species of vascular plants are endemic to Northeast Asia. Northeast Asia shares 39% of its species with eastern Siberia-Mongolia, 24% with Europe, 16.2% with western North America, and 12.4% with eastern North America.
    [Show full text]
  • Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,
    [Show full text]
  • The Industrial North.Pdf
    RISK AND SAFETY INDUSTRIAL NORTH NUCLEAR TECHNOLOGIES AND ENVIRONMENT Risk and Safety Industrial North Nuclear Technologies and Environment Moscow 2004 The Industrial North. Nuclear Technologies and Environment. — Moscow, «Komtechprint» Publishing House, 2004, 40 p. ISBN 5-89107-053-7 The edition addresses specialists of the legislative /executive authorities and those of local government of the north-west region; activists of public environmental movements; and teachers and students of higher educa- tion institutes as well as all those who are interested in the problems of stable development of the Russian North. This document is prepared by the Nuclear Safety Institute (IBRAE RAS) under work sponsored by the United States Department of Energy. Neither the United States Government, nor any agency thereof including the U.S. Department of Energy and any and all employees of the U.S. Government, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific entity, product, process, or service by name, trade name, trademark, manufacturer, or otherwise does not neces- sarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. ISBN 5-89107-053-7 Ó IBRAE RAS, 2004 Ó«Komtechprint», 2004 (Design) INTRODUCTION Industrialization of the majority of Russian regions took part of the brochure is dedicated to the forecast, preven- place during an era when environmental safety was not tion and mitigation of nuclear/radiological emergencies.
    [Show full text]
  • XI. International Conference on Permafrost, Book of Abstracts
    XI. INTERNATIONAL CONFERENCE ON PERMAFROST | 20.-24. JUNE 2016 Landscapes and thermokarst lake area changes in Yedoma regions under modern climate conditions, Kolyma lowland tundra Aleksandra Veremeeva1, Nagezhda Glushkova2, Frank Günther3, Ingmar Nitze3, & Guido Grosse3 1Institute of Physical, Chemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia 2Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia 3Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany Recent landscape changes in the Yedoma region period. This map shows the magnitude and direction are particularly pronounced in varying thermokarst of changes for each multi-spectral index, which are lake areas reflecting the reaction of the land surface used as proxies for different land-surface properties. on modern climate changes. However, although ther- For single locations, the entire time-series can be fur- mokarst lake change detection is essential for the ther analyzed in more detail. For the period from quantification of water body expansion and drainage 1999 till 2005 air temperatures and precipitation have within a region, remote sensing-derived surface reflec- been analysed for several weather stations that existed tion trends additionally provide valuable information in the region. The Landsat time series analysis for about the general landscape development. The aim of the last 15 years shows that the northern part of the this research is to reveal the regularities of landscape region became wetter over the last 5 – 6 years. The and thermokarst lakes area changes in the Kolyma alases are particularly affected by the wetting trend. lowland tundra in comparison with meteorological The analysis of the meteo-data shows a trend of in- data and geological and geomorphological features.
    [Show full text]
  • Non-Causative Effects of Causative Morphology in Chukchi
    Ivan A. Stenin NON-CAUSATIVE EFFECTS OF CAUSATIVE MORPHOLOGY IN CHUKCHI BASIC RESEARCH PROGRAM WORKING PAPERS SERIES: LINGUISTICS WP BRP 59/LNG/2017 This Working Paper is an output of a research project implemented at the National Research University Higher School of Economics (HSE). Any opinions or claims contained in this Working Paper do not necessarily reflect the views of HSE. SERIES: LINGUISTICS Ivan A. Stenin1 NON-CAUSATIVE EFFECTS OF CAUSATIVE MORPHOLOGY IN CHUKCHI2 The paper discusses the main uses of a synthetic causative marker in Chukchi with special reference to non-causative effects of causative morphology. The causative morpheme expresses general causation when attached to patientive intransitive and some agentive intransitive predicates, namely verbs of directed motion, change of posture and ingestion. Other agentive predicates, intransitive as well as transitive, resist causativization and receive some non-causative interpretation if they form causatives. Such causative verbs usually have applicative-like or rearranging functions. JEL Classification: Z. Keywords: causative, applicative, transitivization, rearranging function, Chukchi. 1 National Research University Higher School of Economics. School of Linguistics. Senior Lecturer; E-mail: [email protected]. 2 The paper was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2017–2018 (grant № 17-05-0043) and by the Russian Academic Excellence Project «5-100». The author is grateful to all Chukchi speakers who have shared their language knowledge for their patience and generosity. 1. Introduction The paper discusses non-causative effects of causative morphology in Chukchi, a Chukotko- Kamchatkan language spoken in the Russian Far East.
    [Show full text]
  • Introduction to Picor-Ice SNAME Presentation Notes Slide 1 – Title Thank You, SNAME Arctic, for Your Kind Invitation to Speak
    Introduction to PicoR-Ice SNAME Presentation Notes Slide 1 – Title Thank you, SNAME Arctic, for your kind invitation to speak. This goes back to an excellent presentation earlier in the year (2018) by Bruce Calderbank on ice- related marine casualties in Canada. I asked if a blatant commercial presentation might be in order. Following last month’s update on the Arktos evacuation vehicle, the chairman invited me to deliver today’s presentation on PicoR-Ice. Thank you again. Slide 2 – The PicoR-Ice System PicoR-Ice is a ground-penetrating radar (GPR), the same technology you see on cable TV documentaries of treasure hunts and archaeological digs. But PicoR- Ice focuses on ice and snow thickness measurements. It is “non-invasive,” reducing need for drilling in ice. It processes radar returns and displays the underfoot reflection pattern instantly. And the entire system fits in a very manageable carrying bag, seen here on my back deck table with a standard champagne bottle for scale. Slide 3 – System Spec Sheet We have an engineering audience here today and so the system specifications are essential. A few highlights. Optimum ice thickness measurement down to 2 metres underfoot; snow layer thickness to 3 metres. Accurate to 2-3 cm. Transmission frequency of 1700 MHz trades off depth of penetration for increased resolution, important for operational underfoot thickness calculations. 30 to 60 pulses per second. When running vehicle-based survey, maximum vehicle speed of 40 km/h. The sensing technology is enclosed in a rugged and compact transmit-receive package (show actual module to audience).
    [Show full text]
  • Severnaya Zemlya, Arctic Russia: a Nucleation Area for Kara Sea Ice Sheets During the Middle to Late Quaternary
    ARTICLE IN PRESS Quaternary Science Reviews 25 (2006) 2894–2936 Severnaya Zemlya, Arctic Russia: a nucleation area for Kara Sea ice sheets during the Middle to Late Quaternary Per Mo¨ llera,Ã, David J. Lubinskib,O´ lafur Ingo´ lfssonc, Steven L. Formand, Marit-Solveig Seidenkrantze, Dimitry Yu. Bolshiyanovf, Hanna Lokrantzg, Oleg Antonovh, Maxim Pavlovf, Karl Ljunga, JaapJan Zeebergi, Andrei Andreevj aGeoBiosphere Science Centre, Department of Geology, Quaternary Sciences, Lund University, So¨lvegatan 12, SE-22362 Lund, Sweden bInstitute of Arctic and Alpine Research (INSTAAR), Campus Box 450, University of Colorado, Boulder, CO 80309-0450, USA cDepartment of Geology and Geography, Askja, University of Island, IS-101 Reykjavı´k, Iceland dDepartment of Earth and Environmental Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7059, USA eDepartment of Earth Sciences, University of Aarhus, C.F. Møllers Alle´ 120, 8000 A˚rhus , Denmark fArctic and Antarctic Research Institute (AARI), 38 Bering Street, St. Petersburg 199397, Russia gGeological Survey of Sweden, Villava¨gen 18, P.O. Box 670, SE-75128 Uppsala, Sweden hVSEGEI (A.P. Karpinsky All Russia Research Geological Institute), 74 Sredny Prospect, St. Petersburg 199106, Russia iNetherlands Institute for Fisheries Research (RIVO), Postbus 68, 1970 AB IJmuiden, The Netherlands jAlfred-Wegener-Institut fu¨r Polar- und Meeresforschung, Forschungsstelle Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany Received 24 July 2005; accepted 26 February 2006 Abstract Quaternary glacial stratigraphy and relative sea-level changes reveal at least four expansions of the Kara Sea ice sheet over the Severnaya Zemlya Archipelago at 791N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from raised-beach sequences that occur at altitudes up to 140 m a.s.l.
    [Show full text]
  • Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E
    Chapter38 Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E. Watson and Robert Vogt HISTORICAL OVERVIEW The circumscription of Anthemideae remained relatively unchanged since the early artifi cial classifi cation systems According to the most recent generic conspectus of Com- of Lessing (1832), Hoff mann (1890–1894), and Bentham pos itae tribe Anthemideae (Oberprieler et al. 2007a), the (1873), and also in more recent ones (e.g., Reitbrecht 1974; tribe consists of 111 genera and ca. 1800 species. The Heywood and Humphries 1977; Bremer and Humphries main concentrations of members of Anthemideae are in 1993), with Cotula and Ursinia being included in the tribe Central Asia, the Mediterranean region, and southern despite extensive debate (Bentham 1873; Robinson and Africa. Members of the tribe are well known as aromatic Brettell 1973; Heywood and Humphries 1977; Jeff rey plants, and some are utilized for their pharmaceutical 1978; Gadek et al. 1989; Bruhl and Quinn 1990, 1991; and/or pesticidal value (Fig. 38.1). Bremer and Humphries 1993; Kim and Jansen 1995). The tribe Anthemideae was fi rst described by Cassini Subtribal classifi cation, however, has created considerable (1819: 192) as his eleventh tribe of Compositae. In a diffi culties throughout the taxonomic history of the tribe. later publication (Cassini 1823) he divided the tribe into Owing to the artifi ciality of a subtribal classifi cation based two major groups: “Anthémidées-Chrysanthémées” and on the presence vs. absence of paleae, numerous attempts “An thé midées-Prototypes”, based on the absence vs. have been made to develop a more satisfactory taxonomy presence of paleae (receptacular scales).
    [Show full text]