Molecular Phylogeny of Chrysanthemum , Ajania and Its Allies (Anthemideae, Asteraceae) As Inferred from Nuclear Ribosomal ITS and Chloroplast Trn LF IGS Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of Chrysanthemum , Ajania and Its Allies (Anthemideae, Asteraceae) As Inferred from Nuclear Ribosomal ITS and Chloroplast Trn LF IGS Sequences See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/248021556 Molecular phylogeny of Chrysanthemum , Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trn LF IGS sequences ARTICLE in PLANT SYSTEMATICS AND EVOLUTION · FEBRUARY 2010 Impact Factor: 1.42 · DOI: 10.1007/s00606-009-0242-0 CITATIONS READS 25 117 5 AUTHORS, INCLUDING: Hongbo Zhao Sumei Chen Zhejiang A&F University Nanjing Agricultural University 15 PUBLICATIONS 56 CITATIONS 97 PUBLICATIONS 829 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Hongbo Zhao letting you access and read them immediately. Retrieved on: 02 December 2015 Plant Syst Evol (2010) 284:153–169 DOI 10.1007/s00606-009-0242-0 ORIGINAL ARTICLE Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences Hong-Bo Zhao • Fa-Di Chen • Su-Mei Chen • Guo-Sheng Wu • Wei-Ming Guo Received: 14 April 2009 / Accepted: 25 October 2009 / Published online: 4 December 2009 Ó Springer-Verlag 2009 Abstract To better understand the evolutionary history, positions of some ambiguous taxa were renewedly con- intergeneric relationships and circumscription of Chry- sidered. Subtribe Artemisiinae was chiefly divided into two santhemum and Ajania and the taxonomic position of groups, (1) one corresponding to Chrysanthemum, Arc- some small Asian genera (Anthemideae, Asteraceae), the tanthemum, Ajania, Opisthopappus and Elachanthemum sequences of the nuclear ribosomal internal transcribed (the Chrysanthemum group), (2) another to Artemisia, spacer (nrDNA ITS) and the chloroplast trnL-F intergenic Crossostephium, Neopallasia and Sphaeromeria (the spacer (cpDNA IGS) were newly obtained for 48 taxa and Artemisia group). Within the Chrysanthemum group, combined with those already deposited in GenBank. Phy- Chrysanthemum Arctanthemum and Ajania were closely logenies with an emphasis on Chrysanthemum, Ajania and related to each other, and the generic circumscription was its allies, by both maximum parsimony and Bayesian ambiguous; Phaeostigma was excluded from this group analysis, were constructed using either the ITS sequence that was also confirmed by the 6-bp insertion in the IGS alone, the IGS sequence alone or combined sequences. The sequence; radiate or rare discoid Brachanthemum was IGS sequence was low phylogenetically informative, but excluded, and discoid Elachanthemum without ray florets some deletions and insertions were informative for inter- was added to this group; at the same time, Opisthopappus specific and intergeneric delimitations. The ITS and the in subtribe Tanacetinae should be transferred to subtribe ITS/IGS phylogenies both suggested the presence of two Artemisiinae and became one of the components of the major clades. The monophyly of subtribe Artemisiinae Chrysanthemum group. Based on the molecular phyloge- (clade A) could be retrieved when the phylogenetic netic framework, the evolution of pollen and capitulum characters was inferred. Keywords Ajania Á Artemisiinae Á Chrysanthemum Á H.-B. Zhao Á F.-D. Chen (&) Á S.-M. Chen Á G.-S. Wu Á Floral characters Á Molecular phylogeny Á Radiate genera Á W.-M. Guo ITS Á trnL-F College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, China e-mail: [email protected]; [email protected] S.-M. Chen Introduction e-mail: [email protected] G.-S. Wu There are two main groups (the Artemisia group and the e-mail: [email protected] Chrysanthemum group) in Artemisiinae (Anthemideae). W.-M. Guo According to Bremer and Humphries’s (1993) cladogram e-mail: [email protected] based on morphological characters, the Artemisia group includes Artemisia, along with eight minor Asian genera H.-B. Zhao [Ajaniopsis Shih, Crossostephium Less., Filifolium Kitam., School of Agriculture and Food Science, Zhejiang Forestry College, 311300 Lin’an, Zhejiang, China Kaschgaria Poljakov, Mausolea Bunge, Neopallasia Pol- e-mail: [email protected] jakov, Stilpnolepis H. Kraschen. (including Elachanthemum 123 154 H.-B. Zhao et al. Ling et Y.R. Ling) and Turaniphytum Poljakov] and two branches and erect corolla lobes, with both of these North American genera (Picrothamnus Nutt., Sphaerome- characters, as well as the suffruticose habit and smooth ria Nutt.) characterized by their disciform or discoid, (non-spiny) pollen, being very similar to those of Artemisia commonly paniculate capitula, microechinate and thin- (Bremer and Humphries 1993). Pollen morphology sug- walled pollen, and ribless cypsela lacking a pappus. The gests that Phaeostigma is more related to Ajania than to Chrysanthemum group is comprised of genus Chrysanthe- Artemisia (Muldashev 1981, 1983), so Shih and Fu (1983) mum, some other radiate genera with solitary or laxly cor- reduced Phaeostigma to Ajania. ymbose capitula such as Arctanthemum (Tzvelev) Tzvelev, The sister group of Artemisiinae is to be found within Tridactylina (DC.) Schultz-Bip. and Brachanthemum DC., Tanacetum L., where there are some taxa such as T. par- and the disciform Ajania Poljakov and Phaeostigma Muld. thenium (L.) Schultz-Bip. and T. tatsienense (Bureau et with dense corymbose capitula, which were once included Franchet) Bremer et Humphries, which are very similar to within a broad concept of Chrysanthemum sharing the representatives of Chrysanthemum and Brachanthemum echinate exine pollen ornamentation. However, Oberprieler (Bremer and Humphries 1993). In addition, some genera et al. (2006) placed Ajaniopsis and Elachanthemum into the such as Leucanthemella Tzvelev, Nipponanthemum Kitam Chrysanthemum group (i.e., Ajania group), and separated (subtribe Leucantheminae), Hippolytia Poljakov and the new genus Hulteniella Tzvelev from Arctanthemum.At Opisthopappus Shih (subtribe Tanacetinae) are closely the same time, they excluded Ajaniopsis, Kaschgaria, related to the Chrysanthemum group (Kondo and Abd Stilpnolepis and Turaniphytum from the Artemisia group El-Twab 2002; Zhao et al. unpublished). Both Leucan- that also was confirmed by the results of Watson et al. themella and Nipponanthemum are radiate, supporting a (2002) and Valle`s et al. (2003). radiate ancestry for the Artemisiinae (Watson et al. 2002). Chrysanthemum (formerly called Dendranthema) Oberprieler et al. (2007) transferred Leucanthemella, includes 41 species according to Oberprieler et al. (2006) Nipponanthemum and Hippolytia to subtribe Artemisiinae and is mainly distributed across eastern Asia (China, based on ITS phylogeny and morphological evidence. Korea, Japan and Siberia) (Shih and Fu 1983; Bremer and Previous molecular phylogenetic research on Artemis- Humphries 1993; Iwatsuki et al. 1997; Oberprieler et al. iinae was mainly focused on the phylogeny of Artemisia 2006). Based on capitulum characters, Chrysanthemum is and its allies (Kornkven et al. 1998, 1999; Torrell et al. divided into two sections (Sect. Chrysanthemum and Sect. 1999; Watson et al. 2002; D’Andrea et al. 2003; Valle`s Chlorochlamys) (Shih and Fu 1983). Arctanthemum (four et al. 2003; Sanz et al. 2008; Tkach et al. 2008a, b). The species) and Brachanthemum (ten species) were formerly results show the generic delimitation in this subtribe sensu classified within Chrysanthemum, but more recently they and the generic independence of several small genera such were segregated and reassembled into two new genera as Crossostephium, Filifolium, Neopallasia and Sphaer- (Shih and Fu 1983; Bremer and Humphries 1993; Iwatsuki omeria are questionable (Oberprieler et al. 2006). At the et al. 1997; Oberprieler et al. 2006). Tzvelev (in Bremer same time, probably due to fewer taxa, the phylogeny of and Humphries 1993) noted that Brachanthemum is prob- the Chrysanthemum group and intergeneric relationships of ably closely related to Chrysanthemum by its thin-walled, Chrysanthemum and allies remain poorly resolved. myxogenic fruits lacking a pappus. Arctanthemum com- We present here a reconstruction of the phylogeny of prises the rosulate herbs distributed across the Arctic, subtribe Artemisiinae and some allied or segregate taxa whereas most Chrysanthemum species are leafy herbs or from other subtribes endemic to eastern Asia, with an herbaceous perennials from China and Japan (Bremer and emphasis on Chrysanthemum, Ajania, some radiate genera Humphries 1993). and their allies based on sequence variation in both the Disciform Ajania including about 39 species (Oberpri- nuclear ribosomal DNA (ITS) and chloroplast DNA (the eler et al. 2006) was once treated as a new section of trnL-F IGS). The ITS and IGS have been successfully Chrysanthemum by Kitamura (1978) and Ohashi and used in phylogenetic studies of the Asteraceae and for Yonekura (2004). The relationship between Chrysanthe- Anthemideae specifically (Oberprieler and Vogt 2000; mum and Ajania is difficult to define. Some Chrysanthe- Oberprieler 2002; Watson et al. 2002; Valle`s et al. 2003). mum species may be more closely related to Ajania than to The main goals are: (1) to investigate the circumscription other Chrysanthemum species, and thus Chrysanthemum is of the Chrysanthemum group and intergeneric relation- even more plesiomorphic, and possibly paraphyletic with ships within this group and between the Chrysanthemum Ajania and its relatives (Bremer and Humphries 1993). group and its allies from other subtribes; (2) to reevaluate Ajania quercifolia (W. Smith)
Recommended publications
  • Sarah K. Gess and Friedrich W. Gess
    Pollen wasps and flowers in southern Africa Sarah K. Gess and Friedrich W. Gess SANBI Biodiversity Series 18 Pollen wasps and flowers in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2010 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Emsie du Plessis Design & layout: Bob Greyvenstein Cover design: Bob Greyvenstein How to cite this publication GESS, S.K. & GESS, F.W. 2010. Pollen wasps and flowers in southern Africa. SANBI Biodiversity Series 18. South African National Biodiversity Institute, Pretoria. ISBN 978-1-919976-60-0 © Published by: South African National Biodiversity Institute. Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa. Tel.: +27 12 843-5000.
    [Show full text]
  • Состояние Ценопопуляций Редкого Вида Brachanthemum Krylovii Serg. (Asteraceae) В Республике Алтай
    Вестник Томского государственного университета. Биология. 2018. № 41. С. 53–74 УДК 581.5:582.998.1(571.151) doi: 10.17223/19988591/41/4 О.В. Дорогина1, Е.В. Жмудь1, Т.В. Елисафенко1, А.А. Ачимова2, И.Н. Кубан1, М.Б. Ямтыров2 1Центральный сибирский ботанический сад СО РАН, г. Новосибирск, Россия 2Алтайский филиал Центрального Сибирского ботанического сада СО РАН «Горно-Алтайский ботанический сад», Республика Алтай, Россия Состояние ценопопуляций редкого вида Brachanthemum krylovii Serg. (Asteraceae) в Республике Алтай Работа выполнена в рамках проекта «Оценка морфогенетического потенциала популяций растений Северной Азии экспериментальными методами» (рег. номер 0312-2014-0001) при частичной поддержке Российского фонда фундаментальных исследований (рег. номер 0312-2014-0001). Представлены результаты исследований четырех ценопопуляций редкого вида B. krylovii в Центральном Алтае. Установлено, что под влиянием антропогенного воздействия (проведение круглогодичного выпаса) в ценопопуляциях B. krylovii происходит изменение жизненной формы от кустарника с немногочисленными побегами к вынужденному многопобеговому полукустарничку, что способствует поддержанию целостности популяции. При наличии выпаса происходят периодическое повреждение годичных побегов и нарушение возможности лигнификации особей; переход к жизненной форме полукустарничка сопровождается более интенсивным побегообразованием и увеличением числа генеративных побегов. К неблагоприятным погодным условиям (жаркая сухая погода) в сообществах, подверженных воздействию антропогенных факторов,
    [Show full text]
  • Achillea Millefolium L
    SPECIES Achillea millefolium L. Tribe: Anthemideae Family: Asteraceae USDA CODE: Order: Asterales Subclass: Asteridae ACMI2 Class: Magnoliopsida FEIS CODE: D. Kopp 2009 San Bernardino Mtns. ACHMIL A. Montalvo 2010 Monterey Co. coast; tripinnate, pubescent form A. Montalvo 2010 Monterey Co. Subspecific taxa JepsonOnline 2010 and FNA 2010 do not recognize subspecific taxa of A. millefolium . The USDA PLANTS database (viewed Sept. 24, 2010) recognizes 12 subspecific taxa as occurring in North America: Taxon introduced and naturalized in North America (thought to be native to Europe): NRCS CODES: 1. A. m. L. var. millefolium 1. ACMIM2 Taxa native to California: 2. ACMIA 2. A. m. L. var. alpicola (Rydb.) Garrolt 3. ACMIA2 3. A. m. L. var. arenicola (Heller) Nobs 4. ACMIC 4. A. m. L. var. californica (Pollard) Jepson 5. ACMIG 5. A. m. L. var. gigantea (Pollard) Nobs 6. ACMIO 6. A. m. L. var. occidentalis (DC.) Hyl. 7. ACMIP 7. A. m. L. var. pacifica (Rydb.) G.N.Jones 8. ACMIP2 8. A. m. L. var. puberula (Rydb.) Nobs. 9. ACMIB Additional taxa outside California (mostly northerly): 10. ACMIL2 9. A. m. L. var. borealis (Bong.) Farw. 11. ACMIM5 10. A. m. L. var. litoralis (Ehrend.) Nobs 12. ACMIN 11. A. m. L. var. megacephala (Raup) Bolvin. 12. A. m. L. var. nigrescens E. Mey. Synonyms (USDA PLANTS) 2. A. alpicola (Rydb.) Rydb.; A. fusca Rydb.; A. lanulosa Nutt. ssp. alpicola (Rydb.) D.D. Keck; A. l. Nutt. var. alpicola Rydb.; A. m. L. var. fusca (Rydb.) G.N. Jones; A. subalpina Greene Taxa numbered as above 3.
    [Show full text]
  • Final Report (Years 1-5) July 2007
    Darwin Initiative: Project: 162 / 11 / 025 Cross-border conservation strategies for Altai Mountain endemics (Russia, Mongolia, Kazakhstan) Final Report (Years 1-5) July 2007 CONTENTS: DARWIN PROJECT INFORMATION 3 1 PROJECT BACKGROUND/RATIONALE 3 2 PROJECT SUMMARY 4 3 SCIENTIFIC, TRAINING, AND TECHNICAL ASSESSMENT 8 3.1 RESEARCH 8 Methodology 8 Liaison with local authorities and Regional Ecological Committees 9 Data storage and analysis 10 Results 11 3.2 TRAINING AND CAPACITY BUILDING ACTIVITIES. 14 4 PROJECT IMPACTS 15 5 PROJECT OUTPUTS 18 6 PROJECT EXPENDITURE 19 7 PROJECT OPERATION AND PARTNERSHIPS 19 8 ACTIONS TAKEN IN RESPONSE TO ANNUAL REPORT REVIEWS (IF APPLICABLE) 22 9 DARWIN IDENTITY 23 Project 162 / 11 / 025: Altai Mountains. Final Report, August 2007 1 10 LEVERAGE 23 11 SUSTAINABILITY AND LEGACY 24 12 VALUE FOR MONEY 25 APPENDIX I: PROJECT CONTRIBUTION TO ARTICLES UNDER THE CONVENTION ON BIOLOGICAL DIVERSITY (CBD) 27 APPENDIX II: OUTPUTS 29 APPENDIX III: PUBLICATIONS 35 APPENDIX IV: DARWIN CONTACTS 42 APPENDIX V: LOGICAL FRAMEWORK 44 APPENDIX VI: SELECTED TABLES 45 APPENDIX VII: COPIES OF INFORMATION LEAFLETS 52 APPENDIX VIII: PUBLICATIONS WITH SUMMARIES IN ENGLISH 53 APPENDIX IX: COPIES OF OUTPUTS SUPPLIED AS PDF 68 Project 162 / 11 / 025: Altai Mountains. Final Report, August 2007 2 Darwin Initiative for the Survival of Species Final Report Darwin Project Information Project Reference No. 162 / 11 / 025 Project Title Cross-border conservation strategies for Altai Mountain Endemics (Russia, Mongolia, Kazakhstan) Country(ies) UK, Russia, Mongolia, Kazakhstan UK Contractor University of Sheffield Partner Organisation (s) Tomsk State University (Russia); Hovd branch of Mongolian State University; Altai Botanical Gardens (Leninogorsk, Kazakhstan) Darwin Grant Value £184,316.84 Start/End dates 01.04.2002 – 31.03.2007 Reporting period and report 01.04.2005 – 31.03.2007 (Final report) number Project website http://www.ecos.tsu.ru/altai* Author(s), date Dr.
    [Show full text]
  • Chapter 4 Phytogeography of Northeast Asia
    Chapter 4 Phytogeography of Northeast Asia Hong QIAN 1, Pavel KRESTOV 2, Pei-Yun FU 3, Qing-Li WANG 3, Jong-Suk SONG 4 and Christine CHOURMOUZIS 5 1 Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA, e-mail: [email protected]; 2 Institute of Biology and Soil Science, Russian Academy of Sciences, Vladivostok, 690022, Russia, e-mail: [email protected]; 3 Institute of Applied Ecology, Chinese Academy of Sciences, P.O. Box 417, Shenyang 110015, China; 4 Department of Biological Science, College of Natural Sciences, Andong National University, Andong 760-749, Korea, e-mail: [email protected]; 5 Department of Forest Sciences, University of British Columbia, 3041-2424 mail Mall, Vancouver, B.C., V6T 1Z4, Canada, e-mail: [email protected] Abstract: Northeast Asia as defined in this study includes the Russian Far East, Northeast China, the northern part of the Korean Peninsula, and Hokkaido Island (Japan). We determined the species richness of Northeast Asia at various spatial scales, analyzed the floristic relationships among geographic regions within Northeast Asia, and compared the flora of Northeast Asia with surrounding floras. The flora of Northeast Asia consists of 971 genera and 4953 species of native vascular plants. Based on their worldwide distributions, the 971 gen- era were grouped into fourteen phytogeographic elements. Over 900 species of vascular plants are endemic to Northeast Asia. Northeast Asia shares 39% of its species with eastern Siberia-Mongolia, 24% with Europe, 16.2% with western North America, and 12.4% with eastern North America.
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Introduced Weed Species
    coastline Garden Plants that are Known to Become Serious Coastal Weeds SOUTH AUSTRALIAN COAST PROTECTION BOARD No 34 September 2003 GARDEN PLANTS THAT HAVE BECOME Vegetation communities that originally had a diverse SERIOUS COASTAL WEEDS structure are transformed to a simplified state where Sadly, our beautiful coastal environment is under threat one or several weeds dominate. Weeds aggressively from plants that are escaping from gardens and compete with native species for resources such as becoming serious coastal weeds. Garden escapees sunlight, nutrients, space, water, and pollinators. The account for some of the most damaging environmental regeneration of native plants is inhibited once weeds are weeds in Australia. Weeds are a major environmental established, causing biodiversity to be reduced. problem facing our coastline, threatening biodiversity and the preservation of native flora and fauna. This Furthermore, native animals and insects are significantly edition of Coastline addresses a selection of common affected by the loss of indigenous plants which they rely garden plants that are having significant impacts on our on for food, breeding and shelter. They are also affected coastal bushland. by exotic animals that prosper in response to altered conditions. WHAT ARE WEEDS? Weeds are plants that grow where they are not wanted. Weeds require costly management programs and divert In bushland they out compete native plants that are then resources from other coastal issues. They can modify excluded from their habitat. Weeds are not always from the soil and significantly alter dune landscapes. overseas but also include native plants from other regions in Australia. HOW ARE WEEDS INTRODUCED AND SPREAD? WEEDS INVADE OUR COASTLINE… Weeds are introduced into the natural environment in a Unfortunately, introduced species form a significant variety of ways.
    [Show full text]
  • Sagebrush Identification Guide
    Sagebrush Identification Table For Use With Black Light For Use in the Inter-Great Basin Area Fluoresces Under Ultraviolet Branching Mature Plant Plant Nomenclature Light Leaf shape and size Plant Growth Form Environment Comments Pattern Height Water Alcohol Leaves 3/4 ‐1 1/4 in. Uneven topped; Main stem is undivided and trunk‐like at base;. Located long; long narrow; Leaf Uneven normally in drainage bottoms; Small concave areas and valley floors, but will normally be 4 times Colorless to Very topped; always on deep Non‐saline Non‐calcareous soils. Vegetative leader is greater Brownish to longer than it is at its "V"ed Mesic to Frigid 3.5 ft. to Very Pale blue Floral stems than 1/2 the length of the flower stalk from the same single branch. In Basin Basin Big Sagebrush Artemisia Reddish‐Brown widest point; Leaf branching/ Xeric to Ustic greater than 8 tridentata subsp. tridentata (ARTRT) Rarely pale growing there are two growth forms: One the Typical tall form (Diploid); Two a shorter to colorless margins not extending upright 4000 to 8000 ft. ft. Brownish‐red throughout form that looks similar to Wyoming sagebrush if you do not look for the trunk outward; Crushed leaves the crown (around 1 inch or so); the branching pattern; and the seedhead to vegetative have a strong turpentine leader characteristics (Tetraploid). smell Uneven Leaves 1/2 ‐ 3/4 inches topped; Uneven topped; Main stem is usually divided at ground level. Plants will often Mesic to Frigid Wyoming Big Sagebrush Colorless to Very Colorless to pale long; Leaf margins curved Floral stems Spreading/ keep the last years seed stalks into the following fall.
    [Show full text]
  • Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,
    [Show full text]
  • Argyranthemum Frutescens
    Argyranthemum frutescens (Marguerite daisy, cobbitty daisy) Argyranthemum frutescens is a somewhat short-lived, tender perennial or subshrub that produces daisy-like white flowers with yellow center disks on bushy plants growing 2-3’ tall and as wide. Blooms throughout the summer, The flower is very fragrant, it opens its petals in the morning and closes them at night and it attracts bees. It is a short- lived perennial, used as an annual and prefers well-drained soils in full sun Landscape Information Pronounciation: ar-jur-AN-thuh-mum froo- TESS-enz Plant Type: Origin: Canary Islands Heat Zones: Hardiness Zones: 8, 9 Uses: Border Plant, Mass Planting, Container, Cut Flowers / Arrangements, Rock Garden Size/Shape Growth Rate: Fast Tree Shape: oval, Upright Canopy Texture: Medium Height at Maturity: 0.5 to 1 m, 1 to 1.5 m Plant Image Spread at Maturity: 0.5 to 1 meter Argyranthemum frutescens (Marguerite daisy, cobbitty daisy) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Blade: 5 - 10 cm Leaf Shape: Obovate Leaf Textures: Smooth Leaf Scent: Pleasant Color(growing season): Green Color(changing season): Green Flower Flower Showiness: True Flower Size Range: 3 - 7 Flower Type: Capitulum Flower Scent: Pleasant Flower Color: Yellow, White, Pink Flower Image Seasons: Summer, Fall Fruit Fruit Showiness: False Fruit Colors: Brown Seasons: Fall Argyranthemum frutescens (Marguerite daisy, cobbitty daisy) Horticulture Management Requirements Soil Requirements: Soil Ph Requirements: Water Requirements: Moderate Light Requirements: Full, Part Management Edible Parts: Plant Propagations: Seed, Cutting Leaf Image MORE IMAGES Fruit Image Other Image.
    [Show full text]
  • Types of Sagebrush Updated (Artemisia Subg. Tridentatae
    Mosyakin, S.L., L.M. Shultz & G.V. Boiko. 2017. Types of sagebrush updated ( Artemisia subg. Tridentatae, Asteraceae): miscellaneous comments and additional specimens from the Besser and Turczaninov memorial herbaria (KW). Phytoneuron 2017-25: 1–20. Published 6 April 2017. ISSN 2153 733X TYPES OF SAGEBRUSH UPDATED (ARTEMISIA SUBG. TRIDENTATAE , ASTERACEAE): MISCELLANEOUS COMMENTS AND ADDITIONAL SPECIMENS FROM THE BESSER AND TURCZANINOV MEMORIAL HERBARIA (KW) SERGEI L. MOSYAKIN M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] LEILA M. SHULTZ Department of Wildland Resources, NR 329 Utah State University Logan, Utah 84322-5230, USA [email protected] GANNA V. BOIKO M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] ABSTRACT Corrections and additions are provided for the existing typifications of plant names in Artemisia subg. Tridentatae . In particular, second-step lectotypifications are proposed for the names Artemisia trifida Nutt., nom. illeg. (A. tripartita Rydb., the currently accepted replacement name), A. fischeriana Besser (= A. californica Lessing, the currently accepted name), and A. pedatifida Nutt. For several nomenclatural types of names listed in earlier publications as "holotypes," the type designations are corrected to lectotypes (Art. 9.9. of ICN ). Newly discovered authentic specimens (mostly isolectotypes) of several names in the group are listed and discussed, mainly based on specimens deposited in the Besser and Turczaninov memorial herbaria at the National Herbarium of Ukraine (KW). The Turczaninov herbarium is particularly rich in Nuttall's specimens, which are often better represented and better preserved than corresponding specimens available from BM, GH, K, PH, and some other major herbaria.
    [Show full text]
  • Sagebrush Ecology of Parker Mountain, Utah
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2016 Sagebrush Ecology of Parker Mountain, Utah Nathan E. Dulfon Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Earth Sciences Commons Recommended Citation Dulfon, Nathan E., "Sagebrush Ecology of Parker Mountain, Utah" (2016). All Graduate Theses and Dissertations. 5056. https://digitalcommons.usu.edu/etd/5056 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SAGEBRUSH ECOLOGY OF PARKER MOUNTAIN, UTAH by Nathan E. Dulfon A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Range Science Approved: _________________ _________________ Eric T. Thacker Terry A. Messmer Major Professor Committee Member __________________ ___________________ Thomas A. Monaco Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2016 ii Copyright © Nathan E. Dulfon 2016 All Rights Reserved iii ABSTRACT Sagebrush Ecology of Parker Mountain, Utah by Nathan E. Dulfon, Master of Science Utah State University, 2016 Major Professor: Dr. Eric T. Thacker Department: Wildland Resources Parker Mountain, is located in south central Utah, it consists of 153 780 ha of high elevation rangelands dominated by black sagebrush (Artemisia nova A. Nelson), and mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rybd.] Beetle) communities. Sagebrush obligate species including greater sage-grouse (Centrocercus urophasianus) depend on these vegetation communities throughout the year.
    [Show full text]