RE-Powering America's Land Initiative

Total Page:16

File Type:pdf, Size:1020Kb

RE-Powering America's Land Initiative RE-Powering America’s Land Initiative: October 2014 Project Tracking Matrix The U.S. Environmental Protection Agency (EPA) recognizes the overall environmental Re-Powering America’s benefit of siting renewable energy projects on contaminated properties. Through Land Initiative the RE-Powering America’s Land Initiative, EPA is encouraging renewable energy development on current and formerly contaminated lands, landfills, and mine sites To provide information on renewable energy on when such development is aligned with the community’s vision for the site. contaminated land projects not currently appearing in this document, email [email protected]. Using publically available information, RE-Powering maintains a list of completed To receive updates, newsletters, and other renewable energy installations on contaminated sites and landfills. To date, the information about the RE-Powering program, RE-Powering Initiative has identified 135 renewable energy installations on 128 click the banner below. contaminated lands, landfills, and mine sites,1 with a cumulative installed capacity over 773 megawatts (MW) and consistent growth in total installations since the Subscribe inception of the RE-Powering Initiative. More than half of these installations are large- EPA’s RE-Powering Listserv scale systems with a project capacity of 1 MW or greater, either exporting energy onto the utility grid or offsetting onsite energy demands. This document provides summary statistics of known installations and discusses emerging trends. 130+ Renewable Energy Projects, Over 770 MW Installed Capacity Technologies Solar Photovoltaic (PV) Wind Multiple Hydro (Micro) Geothermal Biopower Capacity (MW) < 2 2 - 5 5 - 20 20 -35 > 35 Alaska Hawai'i Puerto Rico/Virgin Islands This map is for informational purposes only. The information was gathered from public announcements of renewable energy projects in the form of company press releases, news releases, and, in some cases, conversations with the parties involved. This map may not be a comprehensive representation of all completed renewable energy projects October 2014 on contaminated lands. To provide information on additional projects, please email [email protected]. 1 In this document, installation and project refer to a single renewable energy technology installation, while site and location refer to a single contaminated property. A site or location may have more than one installation or project. For example, the former Dave Johnston Mine has three separate wind installations. Multiple installation details can be seen in the tracking spreadsheet at the end of this document. Center for Program Analysis Office of Solid Waste and Emergency Response RE-Powering America’s Land Initiative: October 2014 Project Tracking Matrix National Deployment RE-Powering has identified installations of renewable energy on contaminated lands, landfills, and mine sites in 34 states and territories. The locations of these installations reflect evolving market trends generally linked to available renewable energy resource, Renewable Portfolio Standards (RPS), net-metering laws, and other incentives. For example, the Massachusetts RPS requires regulated distribution utilities and competitive suppliers to obtain a percentage of electricity from qualifying renewable energy units for retail customers. The RPS includes a Solar Carve-Out for PV facilities in support of the state’s goal of 1.6 gigawatts of PV statewide by 2020. Massachusetts also has a robust Solar Renewable Energy Credit (SREC) program, through which renewable energy generation “credits” can be sold in support of RPS goals. In addition, the state’s second SREC phase (SREC II), includes specific incentives for renewable energy on landfills and brownfields. INSTALLATIONS BY STATE2 State Renewable Distributed Installed Portfolio Solar Set-Aside Solar Multiplier Generation State # Installations Capacity (MW) Standard3 Policy4 Policy5 Requirement6 MA 49 104.6 NJ 11 41.7 CA 9 13.9 NY 7 67.2 CO 6 6.4 WY 5 295.8 PA 4 41.5 TN 4 10.1 OH 4 9.6 TX 3 11.6 7 8 WI 2 0.6 NC 2 0.6 IL 2 10.9 AZ 2 5.0 NM 2 3.0 OK 2 0.0 OR 1 100.00 RoUS9 20 50.6 TOTAL 135 773.1 Of identified projects, 82% are solar photovoltaics (PV) projects developed on contaminated lands, landfills, and mine sites, while 64% of installed capacity is provided by wind systems. These data are explained in part by a few very large wind projects, notably the Casselman Wind Power Project in Somerset County, Pennsylvania (35 MW), Steel Winds in Bethlehem, New York, (35 MW), the wind farm at Columbia Ridge Landfill, Oregon (100 MW), and the three wind farms at the former Dave Johnston Mine in Glenrock, Wyoming (276 MW). Although this trend continues in 2014, with 22 of the 23 completed projects to date being solar PV, the largest renewable energy project on contaminated property completed so far this year is the Pantex Wind Farm (11.5 MW). 2 Only state policy data provided. Table includes states with multiple installations and the state with the largest single installation. Policy information from DSIRE (www.dsireusa.org). Accessed October 21, 2014. 3 A renewable portfolio standard (RPS) requires a utility to use or procure a certain percentage of total generation from renewable sources. 4 A solar set-aside requires a certain percentage of the state’s electricity be generated from solar resources. 5 A solar multiplier gives additional credit for solar projects that contribute toward meeting RPS requirements. 6 A distributed generation requirement obliges a utility to procure a certain percentage of electricity from renewable, customer sited sources. 7 Texas has a non-wind set aside. It is not specific to solar. 8 Texas has a non-wind multiplier policy. It is not specific to solar. 9 For purposes of this report, RoUS (Rest of US) indicates other states with renewable energy on contaminated lands: Connecticut, Delaware, Florida, Georgia, Hawai’i, Indiana, Maryland, Michigan, Minnesota, Missouri, Montana, Nebraska, Nevada, South Carolina, Virginia, U.S. Virgin Islands, and Vermont. Center for Program Analysis Office of Solid Waste and Emergency Response RE-Powering America’s Land Initiative: October 2014 Project Tracking Matrix Total Projects by Technology Total Capacity by Technology10 Solar Photovoltaic (PV) 110 Wind 497 MW Solar Photovoltaic (PV) 256 MW Wind 21 Geothermal Biomass 1 Geothermal Hydro 1 Biomass w/Solar PV 1 20 MW 1 Liabilities into Assets In September, EPA Administrator Gina McCarthy visited the city of New “Generating renewable energy on formerly toxic sites is an innova- Bedford, Massachusetts, to commission a 1.8 MW solar installation at tive way to use space, and it’s an important part of EPA’s energy Sullivan’s Ledge. Originally a granite quarry, Sullivan’s Ledge operated initiative, RE-Powering America’s Land. The new solar field at Sul- as an industrial waste site from 1940-1970. In the early 1980s, EPA livan’s Ledge is a great example of the benefits of redevelopment. investigated the site and found high levels of polychlorinated biphenyls In one city after another, we’re heeding our moral obligation to act (PCBs), volatile organic compounds, polycyclic aromatic hydrocarbons, on climate change in addition to saving cities and states money and chlorinated industrial solvents in the soil and groundwater. Sullivan’s by increasing renewable energy production and encouraging job Ledge was added to the Superfund National Priorities List in 1984. creation. We need this kind of leadership in cities and towns across EPA worked with 14 potentially responsible parties on a $15 million the country.” remediation of Sullivan’s Ledge. Steps included excavating and disposing —Gina McCarthy of sediments, placing an 11-acre impermeable cap over the quarry pits EPA Administrator and contaminated soils, and installing groundwater pumping systems. In 2013, EPA approved placement of the 5,000-panel solar installation on the cap. With the installation complete, the city of New Bedford now receives 50 percent of its electricity from solar and ranks second nationally for installed solar per capita. The installation is expected to save the city $2.7 million over its 20-year lifetime, and a solar design firm involved in the project, Beaumont Solar, employs graduates of the Greater New Bedford Regional Vocational Technical High School. 10 Two identified geothermal projects and one hydro project do not represent a significant percentage of total installed capacity. Center for Program Analysis Office of Solid Waste and Emergency Response RE-Powering America’s Land Initiative: October 2014 Project Tracking Matrix Inside the Numbers Based on current trends, the majority of the RE-Powering energy systems sell power back to the grid as wholesale electricity, while a subset provides energy for onsite use. Systems range from utility-scale systems, like the newly installed 6 MW solar PV system at Shaffer Landfill, to small-scale green remediation systems, like the 300-kilowatt solar installation that supports soil clean-up and groundwater extraction at Fridley Plant in Minnesota. RE-Powering capitalizes on the opportunity to address contamination and support renewable energy implementation to achieve the associated economic and environmental benefits. Installations to date demonstrate the viability of projects across all EPA and state remediation programs, from powering industrial facilities at sites subject to RCRA corrective action to offsetting the energy demands at Federal Facilities with ongoing
Recommended publications
  • TRENDS in PHOTOVOLTAIC APPLICATIONS Survey Report of Selected IEA Countries Between 1992 and 2011
    TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Report IEA-PVPS T1-21:2012 TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Contents Introduction 2 1 Implementation of PV systems 3 2 The PV industry 24 3 Policy, regulatory and business framework for deployment 32 4 Summary of trends 39 PV technology note 44 Foreword This year’s 17th edition of the IEA PVPS international survey report on Trends in Photovoltaic (PV) Applications falls together with almost 20 years of global cooperation within the IEA PVPS The International Energy Agency (IEA), founded in 1974, Programme. The history of PV market deployment over this is an autonomous body within the framework of the decisive period for PV from its very first market developments to Organization for Economic Cooperation and the present large scale deployment, meanwhile accounting for Development (OECD). The IEA carries out a important shares of the newly installed capacity for electricity comprehensive programme of energy cooperation production, can uniquely be followed year by year in the series among its 28 member countries and with the of IEA PVPS trends reports. 2011 has been yet another year of unprecedented further market growth, continued massive participation of the European Commission. cost reduction and ongoing signs of industry and market consolidation. In total, about 28 GW of PV capacity were The IEA Photovoltaic Power Systems Programme installed in the IEA PVPS countries during 2011 (2010: 14,2 GW), (IEA PVPS) is one of the collaborative research and thus again doubling the installed capacity of the year before; this development agreements within the IEA and was raised the total installed capacity in IEA PVPS countries close to established in 1993.
    [Show full text]
  • Beyond Renewable Portfolio Standards: an Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West
    (This page intentionally left blank) Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-6A20-57830 Golden, CO 80401 August 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
    [Show full text]
  • Tnnessee Univ., Knoxville. Environment Center. SPONS.AGENCY Tennessee State Dept
    DOCUMENT RESUME ED 137 100 SE 022 303 AUTHOR Wert, Jonathan; And Others TITLE Ideas and Activities for Teaching Energy Conservation: Grades 7-12. INSTITUTION Tnnessee Univ., Knoxville. Environment Center. SPONS.AGENCY Tennessee State Dept. of Education, Nashville.; Tennessee Univ., Knoxville. State Agency for Title I. PUB DATE Jan 77 NOTE 223p.; Not available in hard copy-due to colored pages throughout entire document EDRS PRICE MF-$0.83 Plus Postage. HC Not Available ftom EDRS. DESCRIPTORS *ConservatiOn Edacation; *Energy; *Instructional Materials; Interdisciplinary Approach; Language Arts; *Natural Resources; Sciences; *Secondary Education; Social Studies; Teaching Guidas ABSTRACT This publication contains a variety of ideas and materials for teaching about energy in grades 7-12. Topic areas include:(1) Historical Perspective on Energy;(2) Energy Resources; (3) Energy Conservation;(4) Ideas and Activities; and (5) Appendices. The first three sections provide background information on energy and conservation. The activities include ideas to use in science, social studies, language arts, and multidisciplinary areas. The appendices include a variety of useful tables of data, basic information on energy, a glossary, and a bibliography.(RH) *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions:RRIC makes available * * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproducticrs * * supplied by EDRS are the best that can be made from the original. **********************************A******************************#***** S DEPARTMENT OF HEALTH, EDUCATION & WELFRE NATIONAL INSTITUTE OF EDUCATION T.
    [Show full text]
  • Boulder Solar Power JUN 3 2016 MBR App.Pdf
    20160603-5296 FERC PDF (Unofficial) 6/3/2016 12:51:20 PM UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION Boulder Solar Power, LLC ) Docket No. ER16-_____-000 APPLICATION FOR MARKET-BASED RATE AUTHORIZATION, REQUEST FOR DETERMINATION OF CATEGORY 1 SELLER STATUS, REQUEST FOR WAIVERS AND BLANKET AUTHORIZATIONS, AND REQUEST FOR WAIVER OF PRIOR NOTICE REQUIREMENT Pursuant to Section 205 of the Federal Power Act (“FPA”),1 Section 35.12 of the regulations of the Federal Energy Regulatory Commission (“FERC” or the “Commission”),2 Rules 204 and 205 of the Commission’s Rules of Practice and Procedure,3 and FERC Order Nos. 697, et al.4 and Order No. 816,5 Boulder Solar Power, LLC (“Applicant”) hereby requests that the Commission: (1) accept Applicant’s proposed baseline market-based rate tariff (“MBR Tariff”) for filing; (2) authorize Applicant to sell electric energy, capacity, and certain ancillary services at market-based rates; (3) designate Applicant as a Category 1 Seller in all regions; and (4) grant Applicant such waivers and blanket authorizations as the Commission has granted to other sellers with market-based rate authorization. Applicant requests that the Commission waive its 60-day prior notice requirement6 to allow Applicant’s MBR Tariff to become effective as of July 1, 2016. In support of this Application, Applicant states as follows: 1 16 U.S.C. § 824d (2012). 2 18 C.F.R. § 35.12 (2016). 3 Id. §§ 385.204 and 385.205. 4 Mkt.-Based Rates for Wholesale Sales of Elec. Energy, Capacity & Ancillary Servs. by Pub. Utils., Order No.
    [Show full text]
  • Fire Fighter Safety and Emergency Response for Solar Power Systems
    Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • Laramie Recreation RFQ Submittal Creative Energies
    1 PO Box 1777 Lander, WY 82520 307.332.3410 CEsolar.com [email protected] SUBMITTAL IN RESPONSE TO REQUEST FOR QUALIFICATIONS Laramie Community Recreation Center / Ice & Events Center 25kW Solar Projects Creative Energies hereby submits the following information as our statement of qualifications to design and install the Laramie Recreation solar projects that have been awarded funding under the Rocky Mountain Power (RMP) Blue Sky Community Projects Funds grant program. Please direct all questions or feedback on this submittal to Eric Concannon at 307-438-0305, by email at [email protected], or by mail to PO Box 1777, Lander, WY 82520. Regards, Eric D. Concannon 2 A. Qualifications and Experience of Key Personnel • Scott Kane Project Role: Contracting Agent Position: Co-Founder, Co-Owner, Business and Human Resource Management, Contracting Agent With Company Since: 2001 Scott is a co-founder and co-owner of Creative Energies and oversees legal and financial matters for the company. Scott was previously certified by the North American Board of Certified Energy Practitioners (NABCEP) as a Certified PV Installation Professional. He holds a Bachelor of Arts in Geology from St. Lawrence University. He was appointed to the Western Governors’ Association’s Clean and Diversified Energy Initiative’s Solar Task Force and is a former board member for the Wyoming Outdoor Council, Wyoming’s oldest conservation non-profit. Scott is a Solar Energy International graduate and frequently makes presentations on renewable energy technology and policy. • Eric Concannon Project Role: Development and Preliminary Design Position: Technical Sales, Lander, WY Office With Company Since: 2012 Certifications: NABCEP Certified PV Technical Sales Professional; LEED AP Building Design + Construction Eric manages all incoming grid-connected solar inquiries for our Lander office, including customer education, pricing, and preliminary design and has developed several successful Blue Sky Grant projects in Wyoming.
    [Show full text]
  • 2020 ANNUAL REPORT Table of CONTENTS EDITOR’S COMMENTS
    2020 ANNUAL REPORT table of CONTENTS EDITOR’S COMMENTS ...................................................................................................... 3 ENERGY SITES OF NORTH DAKOTA ................................................................................... 4 A VIEW FROM ABOVE ....................................................................................................... 4 NORTH DAKOTA GENERATION .......................................................................................... 5 GENERATION ................................................................................................................... 6 Mining ..................................................................................................................... 6 Reclamation ............................................................................................................. 7 Coal-Based ................................................................................................................. 8 Peaking Plants ............................................................................................................. 9 Wind .........................................................................................................................10 Hydroelectric ..............................................................................................................14 Geothermal ................................................................................................................15 Solar .........................................................................................................................16
    [Show full text]
  • Why Should We Care About Renewable Energy
    Why Should We Care About Renewable Energy Pedro never apostatized any cambrels examines foolhardily, is Willy torrent and arrayed enough? Watery and sceptic Emmy wans: which Tabby is unordinary enough? Harold subject her stoves nautically, incoherent and neaped. For bringing new markets which pricing i can. The environmental benefit of renewable energy sources such community solar wind. Personal stories of 100 percent renewable energy can inspire. One should care about ten years, why single model. Renewable energy provides reliable power supplies and fuel diversification which enhance energy security and lower risk of fuel spills while reducing the reconcile for imported fuels Renewable energy also helps conserve the nation's natural resources. Renewable energy is a priest What happens when. Why came we care at this failure how many people sick without electricity what would it slow to switch. The land use is renewable energy is a lot more. That is evaluating whether it should task a proposed energy efficiency program. Solar bloom is one of charge most popular sources of renewable energy. Negative prices in the MISO market what's Fresh Energy. Energy is that capacity to bypass work paragraph is required for life processes An energy resource is something that again produce heat power also move objects or produce electricity Matter that stores energy is called a fuel. Renewable energy could power the graduate by 2050 Here's. With renewable energy sources like stand and solar advancements in energy efficiency. Energy should care about our own simple way forward with why are not formed during storms, you care solar panel on other means.
    [Show full text]
  • Wild Springs Solar Project Draft Environmental Assessment Pennington County, South Dakota
    Wild Springs Solar Project Draft Environmental Assessment Pennington County, South Dakota DOE/EA-2068 April 2021 Table of Contents Introduction and Background ................................................................................... 1 Purpose and Need for WAPA’s Federal Action ...................................................................... 1 Wild Springs Solar’s Purpose and Need .................................................................................. 1 Proposed Action and Alternatives ............................................................................ 2 No Action Alternative .............................................................................................................. 2 Alternatives Considered but Eliminated from Further Study .................................................. 2 Proposed Action ....................................................................................................................... 2 Solar Panels and Racking ................................................................................................3 Electrical Collection System ...........................................................................................4 Inverter/Transformer Skids .............................................................................................4 Access Roads ..................................................................................................................5 Fencing & Cameras .........................................................................................................5
    [Show full text]
  • The History of Solar
    Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth.
    [Show full text]
  • Environmental Assessment
    Environmental Assessment Turning Point Solar Generating Project Noble County, Ohio Turning Point Solar LLC U.S. Department of Agriculture Rural Utilities Service (RUS) Please submit questions or written comments to: Lauren McGee Environmental Scientist USDA/RUS 1400 Independence Ave., SW Mail Stop 1571 Washington, DC 20250-1571 Phone: (202) 720-1482 Fax: (202) 690-0649 Email: [email protected] ENVIRONMENTAL ASSESSMENT TURNING POINT SOLAR PROJECT Brookfield Township, Noble County, Ohio Prepared for: U.S. Department of Agriculture Rural Utilities Service January 2012 Prepared by: URS Corporation Cleveland, Ohio Rural Utilities Service Turning Point Solar Project TABLE OF CONTENTS Page No. EXECUTIVE SUMMARY.....................................................................................................ES-1 1.0 PURPOSE AND NEED FOR THE PROPOSED ACTION.............................................1-1 1.1 Introduction ...............................................................................................................1-1 1.2 Proposed Action.........................................................................................................1-3 1.3 Applicant’s Purpose and Need ..................................................................................1-5 2.0 ALTERNATIVES ANALYSIS AND DESCRIPTION OF PROPOSED ACTION......................................................................................................................................2-1 2.1 Project Alternatives That Meet the Purpose and Need...............................................2-1
    [Show full text]