The History of Solar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A HISTORY of the SOLAR CELL, in PATENTS Karthik Kumar, Ph.D
A HISTORY OF THE SOLAR CELL, IN PATENTS Karthik Kumar, Ph.D., Finnegan, Henderson, Farabow, Garrett & Dunner, LLP 901 New York Avenue, N.W., Washington, D.C. 20001 [email protected] Member, Artificial Intelligence & Other Emerging Technologies Committee Intellectual Property Owners Association 1501 M St. N.W., Suite 1150, Washington, D.C. 20005 [email protected] Introduction Solar cell technology has seen exponential growth over the last two decades. It has evolved from serving small-scale niche applications to being considered a mainstream energy source. For example, worldwide solar photovoltaic capacity had grown to 512 Gigawatts by the end of 2018 (representing 27% growth from 2017)1. In 1956, solar panels cost roughly $300 per watt. By 1975, that figure had dropped to just over $100 a watt. Today, a solar panel can cost as little as $0.50 a watt. Several countries are edging towards double-digit contribution to their electricity needs from solar technology, a trend that by most accounts is forecast to continue into the foreseeable future. This exponential adoption has been made possible by 180 years of continuing technological innovation in this industry. Aided by patent protection, this centuries-long technological innovation has steadily improved solar energy conversion efficiency while lowering volume production costs. That history is also littered with the names of some of the foremost scientists and engineers to walk this earth. In this article, we review that history, as captured in the patents filed contemporaneously with the technological innovation. 1 Wiki-Solar, Utility-scale solar in 2018: Still growing thanks to Australia and other later entrants, https://wiki-solar.org/library/public/190314_Utility-scale_solar_in_2018.pdf (Mar. -
Contact: Kevin Thornton for IMMEDIATE RELEASE 1-800-331-0085
Contact: Kevin Thornton FOR IMMEDIATE RELEASE 1-800-331-0085 WAL-MART ANNOUNCES SOLAR POWER PILOT PROJECT Pilot Project marks major step toward its goal of being supplied by 100 percent renewable energy BENTONVILLE, Ark., May 7, 2007 – Today Wal-Mart Stores, Inc. (NYSE:WMT), announced a major purchase of solar power from three solar power providers, BP Solar, SunEdison LLC, and PowerLight, a subsidiary of SunPower Corporation, for 22 combined Wal- Mart stores, Sam’s Clubs and a distribution center in Hawaii and California. As part of a pilot project to determine solar power viability for Wal-Mart, the total solar power production from the 22 sites is estimated to be as much as 20 million kWh (kilowatt-hours) per year. When fully implemented, the aggregate purchase could be one of the U.S., if not the world’s, top-10 largest ever solar power initiatives. “We are taking aggressive steps towards our goal of being supplied by 100 percent renewable energy,” said Kim Saylors-Laster, vice president of energy for Wal-Mart. “The pilot project is yet another example of Wal-Mart’s commitment to making decisions that are good for business and the environment.” “We applaud Wal-Mart's drive to increase its use of energy efficiency and renewable energy technologies and look forward to the long-term positive impact their efforts will have on our environment,” said Ron Judkoff, director of the Buildings and Thermal Systems Center at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). “Wal-Mart's decision to take advantage of the economic and environmental benefits of solar power and energy efficiency technologies is a great step in the right direction.” The solar power pilot project is a major step toward Wal-Mart’s goal of being supplied by 100 percent renewable energy. -
Solar Cells from Selenium to Sihcon: Powering the Future. Part 2 by C M Meyer, Technical Journalist
GENERATION Solar cells from selenium to sihcon: Powering the future. Part 2 by C M Meyer, technical journalist An amazingly simple device, capable of performing efficiently nearly all the functions of an ordinary vacuum tube, was demonstrated for the first time yesterday at Bell Telephone Laboratories where it was invented. Known as the transistor, the device works on an entirely new physical principle discovered by the laboratories in the course of fundamental research into the electrical properties of solids.” Press release from Bell Telephone Laboratories announcing the first transistor, 1 July 1948 (Ref.6). The very first photoelectric cell was a pretty crude device. It was basically a large, thin layer of selenium that had been spread onto a copper metal plate, and covered with a thin, semitransparent gold-leaf film. Even by February 1953, the efficiency of such selenium cells was not very high: only a little less than 0,5%. Small wonder then that a more efficient substitute was needed. So it is hardly surprising that scientists working for Bell Telephone Laboratory, many on commercialising the newly discovered transistor, were aware of this need. One of them, Daryl Chapin, had begun work on the problem of providing small amounts of intermittent power in remote humid locations. His research originally had nothing to do with solar power, and involved wind machines, thermoelectric generators and small steam engines. At his suggestion, solar power was included in his research, almost as an afterthought. After obtaining disappointing results with a The first attempt to launch a satellite with the Vanguard rocket on 6 December 1957. -
Renewable Energy
Projects Projects Renewable Energy Representative Engagements • Represented the project sponsor in connection with • Advised client on a significant investment in Nemaska the non-recourse project financing of the development, Lithium Inc., a Canadian lithium company, in a trans- installation, operation and maintenance of over 150,000 formational market transaction involving a key input in small-scale solar kits in areas of Peru not connected to lithium batteries which are a key component in electric the grid. cars and other technologies as well as renewables • Represented the Buyer acquiring 100 percent of the storage projects. equity interests of two project companies that have two • Advised the underwriters in DTE Electric Company’s solar photovoltaic projects with a combined rating of milestone $525 million green bond offering. Proceeds 6.5MWac/8MWdc on Oahu, Hawaii. of the bonds will support the development and • Represented a multinational energy corporation in construction of low-carbon, clean energy projects like connection with the acquisition of, and its tax equity solar arrays and wind farms, as well as the transmission investment in, solar power generating facilities in infrastructure to support related renewable facilities. California, Texas and Arizona valued from $16 million Solar to $25 million, including one project located on a • Represented Duke Energy in connection with a $360 military base under the U.S. military’s renewable energy million non-recourse project financing of a portfolio procurement initiative. of 24 operating solar farms in North Carolina under • Represented one of the world’s largest solar energy contract with various utility and non-utility offtakers. project companies in its entry into Japan and projects The facility includes a $330 million term loan, a $105 utilizing the Japanese Feed-In Tariff. -
Political Crisis in Rhetorical Exercises of the Early Roman Empire Shunichiro Yoshida the University of Tokyo
ISSN: 2519-1268 Issue 2 (Spring 2017), pp. 39-50 DOI: 10.6667/interface.2.2017.34 Political Crisis in Rhetorical Exercises of the Early Roman Empire SHUNICHIRO YOSHIDA The University of Tokyo Abstract The ancient Romans experienced a great political crisis in the first century B. C. They fought many civil wars, which ended the republic and led to the establishment of the empire. The nature of these civil wars and the new regime was a politically very sensitive question for the next generation and could not be treated in a direct manner. In this paper I shall examine how literature in this age dealt with this sensitive problem. Special attention will be paid on declamations (rhetorical exercises on fictitious themes), which discussed repeatedly themes concerned with political crises such as domestic discord or rule of a tyrant. Keywords: Latin Oratory, Rhetorical Training, Early Roman Empire, Roman Politics © 2017 Shunichiro Yoshida This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://interface.ntu.edu.tw/ 39 Political Crisis in Rhetorical Exercises of the Early Roman Empire 1. Politics in Rome in the 1st Century B.C. Rome experienced its greatest political change in the 1st century B.C. Since the latter half of the previous century, its Republican system, which was established in the late 6th century B.C. according to the tradition, proved to contain serious problems. This led to repeated fierce civil wars in Rome. In the middle of the 1st century B.C., Caesar fought against Pompey and other members of the senatorial nobility who tried to defend the traditional system and defeated them completely. -
Introduction 1
1 1 Introduction . ex arte calcinati, et illuminato aeri [ . properly calcinated, and illuminated seu solis radiis, seu fl ammae either by sunlight or fl ames, they conceive fulgoribus expositi, lucem inde sine light from themselves without heat; . ] calore concipiunt in sese; . Licetus, 1640 (about the Bologna stone) 1.1 What Is Luminescence? The word luminescence, which comes from the Latin (lumen = light) was fi rst introduced as luminescenz by the physicist and science historian Eilhardt Wiede- mann in 1888, to describe “ all those phenomena of light which are not solely conditioned by the rise in temperature,” as opposed to incandescence. Lumines- cence is often considered as cold light whereas incandescence is hot light. Luminescence is more precisely defi ned as follows: spontaneous emission of radia- tion from an electronically excited species or from a vibrationally excited species not in thermal equilibrium with its environment. 1) The various types of lumines- cence are classifi ed according to the mode of excitation (see Table 1.1 ). Luminescent compounds can be of very different kinds: • Organic compounds : aromatic hydrocarbons (naphthalene, anthracene, phenan- threne, pyrene, perylene, porphyrins, phtalocyanins, etc.) and derivatives, dyes (fl uorescein, rhodamines, coumarins, oxazines), polyenes, diphenylpolyenes, some amino acids (tryptophan, tyrosine, phenylalanine), etc. + 3 + 3 + • Inorganic compounds : uranyl ion (UO 2 ), lanthanide ions (e.g., Eu , Tb ), doped glasses (e.g., with Nd, Mn, Ce, Sn, Cu, Ag), crystals (ZnS, CdS, ZnSe, CdSe, 3 + GaS, GaP, Al 2 O3 /Cr (ruby)), semiconductor nanocrystals (e.g., CdSe), metal clusters, carbon nanotubes and some fullerenes, etc. 1) Braslavsky , S. et al . ( 2007 ) Glossary of terms used in photochemistry , Pure Appl. -
Charters: What Survives?
Banner 4-final.qxp_Layout 1 01/11/2016 09:29 Page 1 Charters: what survives? Charters are our main source for twelh- and thirteenth-century Scotland. Most surviving charters were written for monasteries, which had many properties and privileges and gained considerable expertise in preserving their charters. However, many collections were lost when monasteries declined aer the Reformation (1560) and their lands passed to lay lords. Only 27% of Scottish charters from 1100–1250 survive as original single sheets of parchment; even fewer still have their seal attached. e remaining 73% exist only as later copies. Survival of charter collectionS (relating to 1100–1250) GEOGRAPHICAL SPREAD from inStitutionS founded by 1250 Our picture of documents in this period is geographically distorted. Some regions have no institutions with surviving charter collections, even as copies (like Galloway). Others had few if any monasteries, and so lacked large charter collections in the first place (like Caithness). Others are relatively well represented (like Fife). Survives Lost or unknown number of Surviving charterS CHRONOLOGICAL SPREAD (by earliest possible decade of creation) 400 Despite losses, the surviving documents point to a gradual increase Copies Originals in their use in the twelh century. 300 200 100 0 109 0s 110 0s 111 0s 112 0s 113 0s 114 0s 115 0s 116 0s 1170s 118 0s 119 0s 120 0s 121 0s 122 0s 123 0s 124 0s TYPES OF DONOR typeS of donor – Example of Melrose Abbey’s Charters It was common for monasteries to seek charters from those in Lay Lords Kings positions of authority in the kingdom: lay lords, kings and bishops. -
235 Ams Radiocarbon Dates of Kurgans Located on the Ust
AMS Radiocarbon Dates of Kurgans Located On the Ust'-Yurt Plateau, Uzbekistan Item Type Article; text Authors Blau, Soren; Yagodin, Vadim Citation Blau, S., & Yagodin, V. (2005). AMS radiocarbon dates of kurgans located on the Ust'-Yurt Plateau, Uzbekistan. Radiocarbon, 47(2), 235-241. DOI 10.1017/S0033822200019743 Publisher Department of Geosciences, The University of Arizona Journal Radiocarbon Rights Copyright © by the Arizona Board of Regents on behalf of the University of Arizona. All rights reserved. Download date 28/09/2021 13:36:35 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/653525 RADIOCARBON, Vol 47, Nr 2, 2005, p 235–241 © 2005 by the Arizona Board of Regents on behalf of the University of Arizona AMS RADIOCARBON DATES OF KURGANS LOCATED ON THE UST’-YURT PLATEAU, UZBEKISTAN Soren Blau Department of Archaeology, Flinders University. Also: The Victorian Institute of Forensic Medicine, 57-83 Kavanagh St, Southbank, Victoria 3006, Australia. Corresponding author. Email: [email protected]. Vadim Yagodin Institute of History, Archaeology and Ethnography, Nukus, Uzbekistan. ABSTRACT. Recent osteological analyses of archaeological human skeletal remains from the Ust’-Yurt Plateau, Uzbeki- stan, provided the opportunity to obtain samples for radiocarbon dating. The results of 18 accelerator mass spectrometry (AMS) dates are presented in this paper and provide the first absolute dates for late prehistoric and early historic archaeolog- ical sites in Uzbekistan. The AMS dates suggest that most sites are earlier than have been traditionally thought based on relative dating using artifact typologies. INTRODUCTION Russian scholarship in Central Asia has traditionally concentrated on the examination of archaeo- logically defined domestic areas and material culture as a means of interpreting whether remains belonged to nomadic or sedentary peoples (e.g. -
"New Energy Economy": an Exercise in Magical Thinking
REPORT | March 2019 THE “NEW ENERGY ECONOMY”: AN EXERCISE IN MAGICAL THINKING Mark P. Mills Senior Fellow The “New Energy Economy”: An Exercise in Magical Thinking About the Author Mark P. Mills is a senior fellow at the Manhattan Institute and a faculty fellow at Northwestern University’s McCormick School of Engineering and Applied Science, where he co-directs an Institute on Manufacturing Science and Innovation. He is also a strategic partner with Cottonwood Venture Partners (an energy-tech venture fund). Previously, Mills cofounded Digital Power Capital, a boutique venture fund, and was chairman and CTO of ICx Technologies, helping take it public in 2007. Mills is a regular contributor to Forbes.com and is author of Work in the Age of Robots (2018). He is also coauthor of The Bottomless Well: The Twilight of Fuel, the Virtue of Waste, and Why We Will Never Run Out of Energy (2005). His articles have been published in the Wall Street Journal, USA Today, and Real Clear. Mills has appeared as a guest on CNN, Fox, NBC, PBS, and The Daily Show with Jon Stewart. In 2016, Mills was named “Energy Writer of the Year” by the American Energy Society. Earlier, Mills was a technology advisor for Bank of America Securities and coauthor of the Huber-Mills Digital Power Report, a tech investment newsletter. He has testified before Congress and briefed numerous state public-service commissions and legislators. Mills served in the White House Science Office under President Reagan and subsequently provided science and technology policy counsel to numerous private-sector firms, the Department of Energy, and U.S. -
Pre-Islamic Arabia
Pre-Islamic Arabia The Nomadic Tribes of Arabia The nomadic pastoralist Bedouin tribes inhabited the Arabian Peninsula before the rise of Islam around 700 CE. LEARNING OBJECTIVES Describe the societal structure of tribes in Arabia KEY TAKEAWAYS Key Points Nomadic Bedouin tribes dominated the Arabian Peninsula before the rise of Islam. Family groups called clans formed larger tribal units, which reinforced family cooperation in the difficult living conditions on the Arabian peninsula and protected its members against other tribes. The Bedouin tribes were nomadic pastoralists who relied on their herds of goats, sheep, and camels for meat, milk, cheese, blood, fur/wool, and other sustenance. The pre-Islamic Bedouins also hunted, served as bodyguards, escorted caravans, worked as mercenaries, and traded or raided to gain animals, women, gold, fabric, and other luxury items. Arab tribes begin to appear in the south Syrian deserts and southern Jordan around 200 CE, but spread from the central Arabian Peninsula after the rise of Islam in the 630s CE. Key Terms Nabatean: an ancient Semitic people who inhabited northern Arabia and Southern Levant, ca. 37–100 CE. Bedouin: a predominantly desert-dwelling Arabian ethnic group traditionally divided into tribes or clans. Pre-Islamic Arabia Pre-Islamic Arabia refers to the Arabian Peninsula prior to the rise of Islam in the 630s. Some of the settled communities in the Arabian Peninsula developed into distinctive civilizations. Sources for these civilizations are not extensive, and are limited to archaeological evidence, accounts written outside of Arabia, and Arab oral traditions later recorded by Islamic scholars. Among the most prominent civilizations were Thamud, which arose around 3000 BCE and lasted to about 300 CE, and Dilmun, which arose around the end of the fourth millennium and lasted to about 600 CE. -
First Solar Investor Overview
FIRST SOLAR INVESTOR OVERVIEW IMPORTANT INFORMATION Cautionary Note Regarding Forward Looking Statements This presentation contains forward-looking statements which are made pursuant to safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, but are not limited to, statements concerning: effects resulting from certain module manufacturing changes and associated restructuring activities; our business strategy, including anticipated trends and developments in and management plans for our business and the markets in which we operate; future financial results, operating results, revenues, gross margin, operating expenses, products, projected costs (including estimated future module collection and recycling costs), warranties, solar module technology and cost reduction roadmaps, restructuring, product reliability, investments in unconsolidated affiliates, and capital expenditures; our ability to continue to reduce the cost per watt of our solar modules; the impact of public policies, such as tariffs or other trade remedies imposed on solar cells and modules; our ability to expand manufacturing capacity worldwide; our ability to reduce the costs to construct photovoltaic (“PV”) solar power systems; research and development (“R&D”) programs and our ability to improve the conversion efficiency of our solar modules; sales and marketing initiatives; the impact of U.S. tax reform; and competition. These forward-looking statements are often characterized by the use of words such as “estimate,” “expect,” “anticipate,” “project,” “plan,” “intend,” “seek,” “believe,” “forecast,” “foresee,” “likely,” “may,” “should,” “goal,” “target,” “might,” “will,” “could,” “predict,” “continue” and the negative or plural of these words and other comparable terminology. Forward-looking statements are only predictions based on our current expectations and our projections about future events and therefore speak only as of the date of this presentation. -
Lecture 10: Tidal Power
Lecture 10: Tidal Power Chris Garrett 1 Introduction The maintenance and extension of our current standard of living will require the utilization of new energy sources. The current demand for oil cannot be sustained forever, and as scientists we should always try to keep such needs in mind. Oceanographers may be able to help meet society's demand for natural resources in some way. Some suggestions include the oceans in a supportive manner. It may be possible, for example, to use tidal currents to cool nuclear plants, and a detailed knowledge of deep ocean flow structure could allow for the safe dispersion of nuclear waste. But we could also look to the ocean as a renewable energy resource. A significant amount of oceanic energy is transported to the coasts by surface waves, but about 100 km of coastline would need to be developed to produce 1000 MW, the average output of a large coal-fired or nuclear power plant. Strong offshore winds could also be used, and wind turbines have had some limited success in this area. Another option is to take advantage of the tides. Winds and solar radiation provide the dominant energy inputs to the ocean, but the tides also provide a moderately strong and coherent forcing that we may be able to effectively exploit in some way. In this section, we first consider some of the ways to extract potential energy from the tides, using barrages across estuaries or tidal locks in shoreline basins. We then provide a more detailed analysis of tidal fences, where turbines are placed in a channel with strong tidal currents, and we consider whether such a system could be a reasonable power source.