Comments on “A New Second-Order Turbulence Closure Scheme for The

Total Page:16

File Type:pdf, Size:1020Kb

Comments on “A New Second-Order Turbulence Closure Scheme for The 3478 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 56 NOTES AND CORRESPONDENCE Comments on ``A New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer''* D. V. MIRONOV Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany V. M . G RYANIK Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, and A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia V. N . L YKOSSOV Institute for Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia S. S. ZILITINKEVICH Institute for Hydrophysics, GKSS Research Centre, Geesthacht, Germany 11 November 1997 and 30 March 1998 1. Introduction tional downgradient diffusion term and the term pro- portional to the gradient of mean potential temperature, Abdella and McFarlane (1997, henceforth AM97) 2 have proposed a second-order turbulence closure their expression for w9 u9 contains a nongradient ``ad- vection'' term. That term is identical to the expression scheme for the planetary boundary layer. The scheme 2 contains a prognostic equation for the turbulence kinetic for w9 u9 obtained by AM97 [Eq. (3) below]. energy and algebraic expressions for the other second- In this note we show that the parameterization for the 2 order moments. The expressions for the potential tem- ¯ux of potential temperature variance, w9u9 , proposed perature ¯ux and the temperature variance incorporate by AM97 is inconsistent with the physical requirements nonlocal eddy diffusivity and countergradient terms. of symmetry. We then develop a parameterization that These expressions are derived through the use of an possesses necessary physical properties and verify it advanced parameterization of the third-order moments against large-eddy simulation (LES) and observational based on convective mass-¯ux arguments. Remarkably, data. the AM97 parameterizations for the ¯ux of potential temperature ¯ux, w9 2u9, and the ¯ux of potential tem- 2. Abdella and McFarlane's parameterizations for perature variance, w9u9 2 , do not have a traditional down- w9 2u9 and w9u9 2 gradient diffusion form. Simultaneously, Zilitinkevich et al. (1997, henceforth ZGLM; see also Zilitinkevich AM97 used the convective mass-¯ux concept (e.g., et al. 1999) proposed a ``turbulent advection 1 diffusion Randal et al. 1992) to derive expressions for the ¯ux of 2 parameterization'' for w9 u9. Apart from the conven- potential temperature ¯ux and the ¯ux of potential tem- perature variance. They considered an idealized con- vective circulation composed of rising branches (up- * Alfred Wegener Institute for Polar and Marine Research Contri- drafts) covering fractional area a, and sinking branches bution Number 1332. (downdrafts) covering fractional area (1 2 a). The area mean X of a generic variable X is given by Corresponding author address: Dr. Dmitrii Mironov, Deutscher Wetterdienst, Abteilung Meteorologische Analyse und Modellierung, X 5 aXu 1 (1 2 a)Xd, (1) Referat FE14, Postfach 10 04 65, Frankfurter Str. 135, D-63067, Offenbach am Main, Germany. where Xu and Xd are the mean values of X within the E-mail: [email protected] updrafts and downdrafts, respectively. The vertical tur- q 1999 American Meteorological Society Unauthenticated | Downloaded 09/23/21 10:52 AM UTC 1OCTOBER 1999 NOTES AND CORRESPONDENCE 3479 FIG. 1. Vertical velocity skewness (left) and potential temperature skewness (right) vs dimen- sionless height z/h, where h is the CBL depth. Dotted curves represent LES data. Crosses are data from the water tank experiment of Deardorff and Willis (1985), ®lled circles are the wind tunnel data of Fedorovich et al. (1996), and open circles are data from measurements in the atmospheric CBL taken from Sorbjan (1991). bulent ¯ux of X due to convective circulation is given formulated in terms of probabilities of the upward and by downward motions rather than in terms of fractional areas covered by these motions), and (iii) the third- w9X95a(w 2 w )(X 2 X ) uu order-moment budget equations. ZGLM emphasized that Eq. (3) satis®es basic phys- 1 (1 2 a)(wdd2 w )(X 2 X ) ical requirements, namely, the requirements of sym- 5 a(1 2 a)(wudud2 w )(X 2 X ), (2) metry. A close look at Eq. (4) suggests that it does not satisfy these requirements. Indeed, if w9 is replaced with where wu and wd are the mean values of the vertical velocity within the updrafts and downdrafts, respec- 2w9, the lhs of Eq. (4) changes its sign, while the rhs of Eq. (4) does not. The invariance with respect to the tively. In a similar way, the variance of X, the ¯ux of → X, and the ¯ux of variance of X are expressed through transformation u9 2u9 is also violated. a, Xu, Xd, wu, and wd. Combining the expressions for these second- and third-order moments, then replacing 3. Proposed parameterization for w9u92 X with potential temperature u, AM97 obtained the fol- lowing parameterizations for the ¯ux of potential tem- We observe that if the temperature skewness Su [ perature ¯ux and the ¯ux of potential temperature var- u93 /(u9 2 )3/2 is used instead of the vertical velocity skew- iance: ness Sw on the rhs of Eq. (4), it would acquire the form that possesses all necessary physical properties. In the w92u95S (w9 2) 1/2 w9u9, (3) w framework of the mass-¯ux model used by AM97, the 2 2 1/2 w9u95Sw(u9 ) w9u9. (4) expression of Su in terms of the fractional area covered by updrafts, a, has exactly the same form as the second Here, Sw is the vertical velocity skewness, equality on the rhs of Eq. (5). This does not mean, w93 1 2 2a however, that the two quantities can be used inter- Sw [5 , (5) changeably since their physical nature is different. The (w92)[ 3/2a(1 2 a)] 1/2 fact that Su is numerically equal to Sw stems from the where the second equality on the rhs of Eq. (5) follows simpli®ed character of the mass-¯ux model. It disagrees from the mass-¯ux arguments. with the empirical evidence. The LES (the data used are As mentioned above, the rhs of Eq. (3) coincides with described below), water tank, wind tunnel, and atmo- the advection part of the ZGLM turbulent advection 1 spheric data presented in Fig. 1 all show that vertical 2 diffusion parameterization for w9 u9. Three sets of ar- pro®les of Su and Sw are not similar over most of the guments were used to derive that advection part, namely, convective boundary layer (CBL). The temperature (i) the tensor nature of the third-moment considered, (ii) skewness is larger than the vertical velocity skewness a bimodal bottom-up/top-down turbulence model (that in the lower and middle parts of the CBL. is similar to the mass-¯ux model used by AM97 but is In order to illustrate how the difference in magnitude Unauthenticated | Downloaded 09/23/21 10:52 AM UTC 3480 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 56 between Su and Sw can be accounted for in the frame- work of the model of mid-CBL convective circulation, we introduce modi®cations into the earlier model of ZGLM and AM97. Following ZGLM, we formulate the modi®ed model in terms of probabilities rather than in terms of fractional areas. Without the loss of generality, the mean values of potential temperature and vertical velocity can be set to zero. We assume that convective circulation in mid-CBL involves warm updrafts, where ¯uctuations of potential temperature uw and vertical ve- locity wu occur with the probability Pwu; and cold down- drafts, where ¯uctuations uc and wd occur with the prob- ability Pcd. We introduce cold updrafts, where vertical velocity ¯uctuations are wu and potential temperature ¯uctuations are uc, and the probability of these to occur is Pcu. The following equations specify the parameters Pwu, Pcd, Pcu, wu, wd, uw, and uc: Pwu1 P cd1 P cu 5 1, wuwu(P 1 P cu) 1 wP dcd5 0, uwP wu1 u c(P cd1 P cu) 5 0, (6) 222 wuwu(P 1 P cu) 1 wP dcd5 w9 , u 22P 1 u (P 1 P ) 5 u9 2, (7) FIG. 2. Vertical pro®les of the ¯ux of potential temperature variance w wu c cd cu made dimensionless with the Deardorff velocity, w 5 (,bw9u9 h)1/3 * s 3323/2and temperature, u 5 w9us9 /w , scales (where b 5 g/T0 is the buoy- wuwu(P 1 P cu) 1 wP dcdw5 S (w9 ), * * ancy parameter, g is the acceleration due to gravity, T0 is the reference value of the absolute temperature, andw9u9 is the surface potential u 33P 1 u (P 1 P ) 5 S (u9 23/2) . (8) s w wu c cd cu u temperature ¯ux). Dotted curve represents LES data, solid curve is The above idealization of mid-CBL convective circu- computed from Eq. (9) with Cu 5 1, dashed curve is computed from the AM97 parameterization [Eq. (4)], heavy dotted curve is the Len- lation implies that positive ¯uctuations of potential tem- schow et al. (1980) ®t to the AMTEX data, and heavy dashed curve perature, uw, are more localized than positive ¯uctua- is the surface-layer free-convection similarity prediction (after Wyn- tions of vertical velocity, wu. As the skewness is indic- gaard et al. 1971). ative of this localization, our modi®ed model gives Su 21/2 5 (1 2 2Pwu)[Pwu(1 2 Pwu)] , which exceeds Sw 5 21/2 [1 2 2(Pwu 1 Pcu)][(Pwu 1 Pcu)(1 2 Pwu 2 Pcu)] . inequality to the turbulence moments on the rhs and the Obviously, with Pcu 5 0 the earlier model of ZGLM lhs of Eq. (3) and then to express the forth-order mo- and AM97 is recovered.
Recommended publications
  • Press Release
    PRESS RELEASE EUROGATE Intermodal introduces new rail service between Bremerhaven and Frankfurt/Main Hamburg, 23.04.20: EUROGATE Intermodal (EGIM) extends its service network with a direct connection between the container terminals Bremerhaven-Nordhafen and the inland terminal DUSS (Deutsche Umschlag-gesellschaft Schiene–Straße) in Frankfurt/Main. The Hamburg-based provider of combined transport by rail and road will start its new service on 3 May 2020, directly connecting the EUROGATE terminals CT 2, MSC Gate and the North Sea Terminal (NTB) with the DUSS terminal in Frankfurt-East twice a week. Import departures leave Bremerhaven-Nordhafen on Sundays and Wednesdays. Northbound export trains leave Frankfurt-East on Mondays and Thursdays. The service has a capacity of 96 TEU per departure and direction. The company boxXpress.de GmbH operates as traction provider for this service as well as other EGIM connections. The new product complements EGIM's existing range of services between Bremerhaven and Kornwestheim, Mannheim, Munich, Nuremberg and Ulm. EGIM also connects the seaports of Hamburg, Wilhelmshaven and Rotterdam with other inland terminals in southern Germany and Hungary. 23.04.20 EUROGATE Intermodal introduces direct rail service between Bremerhaven and Frankfurt / Main Page 1 of 3 PRESS RELEASE As the fourth largest container port in north-western Europe, Bremerhaven is not only an essential gateway, but also an efficient hub for handling large container ships. With potential capacities of more than 20,000 TEU per ship, the vessels calling at Bremerhaven increase and concentrate demand for intermodal offers for maritime transport inland. Niels Riedel, Sales Manager EGIM, explains: “With our new service between Bremerhaven and Frankfurt-East, we offer our customers additional direct and efficient connections to the hinterland.
    [Show full text]
  • From Hamburg Port to the World
    The impact of SMART Technology on skills demand – from Hamburg Port to the world Henning Klaffke, Maciej Mühleisen, Christoph Petersen, Andreas Timm‐Giel 1 Table of Contents Table of Contents ....................................................................................................................................... 2 List of Figures ..................................................................................................................................... 2 List of Tables ...................................................................................................................................... 3 1 Executive Summary ........................................................................................................................ 4 1.1 Objective of study .................................................................................................................. 5 1.2 Methods of study ................................................................................................................... 5 2 Research Methods .......................................................................................................................... 6 2.1.1 Qualitative Interviews ............................................................................................................ 6 2.1.2 Extrapolation of results .......................................................................................................... 6 2.1.3 Analysis of a Study to Identify Skill Demand of the Logistics Sector ....................................
    [Show full text]
  • Verden Und Hannover
    Linienfahrplan RE 1 Hannover Hbf – Bremen Hbf – Norddeich-Mole Expresskreuz RE 8 Hannover Hbf – Bremen Hbf – Bremerhaven-Lehe Niedersachsen/Bremen RB 76 Verden (Aller) – Rotenburg (Wümme) RE 8 RE 8 RE 1 IC RE 8 RE 8 RE 1 RE 8 RE 8 IC ICE IC RE 1 ICE RE 8 IC IC IC RE 1 ICE RE 8 IC IC Sa,So Mo-Sa Mo-Sa Sa,So Mo-Fr Mo-Sa So Mo-Fr Sa Mo-Sa oo 1 2 3 tt 4 5 3 6 7 8 9 q0 f f f h f fff f h hhf y f hhh f y f hh Hannover Hbf ab 0 20 2 17 4 17 4 20 5 20 6 18 6 20 wf 6 45 7 20 7 45 8 20 8 45 9 20 9 45 10 20 10 45 Wunstorf 0 33 2 31 4 31 4 33 5 33 6 33 6 33 ja 7 33 a 8 33 a 9 33 a 10 33 a Neustadt am Rübenberge 0 40 2 39 4 39 4 40 5 40 6 40 6 40 ja 7 40 a 8 40 a 9 40 a 10 40 a Nienburg (Weser) an 0 54 2 58 4 57 4 54 5 54 6 54 6 54 j 7 11 7 54 a 8 54 9 11 9 54 a 10 54 11 11 Linienfahrplan Nienburg (Weser) ab 0 54 2 58 4 58 4 54 5 54 6 54 6 54 j 7 13 7 54 a 8 54 9 13 9 54 a 10 54 11 13 Eystrup 1 03 3 07 5 06 5 03 6 03 7 03 7 03 ja 8 03 a 9 03 a 10 03 a 11 03 a Expresskreuz Dörverden 1 09 3 13 5 12 5 09 6 09 7 09 7 09 ja 8 09 a 9 09 a 10 09 a 11 09 a Verden (Aller) an 1 16 3 19 5 17 5 16 6 16 7 16 7 16 j 7 28 8 16 a 9 16 9 28 10 16 a 11 16 11 28 Niedersachsen/Bremen Verden (Aller) ab 1 16 3 20 5 18 5 16 6 16 7 16 7 16 j 7 30 8 16 a 9 16 9 30 10 16 a 11 16 11 30 Langwedel 1 21 3 25 a a a a a ja a a a a a a a a Etelsen 1 26 3 29 a a a a a ja a a a a a a a a Baden (Verden) 1 29 3 32 a a a a a ja a a a a a a a a RE 1 Hannover Hbf – Norddeich Mole Achim 1 33 3 36 5 27 5 26 6 26 7 26 7 26 ja 8 26 a 9 26 a 10 26 a 11 26 a Bremen-Mahndorf 1 38 3 41 5 33 5 31 6 31 7 31 7 31 ja 8 31 a 9 31 a 10 31 a 11 31 a RE 8 Hannover Hbf – Bremen – Bremen-Sebaldsbrück 1 42 3 45 a a a a a ja a a a a a a a a Bremerhaven-Lehe Bremen Hbf an 1 47 3 51 5 40 5 39 6 39 7 39 7 39 wf 7 50 8 39 8 44 9 39 9 50 10 39 10 44 11 39 11 50 RB 76 Verden – Rotenburg Bremen Hbf ab 5 56 wd 6 56 7 56 7 56 7 56 8 56 8 56 9 56 9 56 10 56 10 56 11 56 11 56 Osterholz-Scharmbeck 6 10 j 7 10 8 10 8 10 8 10 9 10 9 10 10 10 10 10 11 10 11 10 12 10 12 10 Gültig vom 13.
    [Show full text]
  • Facts & Figures the Ports of Bremen and Bremerhaven
    FACTS & FIGURES THE PORTS OF BREMEN AND BREMERHAVEN The Senator for Free Economic Affairs, Hanseatic City Labour and Ports of Bremen 1 xxx | FACTS & FIGURES 2017 INQUIRIES AND SUGGESTIONS FRAGENABOUT UND THE ANREGUNGEN LATEST STATISTICS ZU AKTUELLEN STATISTIKEN The figures for the ports of Bremen are Derpublished Senator für by Wirtschaft, the Senator forMartina Economic Ferreira ArbeitAffairs, und HäfenLabour and Ports, inReferat this case 31 - Hafenwirtschaftthe und ZweiteDepartment Schlachtpforte of Port 3 Economy,-infrastruktur, Infrastructure, Schifffahrt 28195 Bremen Tel.: +49 (0) 421 361-8206 www.wirtschaft.bremen.deShipping. bremenports GmbHFax: & +49 Co. (0) KG 421 496-8206 is responsible for port infrastructureE-Mail: Martina.Ferreira@WAH. The contact data is stated on thebremen.de back cover of this publication. Dr. Iven Krämer Referatsleiter - Hafenwirtschaft und -infrastruktur, Schifffahrt Tel.: +49 (0) 421 361-8206 Fax: +49 (0) 421 496-8206 E-Mail: Iven.Kraemer@WAH. bremen.de Jörg Lattner Referat 31 - Hafenwirtschaft und -infrastruktur, Schifffahrt Tel.: +49 (0) 421 361-2208 THE PORTS OF BREMENFax: +49 (0)AND 421 496-2208 E-Mail: [email protected] BREMERHAVEN men.de IN FACTS AND FIGURES 2 FACTS & FIGURES 2017 | Introduction DEAR READERS OF THE FACTS & FUGURES 2017 How many seagoing vessels called CONTENT at the ports in 2017? How has con- tainer throughput developed over the past five years? What types of Shipping and Freight Traffic 6 cargo are handled at Bremen‘s Container Throughput 20 ports which consistsing of the port Automobile Throughput 28 group Bremen and Bremerhaven? Cruise Shipping 32 The annual Facts & Figures Inland Barges 36 brochure provides details of the seagoing vessels and Container Hinterland Traffic 40 seaborne freight handled Vessels Draughts 43 at the ports.
    [Show full text]
  • Aufstellung Der Verbindlich Angekündigten Umstellungsbereiche
    Aufstellung der verbindlich angekündigten Umstellungsbereiche Umstellungs- derzeit geplanter Nr. im NEP zeitpunkte im Umstellungsschritte pro Umstellungsbereich Gerätezahl Bereich im NEP Gas 2020-2030 FNB technischer Gas 2020-2030 NEP Gas im NEP Gas 2020-2030 (geschätzt) Umstellungsmonat 2020-2030 2020 5 Aggertalleitung OGE 2020 Aggertalleitung_2020_Schritt 1b 4.000 abgeschlossen 5 Aggertalleitung OGE 2020 Aggertalleitung_2020_Schritt 2 3.000 abgeschlossen 5 Aggertalleitung TG 2020 Aggertalleitung_2020_Schritt 1a 0 abgeschlossen 5 Aggertalleitung TG 2020 Aggertalleitung_2020_Schritt 1b 5.000 abgeschlossen 5 Aggertalleitung TG 2020 Aggertalleitung_2020_Schritt 2 15.000 abgeschlossen 5 Aggertalleitung TG 2020 Aggertalleitung_2020_Schritt 3 20.000 abgeschlossen 2 Bremen/ Delmenhorst GUD 2020 Keine 83.000** abgeschlossen 3 Hannover Ost / Wolfsburg GUD 2020 Keine 5.000 abgeschlossen 3 Hannover Ost / Wolfsburg GUD 2020 Hannover Ost/ Wolfsburg_2020_Schritt 1 35.000 abgeschlossen 3 Hannover Ost / Wolfsburg GUD 2020 Hannover Ost/ Wolfsburg_2020_Schritt 2 27.000 abgeschlossen 3 Hannover Ost / Wolfsburg GUD 2020 Hannover Ost/ Wolfsburg_2020_Schritt 3 8.000 abgeschlossen 3 Hannover Ost / Wolfsburg GUD 2020 Hannover Ost/ Wolfsburg_2020_Schritt 4 9.000 abgeschlossen 6 Bonn OGE 2020 Bonn_2020_Schritt 1 21.000 abgeschlossen 6 Bonn OGE 2020 Bonn_2020_Schritt 2 4.000 abgeschlossen 1 EWE-Zone Teil I GTG 2020 Schritt 1 38.000 abgeschlossen 1 EWE-Zone Teil I GTG 2020 Schritt 2 23.000 abgeschlossen OGE 4 Teutoburger Wald 5 2020 Keine 39.000 abgeschlossen (Nowega)
    [Show full text]
  • Port Information Guide Bremerhaven
    PORT INFORMATION GUIDE BREMERHAVEN JUNE 2021 INITIATED BY IN ASSOCIATION WITH SUPPORTED BY PORT INFORMATION GUIDE • Source: Harbour Master Port of Bremerhaven • June, 2021 2 PORT OF BREMERHAVEN BREMERHAVEN UN Code: DEBRV Port ID: 20315 GENERAL INTRODUCTION This book has been written for Masters of seagoing vessels, shipping lines, publishers of nautical information and any other party that needs nautical information. LEGAL DISCLAIMER The Port Authority of Bremerhaven (Hansestadt Bremisches Hafenamt / HBH) makes every effort to make and maintain the contents of the Guidelines on Port Entry as up-to-date, accessible and complete as possible, but the correctness and completeness of these contents cannot be guaranteed. In case of any discrepancies or inconsistencies between the Guidelines and the applicable legislation, including the bye-laws, the latter will prevail. CONTACT PORT Hansestadt Bremisches Hafenamt Steubenstrasse 7b 27568 Bremerhaven Germany CONTACT PERSON FOR PORT INFORMATION Capt. Insa Kühle, Head of Port Operation [email protected] WEBSITE OF THE PORT https://www.hbh.bremen.de/ WEBSITE OF THIS DOCUMENT http://www.hbh.bremen.de/sixcms/media.php/13/PORT-INFORMATION-GUIDE-Bremerhaven.pdf PORT INFORMATION GUIDE • Source: Harbour Master Port of Bremerhaven • June, 2021 3 TABLE OF CONTENT PORT INFORMATION GUIDE • Source: Harbour Master Port of Bremerhaven • June, 2021 4 TABLE OF CONTENT GENERAL INTRODUCTION 3 TABLE OF CONTENT 4 PART I INTRODUCTION, CONTACT INFORMATION AND REGULATION 1 FOREWORD HARBOUR MASTER 10 1.1 GENERAL
    [Show full text]
  • Linienfahrplan (Cuxhaven–) Bremerhaven – Bremen – Osnabrück/(–Hannover Hbf)
    Linienfahrplan (Cuxhaven–) Bremerhaven – Bremen – Osnabrück/(–Hannover Hbf) RS 2 RS 2 RS 2 RE RE 9 RS 2 RS 2 EC RS 2 RE 8 RE 9 RS 2 ICE RB 33 RS 2 RE 9 RS 2 EC RS 2 RB 33 RE 8 RE 9 RS 2 Sa,So Sa,So Mo-Fr Mo-Sa Mo-Sa Mo-Sa Mo-Sa Mo-Fr Mo-Fr Mo-Sa Mo-Sa Mo-Fr Mo-Fr Mo-Sa Mo-Fr Mo-Sa Ẅ ẅ Ẇ ẇ ẇ ẇ Ẉ ẇ ẗẎ ẇ ẇ Ẇ ẇ ẇ ẇ f f f2. f2. f2. f f f2. f2. hy f2. f f2. y f2. f f2. hy f2. fff2. Cuxhaven ab 5 09 6 39 Nordholz ð 5 21 6 51 VBN Dorum (Weserm) 5 32 7 02 Ꭺ Wremen 5 38 7 08 Ꭺ Bremerhaven-Lehe ab 0 08 4 07 4 53 5 23 5 37 5 49 5 56 6 23 6 37 6 56 7 19 7 23 7 37 Ꭺ Bremerhaven Hbf an 0 12 4 11 4 57 5 27 5 41 5 53 6 00 6 27 6 41 7 00 7 23 7 27 7 41 Ꭺ Bremerhaven Hbf ab 0 12 4 12 4 57 5 28 5 42 6 01 6 28 6 42 7 01 7 28 7 42 Ꭺ Bremerhaven-Wulsdorf 0 15 4 15 5 01 Ꭺ 5 45 6 04 ܥ Ꭺ 6 45 7 04 Ꭺ 7 45 Ꭺ Loxstedt 0 19 4 19 5 04 5 49 6 08 ܥ Ꭺ 6 49 7 08 Ꭺ 7 49 Ꭺ Lunestedt 0 23 4 23 5 09 5 53 6 12 ܥ Ꭺ 6 53 7 12 Ꭺ 7 53 Ꭺ Stubben 0 28 4 28 5 13 5 58 6 17 ܥ Ꭺ 6 58 7 17 Ꭺ 7 58 Ꭺ Lübberstedt 0 33 4 33 5 18 6 03 6 22 ܥ Ꭺ 7 03 7 22 Ꭺ 8 03 Ꭺ Oldenbüttel 0 39 4 39 5 24 6 08 6 27 ܥ Ꭺ 7 08 7 27 Ꭺ 8 08 Gültig ab 13.Dezember 2015 Ꭺ Osterholz-Scharmbeck 0 43 4 44 5 28 5 50 6 13 6 32 6 50 7 13 7 32 7 50 8 13 Linienfahrplan Ꭺ Ritterhude 0 47 4 48 5 32 6 17 6 36 ܥ Ꭺ 7 17 7 36 Ꭺ 8 17 Bremen-Burg 0 51 4 53 5 36 6 21 6 40 ܥ Ꭺ 7 21 7 40 Ꭺ 8 21 ẇ VBN Bremen Hbf an 1 00 5 04 5 45 6 03 6 30 6 47 7 03 7 30 7 47 8 03 8 30 RB 33 Cuxhaven - Bremerhaven Bremen Hbf ab ẗẍ 5 12 6 09 6 18 Ꭺ ẗẏ 7 14 Ꭺ ẗẑ 8 09 8 18 Ꭺ RE 9 Bremerhaven - Osnabrück Hannover Hbf an ẗẍ 6 14 7 13 7 38 Ꭺ ẗẏ
    [Show full text]
  • Noise in Europe
    Country fact sheet Noise in Europe 2017 overview of policy-related data Germany April 2017 Photo: © Matthias Hintzsche The Environmental Noise Directive (END) requires EU member states to assess exposure to noise from key transport and industrial sources with two initial reporting phases: 2007 and 2012. Where the recommended thresholds for day and night indicators are exceeded, action plans are to be implemented. This country fiche presents data related to END assessments as reported to EEA by 15th April 2016 for the two key END indicators: Lden (day evening and night exposure) and Lnight (night time exposure). 2012 strategic noise maps reported are presented, as well as HIA calculations for annoyance and sleep disturbance, hospital admissions and mortality. Trends are presented as the change in exposure from 2007 to 2012, for comparable sources only. GERMANY Noise sources covered by this assessment Agglomerations Aachen, Augsburg, Bergisch Gladbach, Berlin, Bielefeld, Bochum, Bonn, Bottrop, Braunschweig, > 100.000 inhabitants Bremen, Bremerhaven, Chemnitz, Cologne, Darmstadt, Dortmund, Dresden, Duisburg, Dusseldorf, Erlangen, Essen, Frankfurt, Freiburg, Furth, Gelsenkirchen, Gottingen, Hagen, Halle, Hamburg, Hannover, Heidelberg, Heilbronn, Herne, Hildesheim, Ingolstadt, Karlsruhe, Kassel, Kiel, Koblenz, Krefeld, Leipzig, Leverkusen, Lubeck, Ludwigshafen, Magdeburg, Mainz, Mannheim, Moers, Monchengladbach, Mulheim an der Ruhr, Munich, Munster, Neuss, Nuremberg, Oberhausen, Offenbach, Oldenburg, Osnabruck, Pforzheim, Potsdam, Recklinghausen,
    [Show full text]
  • Zum Werktäglichen Verkehrsverhalten Der Bevölkerung in Bremerhaven
    MOBILITÄTSBEFRAGUNG 2014 zum werktäglichen Verkehrsverhalten der Bevölkerung in Bremerhaven Ingenieurbüro Helmert Malmedyer Straße 30 52066 Aachen Mobilitätsbefragung – Bremerhaven MOBILITÄTSBEFRAGUNG ZUM WERKTÄGLICHEN VERKEHRSVERHALTEN DER BEVÖLKERUNG IN DER STADT BREMERHAVEN SCHLUSSBERICHT Aachen, 6.1.2015 Auftraggeber: Stadt Bremerhaven 61/2 Flächennutzungsplanung und Verkehrsplanung Postfach 21 03 60 27524 Bremerhaven Auftragnehmer: Ingenieurbüro Helmert Malmedyer Str. 30 52066 Aachen Auswertungen und Bericht: Dipl.-Ing. Christoph Helmert Dipl.-Verkehrswirtschaftlerin Kathrin Henninger B.Sc. Felix Ruhrberg Ingenieurbüro Helmert II Aachen Mobilitätsbefragung – Bremerhaven Ingenieurbüro Helmert III Aachen Mobilitätsbefragung – Bremerhaven Inhaltsverzeichnis VORWORT ..................................................................................................................... 1 1. ZUSAMMENFASSUNG ............................................................................................ 3 2. GRUNDLAGEN ...................................................................................................... 4 2.1 Vorgehensweise und Methodik .................................................................................... 4 2.1.1 Bürgerinformation ................................................................................................. 5 2.1.2 Fragebogen .......................................................................................................... 6 2.1.3 Datenschutz .........................................................................................................
    [Show full text]
  • Bremerhaven Rail Service Timetable München
    T I M E T A B L E (15.02.2013) Product: Bremerhaven Rail Service Seaport: Bremerhaven Terminal: München Riem Ubf. South > North Monday Tuesday Wednesday Thursday Friday Saturday Sunday Booking circuit FRI 12:00 MON 12:00 TUE 12:00 WED 12:00 THU 12:00 Closing FRI 18:00 MON 18:00 TUE 18:00 WED 18:00 THU 18:00 Availability München TUE 10:00 WED 10:00 THU 10:00 FRI 10:00 MON 10:00 Booking circuit is depending as well on free capacities! Cancellation deadline the working day (MO-FR) before departure at 12 a.m.! COMPLETE SOLUTION OUT OF ONE HAND SIMPLE PROCESSING INNOVATIVE BLOCK TRAIN SYSTEM SHORT TIME IN TRANSIT …RELIABLE, FAST, PROFESSIONAL! North > South Monday Tuesday Wednesday Thursday Friday Saturday Sunday Booking circuit FRI 12:00 MON 12:00 TUE 12:00 WED 12:00 THU 12:00 Closing FRI 16:45 MON 16:45 TUE 16:45 WED 16:45 THU 16:45 Availability TUE 18:00 WED 18:00 THU 18:00 FRI 18:00 MON 18:00 Bremerhaven The times given are no delivery dates. Errors and omissions excepted. T I M E T A B L E (15.02.2013) Product: Bremerhaven Rail Service Seaport: Bremerhaven Terminal: München Riem Ubf. PRODUCT DESCRIPTION Our regular service from Bremerhaven to terminal Munich v.v. provides beside fast transit times and competitive rates, also an ideal connection to the Bavarian region as well as to Salzburg and Tirol areas. CONTACT DETAILS Office Mail Phone Address Vienna [email protected] +43 1 20168 200 AT-1210 Vienna, Trillergasse 8 Bergheim [email protected] +43 662 45411 601 AT-5101 Bergheim, Plainbachstrasse 12 Landshut [email protected] +49 871 97697144 DE-84036 Landshut, Sandstrasse 1 D Hamburg [email protected] +49 40 238542 10 DE-20097 Hamburg, Heidenkampsweg 44 Basel [email protected] +41 61 22656 50 CH-4002 Basel, Margarethenstrasse 38 Bratislava [email protected] +421 2 32660 123 SK-821 05 Bratislava, Hranicna 18 Budapest [email protected] +36 1 27101 93 HU-1151 Budapest, Visonta utca 1 Terminal in Germany Terminals in Bremerhaven München Riem Ubf.
    [Show full text]
  • Norddeutscher Lloyd and Baltimore a Transatlantic Partnership
    NORDDEUTSCHER LLOYD AND BALTIMORE A TRANSATLANTIC PARTNERSHIP n March 23, 1868, just more than 150 years ago, the SS Baltimore steamed past Fort Mc Henry on its maiden voyage and docked at Othe newly­constructed immigration pier in Locust Point. The 141 passengers were the first of the 1.2 million immigrants who landed there up until 1914. The opening of the pier was the result of a partnership between the Baltimore and Ohio Railroad and the North German Lloyd Company of the port city of Bremen, which transported these immigrants across the ocean. Up to 1890, the majority of these immigrants came from Germany, adding to the substantial German presence in Baltimore. Trade connections between Baltimore and Bremen had begun in the 1790s. At that point, the U.S. had just gained its independence from Britain, and American ships were no longer limited in their destinations, which had been the case under British colonial rule. Baltimore was grow­ ing rapidly, the nation’s third largest city by 1810, while Bremen was also a thriving independent city­state (Germany did not unify until 1871). Baltimore merchants had established a vibrant trade with Bremen, exchanging cotton and tobacco for linen and glassware. In fact, during 1794–99, half of the American ships landing in Bremen came from Baltimore. Bremen along with Hamburg, the other major German sea­ port, became America’s second largest trading partner after Britain in that decade.1 The Napoleonic Wars of 1803–1815 disrupted trade, which resumed in 1815, recovering its vigorous pace. At this time, travel was entirely by sailing ships, which were usually owned by individual merchants or a partnership of merchants.
    [Show full text]
  • Hamburg Is Staying on Course the PORT DEVELOPMENT PLAN 2025 TO
    Map of the Port ofHamburg Map ofthePort HAMBURG IS STAYING ON COURSE THE PORT DEVELOPMENT PLAN TO 2025 is staying on Course isstaying Hamburg THE PORT PLAN DEVELOPMENT 2025 TO J LEGAL NOTICE Published by: Free and Hanseatic City of Hamburg – State Ministry of Economic Affairs, Transport and Innovation Hamburg Port Authority Enquiries to: Hamburg Port Authority Neuer Wandrahm 4 · 20457 Hamburg Germany E-mail: [email protected] You can download this document online at: www.hamburg-port-authority.de Concept, Infographics and Design: Havas PR Hamburg GmbH Photos: HPA image archive, www.mediaserver.hamburg.de/C.Spahrbier Map on the back cover: HPA cartography October 2012 Hamburg is staying on Course The Port Development Plan to 2025 2 Content Senator’s Foreword .................................................................................... 4 Port Development Based on Dialogue .................................................... 6 Strategic Guidelines ................................................................................... 7 The Port of Hamburg: Site Indicators ................................. 8 Sharpening the Profile of the Port ....................................... 29 The Macro-Economic Importance of the Port of Hamburg ................. 8 Focus on Growing Markets and Regions .............................................. 29 The Port as the Heart of Maritime Trade ........................................ 8 Hamburg’s Position in Intercontinental Trade .............................. 29 Port-Related Value Creation ..........................................................
    [Show full text]