Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Infonnation Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 INTERACTIVE VOLUME RENDERING AND DEFORMATION FOR SURGERY SIMULATION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By David M. Reed, B.A., M.S. ***** The Ohio State University 1997 Dissertation Committee: Apprpved/by Dr. Roni Yagel, Adviser Dr. Richard Parent idviser Dr. Wayne Carlson Department of Computer and Information Science UMI Number: 9801768 Copyright 1997 by Reed, David Matthew All rights reserved. UMI Microform 9801768 Copyright 1997, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 © Copyright by David M. Reed 1997 ABSTRACT In the past few years, interest in volumetric graphics techniques for many applications has increased. Until recently, computers were not powerful enough to support applications using volumetric data. Advances in computer hardware and new volumetric algorithms have made volumetric approaches attractive for many applications. Medical applications and scientific visualization are two areas that commonly use volumetric data because data is more naturally represented in these applications using volumes and volumes supports features that are not adequately handled by surface representations. This dissertation extends the fields of volume rendering and deformation to provide a framework for surgical simulation. A volumetric rendering algorithm that overcomes the depth sorting problem of irregular grids and takes advantage of polygon rendering hardware to produce images faster than existing algorithms is presented. A physically-based simulation method is presented that uses volumetric data to avoid the problems caused by surface representations. The method is fast, numerically stable, and supports varying material properties. The tenderer and simulation are integrated to provide a system for surgical simulation. As the processing power of computers continues to increase, the methods presented in this dissertation along with haptic feedback devices will provide usable surgery simulators within ten years. Ill Dedicated to my wife, Sherri. IV ACKNOWLEDGMENTS First, I would like to thank my adviser. Dr. Roni Yagel, for providing the encouragement, motivation, and countless hours of discussion that helped me complete this dissertation. Without his encouragement and help, this dissertation would never have been completed. I would also like to thank the following who contributed directly to a portion of this work: Asish Law, Po-Wen Shih, and Naeem Shareef. Asish provided many of the ideas for the early version of the tenderer and always pushed us to try one more technique to improve the algorithm. Po-Wen and Naeem provided the scientific data sets in a usable form for our algorithm. Don Stredney and Dennis Sessanna provided and segmented the medical data sets used for testing the simulation algorithm. I would like to thank Dr. Wayne Carlson, Steve May, and Pete Carswell who provided me the opportunity to work at ACCAD on a variety of graphics related projects. These experiences and the environment at ACCAD provided me with valuable experience. My initial interest in graphics was sparked by Dr. Richard Parent and Dr. Kikou Fujimura. I would like to thank Rick for originally serving as my advisor and continuing to support me even when my work steered me away from his specialty areas. During my years at OSU, I had numerous discussion about various graphic related and software engineering topics with a number of people. These discussions often sparked ideas and new levels of understanding. At the risk of leaving someone out, I would like to thank: Wayne Carlson, Pete Carswell, Roger Crawfis, Kikou Fujimura, Meg Geroch, Scott King, Yair Kurzion, Asish Law, Matt Lewis, Nathan Loofbourrow, Steve May, Raghu Machiraju, Torsten Moller, Klaus Mueller, Rick Parent, Kevin Rodgers, Ferdi Scheepers, Dennis Sessanna, Naeem Shareef, Po-Wen Shih, Karan Singh, Steve Spencer, Ken Supowit, Ed Swan, Lawson Wade, Raphael Wenger, and of course, Roni Yagel. Barb Heifer and Dennis Sessanna deserve special thanks for helping me generate the slides, images, and videos I needed for papers and conference presentations. Finally, I would like to thank my wife Sherri and my parents Allan and Rose Reed for their constant encouragement. Their encouragement enabled me to continue working and see the light at the end of the tunnel. VI VITA May 11, 1969 ....................................................Bom - Columbus, OH 1991 ...................................................................B.A.(Math, CS), Wittenberg University 1993 ...................................................................M.S. (CIS), The Ohio State University 1991-present.......................................................Graduate Teaching and Research Associate, The Ohio State University PUBLICATIONS [1] Larry A. Vitema, Robert D. Green, and David M. Reed. “RSM 1.0 User’s Guide: A Resupply Scheduler Using Integer Optimization,” NASA Technical Memorandum 104380, May 1991. [2] David M. Reed, Lawson Wade, Peter G. Carswell, and Wayne E. Carlson “Particle tracing in curvilinear grids,” in Visual Data Exploration and Analysis II, Georges G. Grinstein, Robert E Erbacher, Editors, Proc. SPDE 2410, pp. 120-128 (1995). [3] Roni Yagel, David M. Reed, Asish Law, Po-Wen Shih, and Naeem Shareef, “Hardware Assisted Volume Rendering of Unstructured Grids,” Proceedings 1996 Symposium on Volume Visualization, San Francisco, CA, October 1996, pp. 55-62. VII [4] John S. McDonald, M.D., Roni Yagel, Ph.D. Petra Schmalbrock, Ph.D., Don Stredney, David M. Reed, and Dennis Sessanna, “Visualization of Compression Neuropathes Through Volume Deformation”, Proceedings Medicine Meets Virtual Reality 1997 (MMVR’97). FIELDS OF STUDY Major Field: Computer and Information Science (Computer Graphics) Minor Field: Algorithms Minor Field: Parallel Computing Vlll TABLE OF CONTENTS Page Abstract ............................................................................................................................................ii Dedication...................................................................................................................................... iv Acknowledgments.........................................................................................................................v V ita................................................................................................................................................ vii List of T a b le s .............................................................................................................................. xii List of Figures ............................................................................................................................. xiii Chapters: 1. Introduction ......................................................................................................................... I I. I Volume R endering ............................................................................................... 4 1.2 Volume Deformation ............................................................................................. 6 1.3 Existing Methods ..................................................................................................7 1.4 New Solutions ...................................................................................................... Il 1.5 Overview of Dissertation.................................................................................. 12 2. Rendering and Deformation of Volumetric Data .......................................................13 2.1 Volume R endering ..............................................................................................14 2.1.1 Grid Taxonomy ......................................................................................17 2.1.2 Voxel Space M ethods ..........................................................................20
Recommended publications
  • Overview of the SPEC Benchmarks
    9 Overview of the SPEC Benchmarks Kaivalya M. Dixit IBM Corporation “The reputation of current benchmarketing claims regarding system performance is on par with the promises made by politicians during elections.” Standard Performance Evaluation Corporation (SPEC) was founded in October, 1988, by Apollo, Hewlett-Packard,MIPS Computer Systems and SUN Microsystems in cooperation with E. E. Times. SPEC is a nonprofit consortium of 22 major computer vendors whose common goals are “to provide the industry with a realistic yardstick to measure the performance of advanced computer systems” and to educate consumers about the performance of vendors’ products. SPEC creates, maintains, distributes, and endorses a standardized set of application-oriented programs to be used as benchmarks. 489 490 CHAPTER 9 Overview of the SPEC Benchmarks 9.1 Historical Perspective Traditional benchmarks have failed to characterize the system performance of modern computer systems. Some of those benchmarks measure component-level performance, and some of the measurements are routinely published as system performance. Historically, vendors have characterized the performances of their systems in a variety of confusing metrics. In part, the confusion is due to a lack of credible performance information, agreement, and leadership among competing vendors. Many vendors characterize system performance in millions of instructions per second (MIPS) and millions of floating-point operations per second (MFLOPS). All instructions, however, are not equal. Since CISC machine instructions usually accomplish a lot more than those of RISC machines, comparing the instructions of a CISC machine and a RISC machine is similar to comparing Latin and Greek. 9.1.1 Simple CPU Benchmarks Truth in benchmarking is an oxymoron because vendors use benchmarks for marketing purposes.
    [Show full text]
  • Chapter 3 CSE Implementation Issues
    UvA-DARE (Digital Academic Repository) Studies in Interactive Visualization van Liere, R. Publication date 2001 Link to publication Citation for published version (APA): van Liere, R. (2001). Studies in Interactive Visualization. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 Chapter 3 CSE Implementation Issues An overview of the CSE architecture was presented in Chapter 2. In this chapter a more in-depth discussion on the technical issues related to the design and implementation is given. 3.1 Design 3.1.1 Data Storage and Mappings A variable managed by the blackboard consists of a name, type, value, dimensions, and user defined attributes. Data is stored in the blackboard as an n-dimensional array (where n is0, 1, 2,...) containing elements of the same scalar type (e.g., 8-bit character, 32-bit integer).
    [Show full text]
  • 3Dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli
    3dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli Interviewed by: Shayne Hodge Recorded: July 29, 2013 Mountain View, California CHM Reference number: X6887.2013 © 2013 Computer History Museum 3dfx Oral History Panel Shayne Hodge: OK. My name is Shayne Hodge. This is July 29, 2013 at the afternoon in the Computer History Museum. We have with us today the founders of 3dfx, a graphics company from the 1990s of considerable influence. From left to right on the camera-- I'll let you guys introduce yourselves. Gary Tarolli: I'm Gary Tarolli. Scott Sellers: I'm Scott Sellers. Ross Smith: Ross Smith. Gordon Campbell: And Gordon Campbell. Hodge: And so why don't each of you take about a minute or two and describe your lives roughly up to the point where you need to say 3dfx to continue describing them. Tarolli: All right. Where do you want us to start? Hodge: Birth. Tarolli: Birth. Oh, born in New York, grew up in rural New York. Had a pretty uneventful childhood, but excelled at math and science. So I went to school for math at RPI [Rensselaer Polytechnic Institute] in Troy, New York. And there is where I met my first computer, a good old IBM mainframe that we were just talking about before [this taping], with punch cards. So I wrote my first computer program there and sort of fell in love with computer. So I became a computer scientist really. So I took all their computer science courses, went on to Caltech for VLSI engineering, which is where I met some people that influenced my career life afterwards.
    [Show full text]
  • Quality Planning for Distributed Collaborative Multimedia Applications
    Quality Planning for Distributed Collab orative Multimedia Applications PhD Thesis Mark Claypool Advisor John Riedl University of Minnesota Computer Science Department September Acknowledgements There are many p eople who have help ed me in this work either directly by adding their work to mine or indirectly by giving me vision and supp ort However ab ove all there are two p eople who deserve my deep est gratitude Professor John Riedl and my wife Ka jal As my advisor John has contributed to all levels of this thesis from guidance on writing C co de and English grammar rules to exp erimental design and data analysis to a rich exciting vision of computer science research Most imp ortantly he has provided motivation to p ersevere through the slow dicult parts of research motivation to pursue research problems that make a dierence in the world and motivation to pursue a career as a professor myself I hop e to emulate much of Johns style when I advise my future graduate students Equally imp ortant Ka jal has b een a pillar of strength and supp ort She has b een understanding of the uctuations in the demands on the time of a graduate student She has b een patient through the many years she worked to supp ort us while I was still in school working on this thesis She has b een inspirational when I was down ab out progress or down ab out some exp eriment results And her technical knowledge has provided me with nudges in the right direction when my research lacked fo cus I hop e I can b e as supp ortive of her during her PhD quest as she was
    [Show full text]
  • Nineteenth Status Report on Implementation
    WORLD METEOROLOGICAL ORGANIZATION WORLD WEATHER WATCH NINETEENTH STATUS REPORT ON IMPLEMENTATION 1999 WMO-No. 894 Secretariat of the World Meteorological Organization - Geneva - Switzerland WORLD METEOROLOGICAL ORGANIZATION WORLD WEATHER WATCH NINETEENTH STATUS REPORT ON IMPLEMENTATION 1999 WMO-No.894 Secretariat of the World Meteorological Organization- Geneva- Switzerland © 1999, World Meteorological Organization ISBN 92- 63- 10894- 3 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organizati on concerning the legal status of any country, terri tory, city or area, of its authorities, or concern ing the delimitation of its frontiers or boundaries. FOREWORD The World Weather Watch (WWW) Programme of the World Meteorological Organization (WMO) was adopted in 1963 by the Fourth World Meteorological Congress. Since then it has grown to be fundamental for all WMO and other related programmes as regards the provision of basic meteorological data and products, telecommunication services and the management thereof. In continuing to attribute the highest priority to the furtherance and implementation of WWW, Twelfth Congress in Resolution 2 urged all Members of the Organization to cooperate actively and enthusiastically in the implementation of the WWW. This publication is the 19th in a series of biannual reports on the status of implementation of WWW. It was mainly designed to inform the senior management of the national Meteorological and Hydrological Services (NMHSs), but also interested academia and the private sector of the operational status of WWW. It provides information concerning the structure, status and trends of the implementation, as well as performance of the core components of WWW, notably the Global Observing System (GOS), the Global Telecommunication System (GTS) and the Global Data-processing System (GDPS).
    [Show full text]
  • AVS on UNIX WORKSTATIONS INSTALLATION/ RELEASE NOTES
    _________ ____ AVS on UNIX WORKSTATIONS INSTALLATION/ RELEASE NOTES ____________ Release 5.5 Final (50.86 / 50.88) November, 1999 Advanced Visual Systems Inc.________ Part Number: 330-0120-02 Rev L NOTICE This document, and the software and other products described or referenced in it, are con®dential and proprietary products of Advanced Visual Systems Inc. or its licensors. They are provided under, and are subject to, the terms and conditions of a written license agreement between Advanced Visual Systems and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless oth- erwise permitted by that agreement. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUI- TABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY ADVANCED VISUAL SYSTEMS FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ADVANCED VISUAL SYSTEMS WHATSOEVER. ADVANCED VISUAL SYSTEMS MAKES NO WAR- RANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR- POSE. ADVANCED VISUAL SYSTEMS SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMI- TATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF ADVANCED VISUAL SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The speci®cations and other information contained in this document for some purposes may not be com- plete, current or correct, and are subject to change without notice.
    [Show full text]
  • Chris Trendall
    Chris Trendall A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright @ 2000 by Chris Trendall National Library Bibliotheque nationale 191 ,cana, du Canada Acquisitions and Acquisitions et Bibtiographic Services services bibliographiques 395 Wellington Street 395. rue Wdlingtm OttawaON KlAW OitewaON K1AW CaMda Canada The author has granted a non- L'auteur a accordé une licence non exclusive Licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, dismbute or seii reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Ray Tracing Refraction in Hardware Chris Trendall Master of Science Graduate Department of Computer Science University of Toronto 2000 Graphics hardware has begun to e-xhibit more general mathematical functionality, sug- gesting that a wider range of mathematical operations can be implemented in hardware. In order to explore what can and cannot be implemented in current hardware and to study necessary hardware functionality for even more general calculations, single inter- action ray - tracing is studied.
    [Show full text]
  • IRIX® Admin System Configuration and Operation
    IRIX® Admin System Configuration and Operation 007-2859-017 COPYRIGHT © 1992-2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Challenge, Indigo, IRIS, IRIX, Octane, and Onyx are registered trademarks and SGI, Crimson, Indigo2, IRIS FailSafe, IRIS InSight, IRIS WorkSpace, IRIX Networker, NUMAlink, Origin, Performance Co-Pilot, Power Challenge, Power Indigo2, Power Onyx, the SGI logo, and XFS are trademarks of Silicon Graphics, Inc. Indy is a registered trademark, used under license in the United States and owned by Silicon Graphics, Inc., in other countries worldwide. Centronics is a trademark of Centronics Data Computer Corporation. Cray is a registered trademark of Cray, Inc. Documenter’s Workbench is a trademark of Novell, Inc. FrameMaker, Illustrator, and PostScript are trademarks of Adobe Systems, Incorporated.
    [Show full text]
  • Simulation of Turbulent Flow in Computer Graphics: Applications
    Simulation of Turbulent Flow in Computer Graphics: Applications and Optimizations Ian Buck Princeton University, Department of Computer Science Indep endent Work for COS 397 Advisor : Perry R. Co ok www.cs.princeton.edu/~ ianbuck/turbulent January 5, 1998 Abstract The basis for the rst part of this work was to explore what is involved in simulating turbulent ow using an already existing mathematical mo del. This includes implementing a complete optimized C version of the mo del and simulating owmodelssuch as acoustical instruments. The second part of this work explores alternative metho ds of calculation for ow simulation using the graphics hardware as a mathematical engine. We present a few di erent metho ds to use the accelerated framebu er to p erform some of the calculations required in ow simulation. Part I Simulating Turbulent Flow 1 Intro duction Research in application of uid ow simulation has been an active topic in computer graphics for over a decade. Such visual e ects as simulated smoke, re, and liquids are all typically based on top of a mathematical mo del which graphics researchers have b een trying to improve through to day. There have been endless pap ers published in the ACM SIGGRAPH pro ceedings in '97, '95, '93, '91, '90, and continuing back through '86 with a pap er dedicated to how the swirling atmosphere of Jupiter was simulated for the movie \2010" (Yeager et al, 1986). The primary diculty in creating such visually stimulating e ects, suchas simple candle smoke isthatanintensive computational simulation is required. To provide results which app ear accurate, such calculations can b e extensive and quite slow.
    [Show full text]
  • História, Vývoj a Praktické Uplatnenie Vizuálnych Efektov V Súčastnosti
    VYSOKÁ ŠKOLA MÚZICKÝCH UMENÍ FILMOVÁ A TELEVÍZNA FAKULTA Ateliér vizuálnych efektov História, vývoj a praktické uplatnenie vizuálnych efektov v súčastnosti. BAKALÁRSKA PRÁCA Vypracoval: Jozef Janík Vedúci práce: Mgr. Art. Marián Villaris Bratislava 2015 VYSOKÁ ŠKOLA MÚZICKÝCH UMENÍ FILMOVÁ A TELEVÍZNA FAKULTA Ateliér vizuálnych efektov História, vývoj a praktické uplatnenie vizuálnych efektov v súčastnosti. BAKALÁRSKA PRÁCA Ateliér vizuálnych efektov Školiteľ: Konzultant: V Bratislave 01. 01. 2015 Jozef Janík Čestné prehlásenie: Prehlasujem, že som túto bakalársku prácu vypracoval samostatne a že som uviedol všetky informačné zdroje. V Bratislave dňa 01.01. 2015 ...................................... Jozef Janík Poďakovanie: Touto cestou vyslovujem poďakovanie pánovi Mgr. Art. Mariánovi Villarisovi za pomoc, odborné vedenie, cenné rady a pripomienky pri vypracovaní mojej bakalárskej práce. V Bratislave dňa............................... ........................................ podpis študenta VYSOKÁ ŠKOLA MÚZICKÝCH UMENÍ, FILMOVÁ A TELEVÍZNA FAKULTA, ATELIÉR VIZUÁLNYCH EFEKTOV ABSTRAKT JANÍK, Jozef: História, vývoj a praktické uplatnenie vizuálnych efektov v súčastnosti. [Bakalárska práca]. – Vysoká škola múzických umení. Filmová a televízna fakulta. Ateliér vizuálnych efek- tov. Vedúci práce: Mgr. art. Marian Villaris. Oponent: Ing. Ladislav Dedík. Vysoká škola múzických umení. 2015. Počet strán: 32. Bakalárska práca sa venuje histórii a vývoju vizuálnych efektov v minulosti a porovnáva ich s postupmi, ktoré sa používajú v súčasnosti.
    [Show full text]
  • Realtime Computer Graphics on Gpus Introduction
    Real-time Algorithms Programmable Pipeline History Summary Realtime Computer Graphics on GPUs Introduction Jan Kolomazn´ık Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University in Prague March 3, 2021 1 / 55 Real-time Algorithms Programmable Pipeline History Summary Real-time Algorithms 2 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 3 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 4 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 5 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 6 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 7 / 55 Real-time Algorithms Programmable Pipeline History Summary HOW TO ACHIEVE SPEED I Optimal algorithm (time complexity ?) I Approximations vs.
    [Show full text]
  • Performance of Various Computers Using Standard Linear Equations Software
    ———————— CS - 89 - 85 ———————— Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra* Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester CS - 89 - 85 June 15, 2014 * Electronic mail address: [email protected]. An up-to-date version of this report can be found at http://www.netlib.org/benchmark/performance.ps This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE-AC05-96OR22464, and in part by the Science Alliance a state supported program at the University of Tennessee. 6/15/2014 2 Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester June 15, 2014 Abstract This report compares the performance of different computer systems in solving dense systems of linear equations. The comparison involves approximately a hundred computers, ranging from the Earth Simulator to personal computers. 1. Introduction and Objectives The timing information presented here should in no way be used to judge the overall performance of a computer system. The results reflect only one problem area: solving dense systems of equations. This report provides performance information on a wide assortment of computers ranging from the home-used PC up to the most powerful supercomputers. The information has been collected over a period of time and will undergo change as new machines are added and as hardware and software systems improve.
    [Show full text]