Nineteenth Status Report on Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Nineteenth Status Report on Implementation WORLD METEOROLOGICAL ORGANIZATION WORLD WEATHER WATCH NINETEENTH STATUS REPORT ON IMPLEMENTATION 1999 WMO-No. 894 Secretariat of the World Meteorological Organization - Geneva - Switzerland WORLD METEOROLOGICAL ORGANIZATION WORLD WEATHER WATCH NINETEENTH STATUS REPORT ON IMPLEMENTATION 1999 WMO-No.894 Secretariat of the World Meteorological Organization- Geneva- Switzerland © 1999, World Meteorological Organization ISBN 92- 63- 10894- 3 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organizati on concerning the legal status of any country, terri tory, city or area, of its authorities, or concern ing the delimitation of its frontiers or boundaries. FOREWORD The World Weather Watch (WWW) Programme of the World Meteorological Organization (WMO) was adopted in 1963 by the Fourth World Meteorological Congress. Since then it has grown to be fundamental for all WMO and other related programmes as regards the provision of basic meteorological data and products, telecommunication services and the management thereof. In continuing to attribute the highest priority to the furtherance and implementation of WWW, Twelfth Congress in Resolution 2 urged all Members of the Organization to cooperate actively and enthusiastically in the implementation of the WWW. This publication is the 19th in a series of biannual reports on the status of implementation of WWW. It was mainly designed to inform the senior management of the national Meteorological and Hydrological Services (NMHSs), but also interested academia and the private sector of the operational status of WWW. It provides information concerning the structure, status and trends of the implementation, as well as performance of the core components of WWW, notably the Global Observing System (GOS), the Global Telecommunication System (GTS) and the Global Data-processing System (GDPS). In some parts this publication has been compacted from detailed information and reports made available by Members to the Commission for Basic Systems (CBS) and the working groups of the Regional Associations (RAs) dealing with www. I wish to take this opportunity to express my sincere appreciation to the Members of WMO for their continuing efforts toward the consolidated further development of WWW, as well as their collaboration in providing the information on which this report is based. ~- --- -···-----·~------ G. 0. P. Obasi (Secretary-General) CONTENTS Page Foreword ................................................................................................................................................................. V CHAPTER I-EXECUTIVE SUMMARY ....................................................................................................... 1-1 Introduction ................................................................................................................................................................. 1-1 Global Observing System (GOS) .............................................................................................................................. 1-1 Global Telecommunication System (GTS) ................................................................................................................ .. 1-2 Global Data-processing System (GDPS) ................................................................................................................... .. 1-2 World Weather Watch Data Management .................................................................................................................. .. 1-3 CHAPTER II- INTRODUCTION ................................................................................................................... Il-l Purpose and scope of the WWW programme ............................................................................................................ .. Il-l Components of the WWW system .............................................................................................................................. Il-l Organization of WWW programmes ......................................................................................................................... .. 11-1 Relationship of WWW with other programmes ......................................................................................................... II-2 CHAPTER Ill- THE GLOBAL OBSERVING SYSTEM .......................................................................... .. Ill-! Requirements for observational data ..................................................................................................................... III-1 Implementation of the surface-based subsystem ................................................................................................... 111-1 Upper-air stations .................................................................................................................................................. 111-2 Climatological observations .................................................................................................................................. III-2 Marine meteorological observations ...................................................................................................................... III-4 Aircraft meteorological observations .................................................................................................................... II!-6 Other observation stations/systems ....................................................................................................................... .. III-6 The space-based subsystem ................................................................................................................................... Ill-7 Multi-functional transport satellite ........................... , ............................................................................................ III-8 Quality of observational data ................................................................................................................................. III-10 Upper-air data quality ............................................................................................................................................ III-11 Land-surface data quality ..................................................................................................................................... .. III-11 Marine surface data quality ................................................................................................................................... III-11 CHAPTER IV- THE GLOBAL TELECOMMUNICATION SYSTEM .................................................... IV-I Data-communication techniques and procedures .................................................................................................. IV-1 Radiofrequencies for meteorological activities ..................................................................................................... IV-2 Multi-point telecommunication services via satellite and radiobroadcasts ........................................................... IV-2 IV CONTENTS Page MTNs ...................................................................................................................................................................... I.V-2 RMTNs ....................................... ............................................................................................................................ lV-3 Status of implementation and operati on of the GTS .............................................................................................. IV-3 CHAPTER V-THE GLOBAL DATA-PROCESSING SYSTEM ....................... .................. ............... ........ V-1 RSMCs with geographical specialization ......................................................................................... .......... ... ......... V-1 RSMCs wi th activity specialization V-8 Medium-range weather forecasting V-8 Tropical cyclone forecasting .......................................................................................... ...................................... ... V-8 Provision of transport model products for environmental emergency responses ... ..... .......... .... .. .. .. .. .................... V-8 NMCs and centres with similar functions .................. ............................................ ....................................... ......... V-10 Verification of numerical weather prediction ......................................................................................................... V-10 Technical development at GDPS centres ................................................................................................................ V-10 LAMs ...................................................................................................................................................................... V-10 Long-range forecasts, climate diagnostics and predictions .................................................................................... V-12 CHAPTER VI - WORLD WEATHER WATCH DATA MANAGEMENT ........................ .............................. VI-1 WMO distributed data bases . .. .. .. .. ... .. .. .. .. ... .. ... .. .. ... ... .. ... .. .. ... ... .. .... .. ... ... .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. VI-1 Software exchange . .. ... .. ... .. .. .. .. .. ... .. .. ..
Recommended publications
  • AVS on UNIX WORKSTATIONS INSTALLATION/ RELEASE NOTES
    _________ ____ AVS on UNIX WORKSTATIONS INSTALLATION/ RELEASE NOTES ____________ Release 5.5 Final (50.86 / 50.88) November, 1999 Advanced Visual Systems Inc.________ Part Number: 330-0120-02 Rev L NOTICE This document, and the software and other products described or referenced in it, are con®dential and proprietary products of Advanced Visual Systems Inc. or its licensors. They are provided under, and are subject to, the terms and conditions of a written license agreement between Advanced Visual Systems and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless oth- erwise permitted by that agreement. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUI- TABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY ADVANCED VISUAL SYSTEMS FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ADVANCED VISUAL SYSTEMS WHATSOEVER. ADVANCED VISUAL SYSTEMS MAKES NO WAR- RANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR- POSE. ADVANCED VISUAL SYSTEMS SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMI- TATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF ADVANCED VISUAL SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The speci®cations and other information contained in this document for some purposes may not be com- plete, current or correct, and are subject to change without notice.
    [Show full text]
  • IRIX® Admin System Configuration and Operation
    IRIX® Admin System Configuration and Operation 007-2859-017 COPYRIGHT © 1992-2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Challenge, Indigo, IRIS, IRIX, Octane, and Onyx are registered trademarks and SGI, Crimson, Indigo2, IRIS FailSafe, IRIS InSight, IRIS WorkSpace, IRIX Networker, NUMAlink, Origin, Performance Co-Pilot, Power Challenge, Power Indigo2, Power Onyx, the SGI logo, and XFS are trademarks of Silicon Graphics, Inc. Indy is a registered trademark, used under license in the United States and owned by Silicon Graphics, Inc., in other countries worldwide. Centronics is a trademark of Centronics Data Computer Corporation. Cray is a registered trademark of Cray, Inc. Documenter’s Workbench is a trademark of Novell, Inc. FrameMaker, Illustrator, and PostScript are trademarks of Adobe Systems, Incorporated.
    [Show full text]
  • Realtime Computer Graphics on Gpus Introduction
    Real-time Algorithms Programmable Pipeline History Summary Realtime Computer Graphics on GPUs Introduction Jan Kolomazn´ık Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University in Prague March 3, 2021 1 / 55 Real-time Algorithms Programmable Pipeline History Summary Real-time Algorithms 2 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 3 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 4 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 5 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 6 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 7 / 55 Real-time Algorithms Programmable Pipeline History Summary HOW TO ACHIEVE SPEED I Optimal algorithm (time complexity ?) I Approximations vs.
    [Show full text]
  • Performance of Various Computers Using Standard Linear Equations Software
    ———————— CS - 89 - 85 ———————— Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra* Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester CS - 89 - 85 June 15, 2014 * Electronic mail address: [email protected]. An up-to-date version of this report can be found at http://www.netlib.org/benchmark/performance.ps This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE-AC05-96OR22464, and in part by the Science Alliance a state supported program at the University of Tennessee. 6/15/2014 2 Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester June 15, 2014 Abstract This report compares the performance of different computer systems in solving dense systems of linear equations. The comparison involves approximately a hundred computers, ranging from the Earth Simulator to personal computers. 1. Introduction and Objectives The timing information presented here should in no way be used to judge the overall performance of a computer system. The results reflect only one problem area: solving dense systems of equations. This report provides performance information on a wide assortment of computers ranging from the home-used PC up to the most powerful supercomputers. The information has been collected over a period of time and will undergo change as new machines are added and as hardware and software systems improve.
    [Show full text]
  • Performance of Various Computers Using Standard Linear Equations Software
    ———————— CS - 89 - 85 ———————— Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra* Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester CS - 89 - 85 September 30, 2009 * Electronic mail address: [email protected]. An up-to-date version of this report can be found at http://WWW.netlib.org/benchmark/performance.ps This Work Was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE-AC05-96OR22464, and in part by the Science Alliance a state supported program at the University of Tennessee. 9/30/2009 2 Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and MatHematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester September 30, 2009 Abstract This report compares the performance of different computer systems in solving dense systems of linear equations. The comparison involves approximately a hundred computers, ranging from the Earth Simulator to personal computers. 1. Introduction and Objectives The timing information presented here should in no way be used to judge the overall performance of a computer system. The results reflect only one problem area: solving dense systems of equations. This report provides performance information on a wide assortment of computers ranging from the home-used PC up to the most powerful supercomputers. The information has been collected over a period of time and will undergo change as new machines are added and as hardware and software systems improve.
    [Show full text]
  • Performance of Various Computers Using Standard Linear Equations
    CS Performance of Various Computers Using Standard Linear Equations Software Jack J Dongarra Computer Science Department UniversityofTennessee Knoxville TN and Mathematical Sciences Section Oak Ridge National Lab oratory Oak Ridge TN CS Novemb er Electronic mail address dongarracsutkedu An uptodate version of this rep ort can b e found at httpwwwnetliborgb enchmarkp erformanceps This work was supp orted in part by the Applied Mathematical Sciences subprogram of the Oce of Energy Research US Department of Energy under Contract DEACOR and in part by the Science Alliance a state supp orted program at the UniversityofTennessee Performance of Various Computers Using Standard Linear Equations Software Jack J Dongarra Computer Science Department UniversityofTennessee Knoxville TN and Mathematical Sciences Section Oak Ridge National Lab oratory Oak Ridge TN Novemb er Abstract This rep ort compares the p erformance of dierent computer systems in solving dense systems of linear equations The comparison involves approximately a hundred computers ranging from aCray YMP to scientic workstations such as the Ap ollo and Sun to IBM PCs Intro duction and Ob jectives The timing information presented here should in no way b e used to judge the overall p erformance of a computer system The results reect only one problem area solving dense systems of equations This rep ort provides p erformance information on a wide assortment of computers ranging from the homeused PC up to the most powerful sup ercomputers The information has been
    [Show full text]
  • Multi-Channel Option Programmer's Guide
    Multi-Channel Option Programmer’s Guide Document Number 007-1812-030 CONTRIBUTORS Written by Carolyn Curtis Illustrated by Dan Young and Carolyn Curtis Edited by Cynthia Kleinfeld and Nan Schweiger Production by Laura Cooper Engineering contributions by Jeff Milo, Kirk Law, Gregory Eitzmann, Ed Miszkiewicz, Sam Gupta, Paul Spencer, John Hallesy, and Scott Pritchett © Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/ or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Silicon Graphics and IRIS are registered trademarks and IRIX, RealityEngine, RealityEngine2, SkyWriter, VTX, Crimson, Onyx, and POWER Series are trademarks of Silicon Graphics, Inc. Truevision is a registered trademark and VIDI/O BOX is a trademark of Truevision, Inc. Multi-Channel Option Programmer’s Guide Document Number 007-1812-030 Contents Introduction xi 1. Using the Multi-Channel Option 1 The Multi-Channel Option and the Graphics Subsystem 2 Video Output Formats and Raster Memory Boards 4 2.
    [Show full text]
  • An Overview of Scientific Computing
    An Overview of Scienti c Computing Lloyd Fosdick Elizab eth Jessup Septemb er 28, 1995 High Performance Scienti c Computing University of Colorado at Boulder c Copyright 1995 by the HPSC Group of the University of Colorado The following are memb ers of the HPSC Group of the Department of Computer Science at the University of Colorado at Boulder: Lloyd D. Fosdick Elizab eth R. Jessup Carolyn J. C. Schauble Gitta O. Domik Overview i Contents 1 Intro duction 1 2 Large-scale scienti c problems 2 2.1.1 Computer simulation of the greenhouse e ect ::: :: 6 3 The scienti c computing environment 8 4 Workstations 14 4.1 RISC architecture : :: :: :: :: ::: :: :: :: :: ::: :: 15 4.2 The DEC 5000 workstation : :: ::: :: :: :: :: ::: :: 17 4.2.1 The MIPS R3000 and R3010 pro cessors. : :: ::: :: 18 5 Sup ercomputers 19 5.1 Parallel architectures : :: :: :: ::: :: :: :: :: ::: :: 19 5.1.1 Evaluation of an integral : ::: :: :: :: :: ::: :: 20 5.1.2 Molecular dynamics :: :: ::: :: :: :: :: ::: :: 21 5.1.3 Typ es of parallel computers :: :: :: :: :: ::: :: 22 5.2 A virtual parallel computer : :: ::: :: :: :: :: ::: :: 26 6 Further reading 27 References 28 CUBoulder : HPSC Course Notes ii Overview Trademark Notice Convex, Convex Exemplar, are trademarks of Convex Computer Corp ora- tion. Cray, Cray-1, Cray Y-MP, Cray C90, are trademarks of Cray Research, Inc. DEC, DECstation, DECstation 5000, DEC 5000/240, DEC 10000-660 AXP, DEC PXG 3D Accelerator, DEC VAX 11/780, PXG, PXGTurb o+, VAX are trademarks of Digital Equipment Corp oration. HP 9000/735 is a trademark of Hewlett-Packard Company. Intel i860, Intel iPSC/2, Intel iPSC/860, Intel Delta, Intel Paragon are trade- marks of Intel Corp oration.
    [Show full text]
  • Metadefender Core V4.11.1
    MetaDefender Core v4.11.1 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of Metadefender Core 14 1. Quick Start with Metadefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 22 1.3. Scan Files with Metadefender Core 22 2. Installing or Upgrading Metadefender Core 23 2.1. Recommended System Requirements 23 System Requirements For Server 23 Browser Requirements for the Metadefender Core Management Console 25 2.2. Installing Metadefender 26 Installation 26 Installation notes 26 2.2.1. Installing Metadefender Core using command line 26 2.2.2. Installing Metadefender Core using the Install Wizard 28 2.3. Upgrading MetaDefender Core 28 Upgrading from MetaDefender Core 3.x 28 Upgrading from MetaDefender Core 4.x 28 2.4. Metadefender Core Licensing 29 2.4.1. Activating Metadefender Licenses 29 2.4.2. Checking Your Metadefender Core License 35 2.5. Performance and Load Estimation 36 What to know before reading the results: Some factors that affect performance 36 How test results are calculated 37 Test Reports 37 Performance Report - Multi-Scanning On Linux 37 Performance Report - Multi-Scanning On Windows 41 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. Configuring Metadefender Core 50 3.1. Management Console 50 3.2.
    [Show full text]
  • Development and Evaluation of an Air-To-Air Combat Debriefing System Using a Head-Mounted Display
    Development and Evaluation of an Air-to-Air Combat Debriefing System Using a Head-Mounted Display TR94-068 December 1994 Elton Philip Amburn Department of Computer Science CB #3175, Sitterson Hall UNC-Chapel Hill Chapel Hill, NC 27599-3175 UNC is an Equal Opportunity/Affirmative Action Institution. Development and Evaluation of an Air-to-Air Combat Debriefing System Using a Head-Mounted Display by Elton Philip Amburn, B.A., M.S. Lt Col, USAF A Dissertation submitted to the faculty of The University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 1994 Approved by: ----------------Advisor ________________ Reader ________________ Reader ----------------Reader ________________ Reader Development and Evaluation of an Air-to-Air Combat Debriefing System Using a Head-Mounted Display (Under the direction of Frederick P. Brooks, Jr.) Abstract The United States Air Force Red Flag exercise is the premier training experience for fighter pilots. An instrumented range to the north of Nellis AFB, Nevada provides information about aircraft in a Red Flag exercise. The Red Flag Measurement and Debriefing System transmits messages on the high-activity aircraft at a rate of 10 messages per second. These messages contain data such as position, orientation, pilot actions and aerodynamic variables. This research created and evaluated a computer system for replay and evaluation of Red Flag air-to-air combat training data. This system can display the air combat data either on a workstation console (a 19-inch CRT) or in a head-mounted display (HMD).
    [Show full text]
  • Metadefender Core V4.18.0
    MetaDefender Core v4.18.0 © 2020 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 14 Key Features of MetaDefender Core 15 1. Quick Start with MetaDefender Core 16 1.1. Installation 16 Operating system invariant initial steps 16 Basic setup 17 1.1.1. Configuration wizard 17 1.2. License Activation 22 1.3. Process Files with MetaDefender Core 22 2. Installing or Upgrading MetaDefender Core 23 2.1. Recommended System Configuration 23 Microsoft Windows Deployments 23 Unix Based Deployments 25 Data Retention 27 Custom Engines 28 Browser Requirements for the Metadefender Core Management Console 28 2.2. Installing MetaDefender 28 Installation 28 Installation notes 28 2.2.1. Installing Metadefender Core using command line 29 2.2.2. Installing Metadefender Core using the Install Wizard 32 2.3. Upgrading MetaDefender Core 32 Upgrading from MetaDefender Core 3.x 32 Upgrading from MetaDefender Core 4.x 32 2.4. MetaDefender Core Licensing 33 2.4.1. Activating Metadefender Licenses 33 2.4.2. Checking Your Metadefender Core License 38 2.5. Performance and Load Estimation 39 What to know before reading the results: Some factors that affect performance 39 How test results are calculated 40 Test Reports 40 Performance Report - Multi-Scanning On Linux 40 Performance Report - Multi-Scanning On Windows 44 2.6. Special installation options 47 Use RAMDISK for the tempdirectory 47 3.
    [Show full text]
  • Distributed Servers
    Last Update: 12/18/2008 CPU TIER TIER MANUFACTURER CPU DESCRIPTION CA'S INTERNAL CPU CODE GROUP RATING ALR ALR REVOLUTION 2XL GATR2XL300-1 D 1 ALR ALR REVOLUTION 6X6 GAT-AR6X6-6 D 1 ALTOS COMPUTER SYSTEMS ALTOS SYSTEM G510 ALTG5102.661 C 2 ALTOS COMPUTER SYSTEMS ALTOS SYSTEM G510 ALTG5102.662 C 2 ALTOS COMPUTER SYSTEMS ALTOS SYSTEM G700 ALTG7C3.06-2 C 3 AXIL COMPUTER, INC. AXIL 320 MODEL 5.1 AX320-5.1 B 1 AXIL COMPUTER, INC. AXIL 320 MODEL 5.1.2 AX320-5.1.2 B 1 AXIL COMPUTER, INC. AXIL 320 MODEL 5.1.4 AX320-5.1.4 C 1 AXIL COMPUTER, INC. AXIL 320 SERVER (2H1011) AX320-2H1011 C 1 AXIL COMPUTER, INC. AXIL 320 SERVER (6.1) AX320-6.1 B 1 AXIL COMPUTER, INC. AXIL 320 SERVER (6.1.2) AX320-6.1.2 B 1 AXIL COMPUTER, INC. AXIL 320 SERVER (7.1) AX320-7.1 B 1 AXIL COMPUTER, INC. AXIL 320 SERVER (7.1.2) AX320-7.1.2 B 1 AXIL COMPUTER, INC. AXIL 320 SERVER (8.1) AX320-8.1 B 1 AXIL COMPUTER, INC. AXIL 320 SERVER (8.1.2) AX320-8.1.2 B 1 AXIL COMPUTER, INC. AXIL ULTIMA 1 MODEL U170 AX-ULT1-U170 C 1 BULL HONEYWELL BULL ESCALA MODEL E200 BUESC-E200-1 C 1 BULL HONEYWELL BULL ESCALA MODEL E200 BUESC-E200-2 C 2 BULL HONEYWELL BULL ESCALA MODEL E250 BUESC-E250-1 C 2 BULL HONEYWELL BULL ESCALA MODEL E250 BUESC-E250-2 C 2 BULL HONEYWELL BULL ESCALA MODEL E904 BUESC-E904-1 C 1 BULL HONEYWELL BULL ESCALA MODEL E904 BUESC-E904-2 C 2 BULL HONEYWELL BULL ESCALA MODEL S100 BUESC-S100-1 C 1 BULL HONEYWELL BULL ESCALA MODEL S120 BUESC-S120-1 C 1 BULL HONEYWELL BULL ESCALA MODEL T104E 225 MHZ BUESC2T104E1 C 1 BULL HONEYWELL BULL ESCALA MODEL T104E 225 MHZ BUESC2T104E2 C
    [Show full text]