A Study of Workstation Computational Performance for Real-Time Flight Simulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New CSC Computing Resources
New CSC computing resources Atte Sillanpää, Nino Runeberg CSC – IT Center for Science Ltd. Outline CSC at a glance New Kajaani Data Centre Finland’s new supercomputers – Sisu (Cray XC30) – Taito (HP cluster) CSC resources available for researchers CSC presentation 2 CSC’s Services Funet Services Computing Services Universities Application Services Polytechnics Ministries Data Services for Science and Culture Public sector Information Research centers Management Services Companies FUNET FUNET and Data services – Connections to all higher education institutions in Finland and for 37 state research institutes and other organizations – Network Services and Light paths – Network Security – Funet CERT – eduroam – wireless network roaming – Haka-identity Management – Campus Support – The NORDUnet network Data services – Digital Preservation and Data for Research Data for Research (TTA), National Digital Library (KDK) International collaboration via EU projects (EUDAT, APARSEN, ODE, SIM4RDM) – Database and information services Paituli: GIS service Nic.funet.fi – freely distributable files with FTP since 1990 CSC Stream Database administration services – Memory organizations (Finnish university and polytechnics libraries, Finnish National Audiovisual Archive, Finnish National Archives, Finnish National Gallery) 4 Current HPC System Environment Name Louhi Vuori Type Cray XT4/5 HP Cluster DOB 2007 2010 Nodes 1864 304 CPU Cores 10864 3648 Performance ~110 TFlop/s 34 TF Total memory ~11 TB 5 TB Interconnect Cray QDR IB SeaStar Fat tree 3D Torus CSC -
HP/NVIDIA Solutions for HPC Compute and Visualization
HP Update Bill Mannel VP/GM HPC & Big Data Business Unit Apollo Servers © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The most exciting shifts of our time are underway Security Mobility Cloud Big Data Time to revenue is critical Decisions Making IT critical Business needs must be rapid to business success happen anywhere Change is constant …for billion By 2020 billion 30 devices 8 people trillion GB million 40 data 10 mobile apps 2 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP’s compute portfolio for better IT service delivery Software-defined and cloud-ready API HP OneView HP Helion OpenStack RESTful APIs WorkloadWorkload-optimized Optimized Mission-critical Virtualized &cloud Core business Big Data, HPC, SP environments workloads applications & web scalability Workloads HP HP HP Apollo HP HP ProLiant HP Integrity HP Integrity HP BladeSystem HP HP HP ProLiant SL Moonshot Family Cloudline scale-up blades & Superdome NonStop MicroServer ProLiant ML ProLiant DL Density and efficiency Lowest Cost Convergence Intelligence Availability to scale rapidly built to Scale for continuous business to accelerate IT service delivery to increase productivity Converged Converged network Converged management Converged storage Common modular HP Networking HP OneView HP StoreVirtual VSA architecture Global support and services | Best-in-class partnerships | ConvergedSystem 3 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Hyperscale compute grows 10X faster than the total market HPC is a strategic growth market for HP Traditional Private Cloud HPC Service Provider $50 $40 36% $30 50+% $B $20 $10 $0 2013 2014 2015 2016 2017 4 © Copyright 2015 Hewlett-Packard Development Company, L.P. -
Emerging Technologies Multi/Parallel Processing
Emerging Technologies Multi/Parallel Processing Mary C. Kulas New Computing Structures Strategic Relations Group December 1987 For Internal Use Only Copyright @ 1987 by Digital Equipment Corporation. Printed in U.S.A. The information contained herein is confidential and proprietary. It is the property of Digital Equipment Corporation and shall not be reproduced or' copied in whole or in part without written permission. This is an unpublished work protected under the Federal copyright laws. The following are trademarks of Digital Equipment Corporation, Maynard, MA 01754. DECpage LN03 This report was produced by Educational Services with DECpage and the LN03 laser printer. Contents Acknowledgments. 1 Abstract. .. 3 Executive Summary. .. 5 I. Analysis . .. 7 A. The Players . .. 9 1. Number and Status . .. 9 2. Funding. .. 10 3. Strategic Alliances. .. 11 4. Sales. .. 13 a. Revenue/Units Installed . .. 13 h. European Sales. .. 14 B. The Product. .. 15 1. CPUs. .. 15 2. Chip . .. 15 3. Bus. .. 15 4. Vector Processing . .. 16 5. Operating System . .. 16 6. Languages. .. 17 7. Third-Party Applications . .. 18 8. Pricing. .. 18 C. ~BM and Other Major Computer Companies. .. 19 D. Why Success? Why Failure? . .. 21 E. Future Directions. .. 25 II. Company/Product Profiles. .. 27 A. Multi/Parallel Processors . .. 29 1. Alliant . .. 31 2. Astronautics. .. 35 3. Concurrent . .. 37 4. Cydrome. .. 41 5. Eastman Kodak. .. 45 6. Elxsi . .. 47 Contents iii 7. Encore ............... 51 8. Flexible . ... 55 9. Floating Point Systems - M64line ................... 59 10. International Parallel ........................... 61 11. Loral .................................... 63 12. Masscomp ................................. 65 13. Meiko .................................... 67 14. Multiflow. ~ ................................ 69 15. Sequent................................... 71 B. Massively Parallel . 75 1. Ametek.................................... 77 2. Bolt Beranek & Newman Advanced Computers ........... -
CRAY-2 Design Allows Many Types of Users to Solve Problems That Cannot Be Solved with Any Other Computers
Cray Research's mission is to lead in the development and marketingof high-performancesystems that make a unique contribution to the markets they serve. For close toa decade, Cray Research has been the industry leader in large-scale computer systems. Today, the majority of supercomputers installed worldwide are Cray systems. These systems are used In advanced research laboratories around the world and have gained strong acceptance in diverse industrial environments. No other manufacturer has Cray Research's breadth of success and experience in supercomputer development. The company's initial product, the GRAY-1 Computer System, was first installed in 1978. The CRAY-1 quickly established itself as the standard of value for large-scale computers and was soon recognized as the first commercially successful vector processor. For some time previously, the potential advantagee af vector processing had been understood, but effective Dractical imolementation had eluded com~uterarchitects. The CRAY-1 broke that barrier, and today vect~rization'techni~uesare used commonly by scientists and engineers in a widevariety of disciplines. With its significant innovations in architecture and technology, the GRAY-2 Computer System sets the standard for the next generation of supercomputers. The CRAY-2 design allows many types of users to solve problems that cannot be solved with any other computers. The GRAY-2 provides an order of magnitude increase in performanceaver the CRAY-1 at an attractive price/performance ratio. Introducing the CRAY-2 Computer System The CRAY-2 Computer System sets the standard for the next generation of supercomputers. It is characterized by a large Common Memory (256 million 64-bit words), four Background Processors, a clock cycle of 4.1 nanoseconds (4.1 billionths of a second) and liquid immersion cooling. -
The Risks Digest Index to Volume 11
The Risks Digest Index to Volume 11 Search RISKS using swish-e Forum on Risks to the Public in Computers and Related Systems ACM Committee on Computers and Public Policy, Peter G. Neumann, moderator Index to Volume 11 Sunday, 30 June 1991 Issue 01 (4 February 1991) Re: Enterprising Vending Machines (Allan Meers) Re: Risks of automatic flight (Henry Spencer) Re: Voting by Phone & public-key cryptography (Evan Ravitz) Re: Random Voting IDs and Bogus Votes (Vote by Phone) (Mike Beede)) Re: Patriots ... (Steve Mitchell, Steven Philipson, Michael H. Riddle, Clifford Johnson) Re: Man-in-the-loop on SDI (Henry Spencer) Re: Broadcast local area networks ... (Curt Sampson, Donald Lindsay, John Stanley, Jerry Leichter) Issue 02 (5 February 1991) Bogus draft notices are computer generated (Jonathan Rice) People working at home on important tasks (Mike Albaugh) Predicting system reliability (Martyn Thomas) Re: Patriots (Steven Markus Woodcock, Mark Levison) Hungry copiers (another run-in with technology) (Scott Wilson) Re: Enterprising Vending Machines (Dave Curry) Broadcast LANs (Peter da Silva, Scott Hinckley) Issue 03 (6 February 1991) Tube Tragedy (Pete Mellor) New Zealand Computer Error Holds Up Funds (Gligor Tashkovich) "Inquiry into cash machine fraud" (Stella Page) Quick n' easy access to Fidelity account info (Carol Springs) Re: Enterprising Vending Machines (Mark Jackson) RISKS of no escape paths (Geoff Kuenning) A risky gas pump (Bob Grumbine) Electronic traffic signs endanger motorists... (Rich Snider) Re: Predicting system reliability (Richard P. Taylor) The new California licenses (Chris Hibbert) Phone Voting -- Really a Problem? (Michael Barnett, Dave Smith) Re: Electronic cash completely replacing cash (Barry Wright) Issue 04 (7 February 1991) Subway door accidents (Mark Brader) http://catless.ncl.ac.uk/Risks/index.11.html[2011-06-11 08:17:52] The Risks Digest Index to Volume 11 "Virus" destroys part of Mass. -
HP 9000 Rp4410-4 and Rp4440-8 Servers Data Sheet
HP 9000 rp4410-4 and rp4440-8 Servers Data sheet From entry-class 2-processor systems up to the high-end, 128-way HP 9000 Superdome, the HP 9000 server family delivers world-class, high- performance computing to the Adaptive Enterprise. Powered by the new PA-8900 processor with increased performance—and running the HP-UX 11i operating environment—HP 9000 servers add greater strength to HP’s industry-leading server portfolio by integrating seamlessly into your existing IT infrastructure and providing the type of longevity that’s crucial to protecting your investment. HP introduces new 1-, 2-, and 4-way systems to its the high-availability features you’d expect in an enterprise HP 9000 family with the HP 9000 rp4410-4 Server, application server, and its elegant server design makes while offering improved 8-way scalability in the HP 9000 for easy installation, upgrading, and service. With rp4440-8 Server. Each server offers up to 128 GB of excellent performance scalability and dense form factor, memory, runs the rock-solid HP-UX 11i operating system, the HP 9000 rp4410-4 and rp4440-8 Servers deliver the and is powered by the new PA-8900 processor, which performance required for critical business applications delivers improved performance and larger memory cache such as ERP, CRM, and e-commerce—while conserving IT than before. The HP 9000 rp4400 server series has all of funds and data-center space. Key features: Key benefits: HP 9000 rp4410-4 and rp4440-8 HP 9000 rp4410-4 and rp4440-8 Servers Servers • Latest generation of PA-RISC PA-8900 -
Revolution: Greatest Hits
REVOLUTION: GREATEST HITS SHORT ON TIME? VISIT THESE OBJECTS INSIDE THE REVOLUTION EXHIBITION FOR A QUICK OVERVIEW REVOLUTION: PUNCHED CARDS REVOLUTION: BIRTH OF THE COMPUTER REVOLUTION: BIRTH OF THE COMPUTER REVOLUTION: REAL-TIME COMPUTING Hollerith Electric ENIAC, 1946 ENIGMA, ca. 1935 Raytheon Apollo Guidance Tabulating System, 1890 Used in World War II to calculate Few technologies were as Computer, 1966 This device helped the US gun trajectories, only a few piec- decisive in World War II as the This 70 lb. box, built using the government complete the 1890 es remain of this groundbreaking top-secret German encryption new technology of Integrated census in record time and, in American computing system. machine known as ENIGMA. Circuits (ICs), guided Apollo 11 the process, launched the use of ENIAC used 18,000 vacuum Breaking its code was a full-time astronauts to the Moon and back in July of 1969, the first manned punched cards in business. IBM tubes and took several days task for Allied code breakers who moon landing in human history. used the Hollerith system as the to program. invented remarkable comput- The AGC was a lifeline for the basis of its business machines. ing machines to help solve the astronauts throughout the eight ENIGMA riddle. day mission. REVOLUTION: MEMORY & STORAGE REVOLUTION: SUPERCOMPUTERS REVOLUTION: MINICOMPUTERS REVOLUTION: AI & ROBOTICS IBM RAMAC Disk Drive, 1956 Cray-1 Supercomputer, 1976 Kitchen Computer, 1969 SRI Shakey the Robot, 1969 Seeking a faster method of The stunning Cray-1 was the Made by Honeywell and sold by Shakey was the first robot that processing data than using fastest computer in the world. -
Video Game Archive: Nintendo 64
Video Game Archive: Nintendo 64 An Interactive Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the degree of Bachelor of Science by James R. McAleese Janelle Knight Edward Matava Matthew Hurlbut-Coke Date: 22nd March 2021 Report Submitted to: Professor Dean O’Donnell Worcester Polytechnic Institute This report represents work of one or more WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. Abstract This project was an attempt to expand and document the Gordon Library’s Video Game Archive more specifically, the Nintendo 64 (N64) collection. We made the N64 and related accessories and games more accessible to the WPI community and created an exhibition on The History of 3D Games and Twitch Plays Paper Mario, featuring the N64. 2 Table of Contents Abstract…………………………………………………………………………………………………… 2 Table of Contents…………………………………………………………………………………………. 3 Table of Figures……………………………………………………………………………………………5 Acknowledgements……………………………………………………………………………………….. 7 Executive Summary………………………………………………………………………………………. 8 1-Introduction…………………………………………………………………………………………….. 9 2-Background………………………………………………………………………………………… . 11 2.1 - A Brief of History of Nintendo Co., Ltd. Prior to the Release of the N64 in 1996:……………. 11 2.2 - The Console and its Competitors:………………………………………………………………. 16 Development of the Console……………………………………………………………………...16 -
20 Years of Opengl
20 Years of OpenGL Kurt Akeley © Copyright Khronos Group, 2010 - Page 1 So many deprecations! • Application-generated object names • Depth texture mode • Color index mode • Texture wrap mode • SL versions 1.10 and 1.20 • Texture borders • Begin / End primitive specification • Automatic mipmap generation • Edge flags • Fixed-function fragment processing • Client vertex arrays • Alpha test • Rectangles • Accumulation buffers • Current raster position • Pixel copying • Two-sided color selection • Auxiliary color buffers • Non-sprite points • Context framebuffer size queries • Wide lines and line stipple • Evaluators • Quad and polygon primitives • Selection and feedback modes • Separate polygon draw mode • Display lists • Polygon stipple • Hints • Pixel transfer modes and operation • Attribute stacks • Pixel drawing • Unified text string • Bitmaps • Token names and queries • Legacy pixel formats © Copyright Khronos Group, 2010 - Page 2 Technology and culture © Copyright Khronos Group, 2010 - Page 3 Technology © Copyright Khronos Group, 2010 - Page 4 OpenGL is an architecture Blaauw/Brooks OpenGL SGI Indy/Indigo/InfiniteReality Different IBM 360 30/40/50/65/75 NVIDIA GeForce, ATI implementations Amdahl Radeon, … Code runs equivalently on Top-level goal Compatibility all implementations Conformance tests, … It’s an architecture, whether Carefully planned, though Intentional design it was planned or not . mistakes were made Can vary amount of No feature subsetting Configuration resource (e.g., memory) Config attributes (e.g., FB) Not a formal -
3Dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli
3dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli Interviewed by: Shayne Hodge Recorded: July 29, 2013 Mountain View, California CHM Reference number: X6887.2013 © 2013 Computer History Museum 3dfx Oral History Panel Shayne Hodge: OK. My name is Shayne Hodge. This is July 29, 2013 at the afternoon in the Computer History Museum. We have with us today the founders of 3dfx, a graphics company from the 1990s of considerable influence. From left to right on the camera-- I'll let you guys introduce yourselves. Gary Tarolli: I'm Gary Tarolli. Scott Sellers: I'm Scott Sellers. Ross Smith: Ross Smith. Gordon Campbell: And Gordon Campbell. Hodge: And so why don't each of you take about a minute or two and describe your lives roughly up to the point where you need to say 3dfx to continue describing them. Tarolli: All right. Where do you want us to start? Hodge: Birth. Tarolli: Birth. Oh, born in New York, grew up in rural New York. Had a pretty uneventful childhood, but excelled at math and science. So I went to school for math at RPI [Rensselaer Polytechnic Institute] in Troy, New York. And there is where I met my first computer, a good old IBM mainframe that we were just talking about before [this taping], with punch cards. So I wrote my first computer program there and sort of fell in love with computer. So I became a computer scientist really. So I took all their computer science courses, went on to Caltech for VLSI engineering, which is where I met some people that influenced my career life afterwards. -
Hp 9000 & Hp-Ux
HP 9000 & HP-UX 11i: Roadmap & Updates Ric Lewis Mary Kwan Director, Planning & Strategy Sr. Product Manager Hewlett-Packard Hewlett-Packard © 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Agenda • HP Integrity & HP 9000 Servers: Roadmap and Updates • HP-UX 11i : Roadmap & Updates HP-UX 11i - Proven foundation for the Adaptive Enterprise 2 HP’s industry standards-based server strategy Moving to 3 leadership product lines – built on 2 industry standard architectures Current Future HP NonStop server Industry standard Mips HP NonStop HP Integrity server Common server Itanium® technologies Itanium® Enabling larger • Adaptive HP 9000 / investment in HP Integrity Management e3000 server value-add PA-RISC server innovation Itanium® • Virtualization HP AlphaServer systems • HA Alpha HP ProLiant server • Storage HP ProLiant server x86 • Clustering x86 3 HP 9000 servers Max. CPUs Up to 128-way • 4 to 128 PA-8800 processors (max. 64 per partition) HP Superdome scalability with hard 128 and virtual partitioning • Up to 1 TB memory server for leading • 192 PCI-X slots (with I/O expansion) consolidation • Up to 16 hard partitions • 2 to 32 PA-8800 processors HP 9000 32-way scalability 32 with virtual and hard • Up to 128 GB memory rp8420-32 server partitioning for • 32 PCI-X slots (with SEU) consolidation • Up to 4 hard partitions (with SEU) • 2 servers per 2m rack 16-way flexibility • 2 to 16 PA-8800 processors with high • Up to 64 GB memory HP 9000 16 performance, • 15 PCI-X slots -
SGI® Opengl Multipipe™ User's Guide
SGI® OpenGL Multipipe™ User’s Guide Version 2.3 007-4318-012 CONTRIBUTORS Written by Ken Jones and Jenn Byrnes Illustrated by Chrystie Danzer Production by Karen Jacobson Engineering contributions by Craig Dunwoody, Bill Feth, Alpana Kaulgud, Claude Knaus, Ravid Na’ali, Jeffrey Ungar, Christophe Winkler, Guy Zadicario, and Hansong Zhang COPYRIGHT © 2000–2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIS, IRIX, Onyx, Onyx2, OpenGL, and Reality Center are registered trademarks and GL, InfinitePerformance, InfiniteReality2, IRIS GL, Octane2, Onyx4, Open Inventor, the OpenGL logo, OpenGL Multipipe, OpenGL Performer, Power Onyx, Tezro, and UltimateVision are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide. MIPS and R10000 are registered trademarks of MIPS Technologies, Inc.