Ecological Basis for the Control of Gunnera Tinctoria in Sao Miguel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cally Plant List a ACIPHYLLA Horrida
Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’ -
The Occurrence of Red and Yellow Autumn Leaves Explained by Regional Differences in Insolation and Temperature
Review Tansley review The occurrence of red and yellow autumn leaves explained by regional differences in insolation and temperature Authors for correspondence: Susanne S. Renner1 and Constantin M. Zohner2 Susanne S. Renner 1 2 Tel: +49 89 17861 250 Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, Munich 80638, Germany ; Institute of Email: [email protected] Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich 8092, Switzerland Constantin M. Zohner Email: [email protected] Received: 19 January 2019 Accepted: 24 April 2019 Contents Summary 1464 IV. The adaptive value of colour-changing leaves 1468 I. Introduction 1464 V. Outlook 1469 II. Phylogenetic and geographical occurrence of autumn colour Acknowledgements 1469 change 1465 References 1470 III. Physiological functions of autumnal leaf xanthophylls and anthocyanins 1466 Summary New Phytologist (2019) 224: 1464–1471 Red or yellow autumn leaves have long fascinated biologists, but their geographical doi: 10.1111/nph.15900 concentration in trees in Eastern North America (ENA) has defied evolutionary explanations. In this review, anthocyanins and xanthophylls are discussed in relation to their occurrence in Key words: adaptive explanation, different regions of the Northern Hemisphere, phylogenetic distribution and photoprotective anthocyanins, photo-oxidative damage, function during the breakdown of chlorophylls. Pigments in senescing leaves that intercept regional climates, solar irradiation, incident light and dissipate the absorbed energy extend the time available for nutrient resorption. xanthophylls. Experiments with Arabidopsis have revealed greatest anthocyanin photoprotective function at low temperatures and high light intensities, and high-resolution solar irradiation maps reveal that ENA and Asia receive higher irradiation than does Europe. -
New Zealand Garden Journal, 2002, Vol.5 (2) 2A
Fixation with Gunnera Paul Stock1 There are 30-40 species of Gunnera There are two types of cell on a example, the native Gunnera species (family Gunneraceae) distributed Nostoc filament: vegetative cells and are commonly used as ground cover naturally almost exclusively heterocysts. The heterocysts contain in rock gardens. throughout the southern hemisphere. the enzyme nitrogenase, which The nitrogen-fixing symbiosis + The largest and most famous are converts N2 gas into NH4 , a process between white clover (Trifolium repens) Gunnera manicata (giant ornamental known as nitrogen fixation. The and the bacterium Rhizobium has a rhubarb, native to mountain swamps ammonium is then assimilated by high profile in New Zealand because of Brazil) and G. tinctoria (Chilean Gunnera. There is a huge increase in of its commercial significance to the rhubarb) (Figure 1). They have large the frequency of heterocysts in pastoral industry. While the Gunnera- (1.0-2.4m diameter) leaves with prickly symbiotic Nostoc (up to 80% of cells) Nostoc symbiosis does not have the petioles attached to a stout rhizome. compared to free-living Nostoc forms same profile, it is the subject of some A vertical section through the stem of (5% of cells) (Figure 2B). How does attention as researchers continue to G. tinctoria (Figure 2A) reveals dark this occur and what is its significance? unlock the mysteries of how green nodules. If you examine one of As stated earlier, Gunnera provides symbioses involving nitrogen fixers these nodules under a microscope carbohydrate to Nostoc. Therefore operate. you will find beads or filaments of the less cellular machinery is required for blue green alga (cyanobacterium) photosynthesis, which is located in Growing gunneras Nostoc. -
1 Exotic Tree List Tree Number Botanical Name Afrikaanse Naam
Exotic tree list Tree Botanical Name Afrikaanse Naam English Name Origin Number X58 Abies concolor Witden White Fir N.Amer X59 Abies magnifica Rooiden Red Fir N.Amer X60 Abies nordmanniana Kaukasiese Den Caucasian Fir Turkey, Iran X61 Abies pinsapo Spaanse Den Spanish Fir Spain X62 Abies procera Edelden Noble Fir N.Amer Raspberry X486 Acacia acuminata Frambosewattel Aust Wattle X487 Acacia baileyana Bailey-se-wattel Bailey's Wattle Aust Knife-leaved X488 Acacia cultriformis Mesblaarwattel Aust Wattle X489 Acacia cyclops Rooikrans Red Eye Aust X490 Acacia dealbata Silwerwattel Silver Wattle Aust X491 Acacia decurrens Groenwattel Green Wattle Aust Gossamer X492 Acacia floribunda Spinnerakwattel Aust Wattle X493 Acacia longifolia Bleekwattel Sallow Wattle Aust X494 Acacia mearnsii Swartwattel Black Wattle Aust X495 Acacia melanoxylon Swarthout Blackwood Aust X496 Acacia pendula Treurwattel Weeping Myall Aust X497 Acacia podalyriifolia Vaalmimosa Pearl Acacia Aust X498 Acacia pycnantha Gouewattel Golden Wattle Aust Port Jackson X499 Acacia saligna Goudwilger Aust Willow Peppertree X500 Acacia terminalis Peperboomwattel Aust Wattle X658 Acer buergerianum Chinese Ahorn Chinese Maple China X659 Acer campestre Veldahorn Field Maple Eur, Turk, Iran X660 Acer circinatum Wingerdahorn Vine Maple N Amer Ash-leaved X661 Acer negundo Essenblaarahorn N & C Amer Maple X662 Acer palmatum Japanse Ahorn Japanese Maple Japan, China X663 Acer platanoides Noorse Ahorn Norway Maple Eur, Turk, Iran X664 Acer pseudo-platanus Valsplataan Sycamore Maple Eur, Asia -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Identification Guide of Invasive Alien Species of Union Concern
Identification guide of Invasive Alien Species of Union concern Support for customs on the identification of IAS of Union concern Project task ENV.D.2/SER/2016/0011 (v1.1) Text: Riccardo Scalera, Johan van Valkenburg, Sandro Bertolino, Elena Tricarico, Katharina Lapin Illustrations: Massimiliano Lipperi, Studio Wildart Date of completion: 6/11/2017 Comments which could support improvement of this document are welcome. Please send your comments by e-mail to [email protected] This technical note has been drafted by a team of experts under the supervision of IUCN within the framework of the contract No 07.0202/2016/739524/SER/ENV.D.2 “Technical and Scientific support in relation to the Implementation of Regulation 1143/2014 on Invasive Alien Species”. The information and views set out in this note do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this note. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. Reproduction is authorised provided the source is acknowledged. Table of contents Gunnera tinctoria 2 Alternanthera philoxeroides 8 Procambarus fallax f. virginalis 13 Tamias sibiricus 18 Callosciurus erythraeus 23 Gunnera tinctoria Giant rhubarb, Chilean rhubarb, Chilean gunnera, Nalca, Panque General description: Synonyms Gunnera chilensis Lam., Gunnera scabra Ruiz. & Deep-green herbaceous, deciduous, Pav., Panke tinctoria Molina. clump-forming, perennial plant with thick, wholly rhizomatous stems Species ID producing umbrella-sized, orbicular or Kingdom: Plantae ovate leaves on stout petioles. -
Laurisilva of Madeira Portugal
LAURISILVA OF MADEIRA PORTUGAL The Laurisilva of Madeira is the largest surviving relict of a virtually extinct laurel forest type once widespread in Europe. It is still 90% primary forest and is a centre of plant diversity, containing a unique suite of rare and relict plants and animals, especially endemic bryophytes, ferns, vascular plants, animals such as the Madeiran long-toed pigeon and a very rich invertebrate fauna. COUNTRY Portugal NAME Laurisilva of Madeira NATURAL WORLD HERITAGE SITE 1999: Inscribed on the World Heritage List under Natural Criteria ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee adopted the following Statement of Outstanding Universal Value at the time of inscription: Brief Synthesis The Laurisilva of Madeira, within the Parque Natural da Madeira (Madeira Natural Park) conserves the largest surviving area of primary laurel forest or "laurisilva", a vegetation type that is now confined to the Azores, Madeira and the Canary Islands. These forests display a wealth of ecological niches, intact ecosystem processes, and play a predominant role in maintaining the hydrological balance on the Island of Madeira. The property has great importance for biodiversity conservation with at least 76 vascular plant species endemic to Madeira occurring in the property, together with a high number of endemic invertebrates and two endemic birds including the emblematic Madeiran Laurel Pigeon. Criterion (ix): The Laurisilva of Madeira is an outstanding relict of a previously widespread laurel forest type, which covered much of Southern Europe 15-40 million years ago. The forest of the property completely covers a series of very steep, V-shaped valleys leading from the plateau and east-west ridge in the centre of the island to the north coast. -
“Pico Da Dara” Natural Reserve (S. Miguel Island, Azores Islands, Portugal) Using Ikonos Satellite Imagery
XIII Congreso de la Sociedad Española de Malherbología, La Laguna 2011 VEGETATION MAPPING OF “PICO DA DARA” NATURAL RESERVE (S. MIGUEL ISLAND, AZORES ISLANDS, PORTUGAL) USING IKONOS SATELLITE IMAGERY A. Gil CITA-A (Azorean Biodiversity Group), Department of Biology, University of the Azores, 9501- 801 Ponta Delgada, Portugal. [email protected] Resumen: La flora vascular de la isla de S.Miguel (Archipiélago de las Azores, Portugal) es constituída por cerca de 1000 taxa y es largamente dominada por especies exoticas. La rapida propagación de especies exoticas invasoras muy agresivas como Pittosporum undulatum Vent. y Clethra arborea Aiton está causando graves problemas de conservación en ese ecosistema insular. Este artigo tiene como objectivo evaluar la efectividad de imágenes satelitales de alta resolución espacial IKONOS para cartografiar la vegetación de la Reserva Natural de Pico da Vara, usando 4 diferentes técnicas supervisionadas de clasificación (paramétricas y no paramétricas). Los resultados obtenidos han demostrado que el uso de imágenes IKONOS puede constituir un método efectivo para la caracterización, monitoreo y evaluación de los ecosistemas terrestres en las Azores. Palabras Clave: teledetección, Cartografía de Vegetación, Alta Resolución. INTRODUCTION S. Miguel Island's vascular plant flora (Archipelago of the Azores, Portugal) is largely dominated by non-indigenous taxa. However, existing indigenous vascular plant taxa are particularly important because they compose a very valuable ecosystem, the Azorean Laurel Forest. One of its most significant areas is the core of Pico da Vara / Ribeira do Guilherme Special Protected Area, in the former Natural Reserve of Pico da Vara (the case-study area), located in the mountain complex of Serra da Tronqueira. -
Linking Dendrometry and Dendrochronology in the Dominant Azorean Tree Laurus Azorica (Seub.) Franco
Article Linking Dendrometry and Dendrochronology in the Dominant Azorean Tree Laurus azorica (Seub.) Franco Bárbara Matos 1,2, Lurdes Borges Silva 1,2,*, Ricardo Camarinho 1,3, Armindo S. Rodrigues 1,3, Ruben Rego 1,2 , Mariana Câmara 1 and Luís Silva 1,2 1 Faculdade de Ciências e Tecnologia, Universidade dos Açores, Rua Mãe de Deus 13A, 9501–855 Ponta Delgada, Portugal 2 InBIO, Rede de Investigação em Biodiversidade e Biologia Evolutiva, Laboratório Associado, CIBIO-Açores, Universidade dos Açores, Apartado 1422, 9501-801 Ponta Delgada, Portugal 3 IVAR, Institute of Volcanology and Risks Assessment, University of the Azores, 9501-801 Ponta Delgada, Portugal * Correspondence: [email protected]; Tel.: +351-296-650-105 Received: 14 May 2019; Accepted: 21 June 2019; Published: 27 June 2019 Abstract: As in many archipelagos, the Azorean primary forest was largely cleared and replaced by secondary forest and grassland, the Azorean tree Laurus azorica (Seub.) Franco being one of the dominant trees in the remaining natural forests. Dendrochronological and dendrometric studies in the Azores mainly focused on non-indigenous trees, either used for timber (e.g., Cryptomeria japonica D. Don) or considered as invasive (Pittosporum undulatum Vent.). Therefore, this study aims to describe the growth ring anatomy of L. azorica, and to understand the relationship between dendrometric traits (e.g., trunk diameter at breast height; tree height), and the number of growth rings. Growth ring anatomy was accessed by wood anatomical preparation of microcore samples while tree age estimation was based on growth ring counts in wood cores taken at breast height and at base. -
Patterns of Colonization and Species Distribution for Azorean Arthropods: Evolution, Diversity, Rarity and Extinction
AÇOREANA, 2011, Suplemento 7: 93-123 PATTERNS OF COLONIZATION AND SPECIES DISTRIBUTION FOR AZOREAN ARTHROPODS: EVOLUTION, DIVERSITY, RARITY AND EXTINCTION Paulo A.V. Borges1, Clara Gaspar1, Ana M.C. Santos1, Sérvio Pontes Ribeiro1,2, Pedro Cardoso1,3, Kostas A. Triantis1,4 & Isabel R. Amorim1,5 1 Azorean Biodiversity Group (CITA-A), Departamento de Ciências Agrárias, Universidade dos Açores, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal e-mail: [email protected] 2 Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e Biológicas, Lab. Ecologia Evolutiva de Herbívoros de Dossel/DEBIO, campus Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brasil 3Smithsonian Institution, National Museum of Natural History, Washington, DC, USA Department of Biology, Texas State University, San Marcos, TX, USA 4Biodiversity Research Group, Oxford University Centre for the Environment, South Parks Road, Oxford, OX1 3QY, UK 5School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, England, UK ABSTRACT Here we address a list of questions based on long-term ecological and biogeographical studies performed in the Azores, a remote volcanic oceanic archipelago composed by nine islands. The target group are the arthropods, and the main habitat the Laurisilva, the Azorean native forest. Diversification of Azorean arthropod species is affected by island age, area and isolation. However, results obtained for over a decade show that distinct groups are differently affected by these factors, which has lead to the extreme diverse distribution patterns currently observed. Spatial distribution of arthropods in each island may be interpreted as caused by a typical “mass effect”, with many species following a “source-sink” dynamics. -
On the Homology of the Scales in Gunnera (Gunneraceae)
Blackwell Science, LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2003? 2003 142? 301308 Original Article SCALES IN GUNNERA L. WANNTORP Botanical Journal of the Linnean Society, 2003, 142, 301–308. With 11 figures On the homology of the scales in Gunnera (Gunneraceae) LIVIA WANNTORP1,*, HANS-ERIK WANNTORP1 and ROLF RUTISHAUSER2 1Department of Botany, University of Stockholm, SE-106 91, Stockholm, Sweden 2Institute of Systematic Botany, University of Zurich, CH-8008, Zurich, Switzerland Received October 2002; accepted for publication March 2003 In the genus Gunnera, the species of subgenus Panke are unique in having large, triangular scales between the leaves on the rhizomes. The morphological significance of these scales has been extensively debated in the past. They have been interpreted as stipules, ligules, or cataphylls, with attempts made to identify homologous structures in representatives of the other subgenera. In the stoloniferous subgenus Misandra, the shoot apex is covered by a hood- like structure, usually termed ochrea, generally considered homologous to the scales in Panke. Efforts to find similar structures in the remaining subgenera were unsuccessful. Due to the lack of a phylogenetic hypothesis, the homology of the scales has remained unresolved. In this study, the shoot apices of species from all subgenera were examined by light and scanning electron microscopy and the results interpreted in a phylogenetic context. The tip of the stolons in subgenera Pseudogunnera and Milligania carries two opposite cataphylls at the base of the new shoot. These are homologous to the ochrea in Misandra which is in turn homologous to the scales in Panke; the latter are thus neither stipules nor ligules but cataphylls. -
Gunnera Herteri – Developmental Morphology of a Dwarf from Uruguay and S Brazil (Gunneraceae)
Plant Syst. Evol. 248: 219–241 (2004) DOI 10.1007/s00606-004-0182-7 Gunnera herteri – developmental morphology of a dwarf from Uruguay and S Brazil (Gunneraceae) R. Rutishauser1, L. Wanntorp2, and E. Pfeifer1 1Institute of Systematic Botany, University of Zurich, Zurich, Switzerland 2Department of Botany, University of Stockholm, Stockholm, Sweden Received January 26, 2004; accepted March 31, 2004 Published online: August 30, 2004 Ó Springer-Verlag 2004 Abstract. New morphological and developmental Key words: Gunnera, Ostenigunnera, Panke, Nostoc, observations are presented of Gunnera herteri axillary glands, basal eudicots, congenital fusion, (subgenus Ostenigunnera) which is, according to development, sympodial growth, unisexual flowers. molecular studies, sister to the other species of Gunnera. It is an annual dwarf (up to 4 cm long) whereas the other Gunnera spp. are perennial and slightly to extremely larger. External stem glands Developmental morphology of Gunnera herteri. are combined with channels into the stem cortex Gunnera is a genus of flowering plants that serving as entrance path for symbiotic Nostoc cells. includes 30–40 species with a mainly southern Young stem zones show globular regions of cyto- distribution. Schindler (1905) divided Gunnera plasm-rich cortex cells, prepared for invasion by into five subgenera based on the size of the Nostoc. The leaf axils contain 2–5 inconspicuous plants, their means of propagation and their colleters (glandular scales) which can be taken as geographical distribution. Mattfeld (1933) cre- homologous to the more prominent scales of ated the new subgenus Ostenigunnera to G. manicata (subg. Panke) and G. macrophylla include a new species of Gunnera, discovered (subg. Pseudogunnera).