Gunnera Herteri – Developmental Morphology of a Dwarf from Uruguay and S Brazil (Gunneraceae)

Total Page:16

File Type:pdf, Size:1020Kb

Gunnera Herteri – Developmental Morphology of a Dwarf from Uruguay and S Brazil (Gunneraceae) Plant Syst. Evol. 248: 219–241 (2004) DOI 10.1007/s00606-004-0182-7 Gunnera herteri – developmental morphology of a dwarf from Uruguay and S Brazil (Gunneraceae) R. Rutishauser1, L. Wanntorp2, and E. Pfeifer1 1Institute of Systematic Botany, University of Zurich, Zurich, Switzerland 2Department of Botany, University of Stockholm, Stockholm, Sweden Received January 26, 2004; accepted March 31, 2004 Published online: August 30, 2004 Ó Springer-Verlag 2004 Abstract. New morphological and developmental Key words: Gunnera, Ostenigunnera, Panke, Nostoc, observations are presented of Gunnera herteri axillary glands, basal eudicots, congenital fusion, (subgenus Ostenigunnera) which is, according to development, sympodial growth, unisexual flowers. molecular studies, sister to the other species of Gunnera. It is an annual dwarf (up to 4 cm long) whereas the other Gunnera spp. are perennial and slightly to extremely larger. External stem glands Developmental morphology of Gunnera herteri. are combined with channels into the stem cortex Gunnera is a genus of flowering plants that serving as entrance path for symbiotic Nostoc cells. includes 30–40 species with a mainly southern Young stem zones show globular regions of cyto- distribution. Schindler (1905) divided Gunnera plasm-rich cortex cells, prepared for invasion by into five subgenera based on the size of the Nostoc. The leaf axils contain 2–5 inconspicuous plants, their means of propagation and their colleters (glandular scales) which can be taken as geographical distribution. Mattfeld (1933) cre- homologous to the more prominent scales of ated the new subgenus Ostenigunnera to G. manicata (subg. Panke) and G. macrophylla include a new species of Gunnera, discovered (subg. Pseudogunnera). Foliage leaves of G. herteri in a small oasis among the sand dunes of the have tooth-like sheath lobes which may be homol- Bay of Rocha (Uruguay). This species was ogous to stipules. Adult plants have extra-axillary inflorescences arising from leaf nodes. The main named G. herteri to honour W. Herter, who stem is interpreted as a chain of sympodial units, together with C. Osten found and collected the each one consisting of a leaf and an extra-axillary plant (see Osten 1932). Morphological and inflorescence. This ‘‘sympodium hypothesis’’ may anatomical studies on the shoot and the be also valid for other species of Gunnera. Each vascular systems, respectively, together with globular inflorescence of G. herteri contains several the presence of symbiotic cyanobacteria of the female flowers and 2–7 stamens at the top, perhaps genus Nostoc, showed that the tiny plant really equalling a single male flower. There are neither belonged to the genus Gunnera (Mattfeld bracts nor bracteoles. The ovary is inferior, 1933). bicarpellary and unilocular. Its single hanging ovule develops into a dry and endosperm-rich Gunnera herteri is a rare plant with a very seed. restricted distribution. Except for the district 220 R. Rutishauser et al.: Gunnera herteri – developmental morphology of a dwarf of Rocha in Uruguay, the plant occurs in The morphology of mature plants of similar environments in the adjacent districts G. herteri was studied by Mattfeld (1933). of Rio Grande and Santa Catarina (Brazil) Various questions about reproductive struc- where it is called ‘‘Urtiguinha das Dunas’’. tures and the developmental morphology of These very few localities for G. herteri are the plant could not be elucidated due to the endangered by the constructions of tourist scarce material available. Recently, the vege- resorts on the beaches and by pine planta- tative anatomy of G. herteri was examined for tions planted to stop the movement of the the first time by Wilkinson (2000) in a study sand. Due to its narrow distribution, Gunnera mainly based on light microscopy of herbar- herteri has been collected very sparsely during ium material. Except for these studies, no the past hundred-and-ten years. The first comprehensive morphological study based on collection of G. herteri was made by the SEM has so far been presented and there is at Swedish botanists Lindman and Malme, twice present no study on the flower morphology of in Santa Catarina, as early as in 1892 and in G. herteri. 1901, respectively, but their herbarium speci- The principal aim of this study is to present mens remained unnamed for more than 30 the developmental morphology of G. herteri in years at the Swedish Museum of Natural detail by using SEM and microtome/light History. Gunnera herteri has to the best of microscope techniques on fresh material. A our knowledge only been collected in Brazil brief comparison between some morphological twice since that time. In Uruguay the plant and anatomical characters of G. herteri and has also been collected twice since its first some other species of Gunnera is here also discovery; once by E. Paz in 1989 and again reported. by L. Wanntorp (the second author of this paper) in 1997. Thanks to the extensive research of the past few years on the systematics of Gunnera, new Material and methods data on G. herteri have come to light. The cultivation of G. herteri proved that the plant • Gunnera herteri Osten (subgenus Ostenigunnera): is not a perennial as stated by older literature fruits and alcohol-fixed material collected 1997 (Osten 1932, Mattfeld 1933). In fact, it is the in Uruguay by L. & H-E. Wanntorp 555 (S); single annual species within the genus. In other fresh material was cultivated in the phylogenetic studies on the genus, based on Botanical Garden of Stockholm. both molecular and morphological data (Wan- • Gunnera manicata Linden (subgenus Panke): torp and Wanntorp 2003; Wanntorp et al. cultivated in the Botanical Garden of Zurich 2001, 2002, 2003), G. herteri was found as University (since 1949, source unknown). sister to the remaining species of the genus. The plant specimens used were fixed and pre- This phylogenetic position is useful for clari- served in 70% ethanol. Preserved material stored fying the historical biogeography of this spe- in 70% ethanol was used for light and scanning cies. South America is often considered as a electron microscopy (SEM). For microtome composite area in biogeographic studies sections, specimens were embedded in Kulzer’s (Wanntorp and Wanntorp 2003). The area Technovit (2-hydroethyl methacrylate), as described in Igersheim and Cichocki (1996), and where G. herteri occurs today was, together sectioned with a HM 355 rotary microtome and with West Africa, part of an extensive area conventional microtome knife type C and D. The united along the Guinea fracture zone until mostly 7 lm thick sections were stained with about 105 mya (Albian, Cretaceous). In light ruthenium red and toluidine blue. The permanent of this, Gunnera herteri could be interpreted as slides of the microtome sections are deposited at a relict taxon from that area (Wanntorp and the Institute of Systematic Botany of the Univer- Wanntorp 2003). sity of Zurich (Z). R. Rutishauser et al.: Gunnera herteri – developmental morphology of a dwarf 221 Results globular regions of cytoplasma-rich cortex cells which are prepared for being invaded by Habit. Gunnera herteri is a tiny annual, Nostoc (Fig. 15). After infection Nostoc pro- forming dense mats on seepage ground liferates within the cortex cells (Fig. 16). There between the coastal dunes of Uruguay and are intercellular cavities in the surrounding southern Brazil. It has branched stems 2–4 cm stem cortex. long (diameter 0.5–1 mm) with spirally Morphology and development of foliage arranged foliage leaves (Figs. 8, 35, 64). There leaves. Fully grown foliage leaves consist of a are no stolons. Vegetative lateral shoots arise stalk 6–7 mm long and a cordate to kidney- from the leaf axils and repeat the upright shaped blade which is crenate or slightly lobed growth of the main stem. In addition, there are (up to 4 mm long, 7 mm broad, Fig. 64). Each 1(–2) cm long stalked tiny inflorescences (one blade lobe (or crenation) is topped by a per leaf). They are inserted extra-axillary, on marginal hydathode (Figs. 24, 25). The palmate the right or left side of the insertion area of a blade venation divides up into fine reticulate foliage leaf (Fig. 40). Most roots are secondary vascular bundles (Fig. 28). Anomocytic sto- (‘‘adventitious’’) arising endogenously from mates are found on both the upper and lower the stem whereas the primary root (radicle) blade surface (Figs. 26, 27). The blade meso- seems to wither soon (Figs. 3, 4). phyll consists of a layer of moderately elon- Anatomy of stems and roots. Transverse gated palisade cells and 1–3 layers of spongy stem sections show a central stele, consisting of cells (Fig. 29). The young blade in the bud stage a hollow vascular cylinder with lacunae for the shows involute vernation, i.e. the lateral blade entering leaf traces (Figs. 1, 13). Occasionally portions are rolled towards the upper (ventral) there is additional vascular tissue in the side (Figs. 9, 23). Three petiole bundles enter parenchymatous pith (Figs. 2, 16). The sur- the blade (Figs. 35, 38). They are fused into one rounding parenchymatous stem cortex con- leaf trace near the petiole insertion (Fig. 39). tains cavities which are filled with endogenous Each petiole base is usually broadened into a roots and Nostoc colonies. Many endogenous sheath with two attached lobes resembling roots protrude from the surface of the stem lateral stipules (Figs. 12, 17, 20). Sheath lobes base, from nodes as well as internodes (Figs. 3, of young leaves next to the terminal bud border 4) while there are no adventitious roots higher the early present Nostoc glands (Figs. 8–11). up. Each root is provided with a prominent Primary leaves (including seedling leaves, cot- cap (Figs. 5, 6). The root cortex shows narrow yledons) are entire, lanceolate and lacking peripheral cells and wider cells towards the sheath lobes (Figs.
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • GIANT RHUBARB Gunnera Tinctoria
    GIANT RHUBARB Gunnera tinctoria Invasive Plant Information Note What is it? Giant rhubarb (Gunnera tinctoria) is a large perennial plant which is native to Chile and Argentina in South America. It was first introduced to Ireland in the 1800s as an ornamental garden plant because of its size and exotic appearance. Since then, it has escaped into the wild and is now particularly invasive along the western coast. Giant rhubarb has naturalised along the milder and wetter western seaboard because the climatic conditions are similar to that of its former range. Giant rhubarb grows well in constantly damp soil and is frequently found on disused agricultural land, damp fields, roadsides and hillsides. Please see link to its distribution across Ireland: http://maps.biodiversityireland.ie/#/Home. Fig. 1: Giant rhubarb (www.nonnativespecies.org) Fig. 2: Invading agricultural land in Co. Mayo (www.dnfc.net) Why should we be worried about it? Giant rhubarb threatens indigenous biodiversity. Once established, it can quickly develop large and dense colonies which prevent native plants from growing underneath them (See Fig. 1 & Fig. 7). The plant is shade tolerant so it may colonise in a variety of landscapes. The dense stands of Giant rhubarb can render large areas of land unsuitable for agricultural or amenity purposes (See Fig. 2). The species can invade native grassland and subsequently reduce the value of the land for grazing. The huge leaves are unpalatable to livestock because of the small spikes on the back of the leaves and along the stems. When Giant rhubarb dies-back during the winter the soil is left bare and more susceptible to erosion.
    [Show full text]
  • Journal of the Royal Horticultural Society of London
    I 3 2044 105 172"381 : JOURNAL OF THE llopl lortimltoal fbck EDITED BY Key. GEORGE HEXSLOW, ALA., E.L.S., F.G.S. rtanical Demonstrator, and Secretary to the Scientific Committee of the Royal Horticultural Society. VOLUME VI Gray Herbarium Harvard University LOXD N II. WEEDE & Co., PRINTERS, BEOMPTON. ' 1 8 8 0. HARVARD UNIVERSITY HERBARIUM. THE GIFT 0F f 4a Ziiau7- m 3 2044 i"05 172 38" J O U E N A L OF THE EDITED BY Eev. GEOEGE HENSLOW, M.A., F.L.S., F.G.S. Botanical Demonstrator, and Secretary to the Scientific Committee of the Royal Horticultural Society. YOLUME "VI. LONDON: H. WEEDE & Co., PRINTERS, BROMPTON, 1 8 80, OOUITOIL OF THE ROYAL HORTICULTURAL SOCIETY. 1 8 8 0. Patron. HER MAJESTY THE QUEEN. President. The Eight Honourable Lord Aberdare. Vice- Presidents. Lord Alfred S. Churchill. Arthur Grote, Esq., F.L.S. Sir Trevor Lawrence, Bt., M.P. H. J". Elwes, Esq. Treasurer. Henry "W ebb, Esq., Secretary. Eobert Hogg, Esq., LL.D., F.L.S. Members of Council. G. T. Clarke, Esq. W. Haughton, Esq. Colonel R. Tretor Clarke. Major F. Mason. The Rev. H. Harpur Crewe. Sir Henry Scudamore J. Denny, Esq., M.D. Stanhope, Bart. Sir Charles "W. Strickland, Bart. Auditors. R. A. Aspinall, Esq. John Lee, Esq. James F. West, Esq. Assistant Secretary. Samuel Jennings, Esq., F.L S. Chief Clerk J. Douglas Dick. Bankers. London and County Bank, High Street, Kensington, W. Garden Superintendent. A. F. Barron. iv ROYAL HORTICULTURAL SOCIETY. SCIENTIFIC COMMITTEE, 1880. Chairman. Sir Joseph Dalton Hooker, K.C.S.I., M.D., C.B.,F.R.S., V.P.L.S., Royal Gardens, Kew.
    [Show full text]
  • Bosque Pehuén Park's Flora: a Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(S): Daniela Mellado-Mansilla, Iván A
    Bosque Pehuén Park's Flora: A Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(s): Daniela Mellado-Mansilla, Iván A. Díaz, Javier Godoy-Güinao, Gabriel Ortega-Solís and Ricardo Moreno-Gonzalez Source: Natural Areas Journal, 38(4):298-311. Published By: Natural Areas Association https://doi.org/10.3375/043.038.0410 URL: http://www.bioone.org/doi/full/10.3375/043.038.0410 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. R E S E A R C H A R T I C L E ABSTRACT: In Chile, most protected areas are located in the southern Andes, in mountainous land- scapes at mid or high altitudes. Despite the increasing proportion of protected areas, few have detailed inventories of their biodiversity. This information is essential to define threats and develop long-term • integrated conservation programs to face the effects of global change.
    [Show full text]
  • New Zealand Garden Journal, 2002, Vol.5 (2) 2A
    Fixation with Gunnera Paul Stock1 There are 30-40 species of Gunnera There are two types of cell on a example, the native Gunnera species (family Gunneraceae) distributed Nostoc filament: vegetative cells and are commonly used as ground cover naturally almost exclusively heterocysts. The heterocysts contain in rock gardens. throughout the southern hemisphere. the enzyme nitrogenase, which The nitrogen-fixing symbiosis + The largest and most famous are converts N2 gas into NH4 , a process between white clover (Trifolium repens) Gunnera manicata (giant ornamental known as nitrogen fixation. The and the bacterium Rhizobium has a rhubarb, native to mountain swamps ammonium is then assimilated by high profile in New Zealand because of Brazil) and G. tinctoria (Chilean Gunnera. There is a huge increase in of its commercial significance to the rhubarb) (Figure 1). They have large the frequency of heterocysts in pastoral industry. While the Gunnera- (1.0-2.4m diameter) leaves with prickly symbiotic Nostoc (up to 80% of cells) Nostoc symbiosis does not have the petioles attached to a stout rhizome. compared to free-living Nostoc forms same profile, it is the subject of some A vertical section through the stem of (5% of cells) (Figure 2B). How does attention as researchers continue to G. tinctoria (Figure 2A) reveals dark this occur and what is its significance? unlock the mysteries of how green nodules. If you examine one of As stated earlier, Gunnera provides symbioses involving nitrogen fixers these nodules under a microscope carbohydrate to Nostoc. Therefore operate. you will find beads or filaments of the less cellular machinery is required for blue green alga (cyanobacterium) photosynthesis, which is located in Growing gunneras Nostoc.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • The Nitrogen-Fixing Symbiotic Cyanobacterium, Nostoc Punctiforme Can Regulate Plant Programmed Cell Death
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The nitrogen-fixing symbiotic cyanobacterium, Nostoc punctiforme can regulate plant programmed cell death Samuel P. Belton1,4, Paul F. McCabe1,2,3, Carl K. Y. Ng1,2,3* 1UCD School of Biology and Environmental Science, 2UCD Centre for Plant Science, 3UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin, DN04 E25, Republic of Ireland 4Present address: DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Dublin, D09 E7F2, Republic of Ireland *email: [email protected] Acknowledgements This work was financially supported by a Government of Ireland Postgraduate Scholarship from the Irish Research Council (GOIPG/2015/2695) to SPB. Author contributions S.P.B., P.F.M, and C.K.Y.N conceived of the study and designed the experiments. S.B. performed all the experiments and analysed the data. S.B. prepared the draft of the manuscript with the help of P.F.M and C.K.Y.N. All authors read, edited, and approved the manuscript. Competing interests The authors declare no competing interests. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Cyanobacteria such as Nostoc spp.
    [Show full text]
  • South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae) Lendel, Anita Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-93287 Dissertation Published Version Originally published at: Lendel, Anita. South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae). 2013, University of Zurich, Faculty of Science. South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae) _________________________________________________________________________________ Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr.sc.nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anita Lendel aus Kroatien Promotionskomitee: Prof. Dr. H. Peter Linder (Vorsitz) PD. Dr. Reto Nyffeler Prof. Dr. Elena Conti Zürich, 2013 Table of Contents Acknowledgments 1 Introduction 3 Chapter 1. Phylogenetics and taxonomy of the tribe Cereeae s.l., with particular focus 15 on the subtribe Trichocereinae (Cactaceae – Cactoideae) Chapter 2. Floral evolution in the South American tribe Cereeae s.l. (Cactaceae: 53 Cactoideae): Pollination syndromes in a comparative phylogenetic context Chapter 3. Contemporaneous and recent radiations of the world’s major succulent 86 plant lineages Chapter 4. Tackling the molecular dating paradox: underestimated pitfalls and best 121 strategies when fossils are scarce Outlook and Future Research 207 Curriculum Vitae 209 Summary 211 Zusammenfassung 213 Acknowledgments I really believe that no one can go through the process of doing a PhD and come out without being changed at a very profound level.
    [Show full text]
  • Ecological Basis for the Control of Gunnera Tinctoria in Sao Miguel
    Second International Weed Control Congress Copenhagen 1996 . Ecological basis for the control of Gunnera tinctoria in Sao Miguel . Island By L sn.. v A, JT A V ARES and A PENA Departamento de Biologia, Universidade dos A(:ores, PT-9500 Ponta Dell?lUia, Portugal, E-mail [email protected] Summary Gunnera tinctoria, an herbaceous plant from South America, is naturalised in Sao Miguel island (Azores) . .In this research an ecologically based strategy for G. tinctoria control is suggested. Infestation structure, altitudinal range, associated plants, phenology and natural enemies were studied. G. tillctoria was found from \00 to 900 m of altitude, in plane or highly sloped terrain, on rich soil or gravel, in roadsides, trails, and water streams. Infestation foci were found at 40 Krn from introduction site. Populations consisted of isolated or small groups of plants, with reduced cover, associated with other weeds. According to three plant invaders classification systems this plant presents several negative characters in terms of conservation: high seed production, vegetative reproduction, high impact on the landscape. invasion of natural vegetation. Priority of control should be given to satellite populations in high conservation ·value sites. Control of heavier infestations will need a persistent and global approach. Introduction Natural populations of Gunnera sp. are restricted to super-humid areas with heavy rainfall; they prefer high altitudes and open or lightly shaded areas, and are often pioneers on bare land (Bergman et al., 1992). The Gunneracea includes the genus Gunnera L., with terrestrial, rhizomatous, perennial herbs, sometimes gigantic, from tropical and warm temperate regions. The larger kinds are grown for the striking effect of their enormous leaves, the smaller forms.
    [Show full text]
  • Identification Guide of Invasive Alien Species of Union Concern
    Identification guide of Invasive Alien Species of Union concern Support for customs on the identification of IAS of Union concern Project task ENV.D.2/SER/2016/0011 (v1.1) Text: Riccardo Scalera, Johan van Valkenburg, Sandro Bertolino, Elena Tricarico, Katharina Lapin Illustrations: Massimiliano Lipperi, Studio Wildart Date of completion: 6/11/2017 Comments which could support improvement of this document are welcome. Please send your comments by e-mail to [email protected] This technical note has been drafted by a team of experts under the supervision of IUCN within the framework of the contract No 07.0202/2016/739524/SER/ENV.D.2 “Technical and Scientific support in relation to the Implementation of Regulation 1143/2014 on Invasive Alien Species”. The information and views set out in this note do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this note. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. Reproduction is authorised provided the source is acknowledged. Table of contents Gunnera tinctoria 2 Alternanthera philoxeroides 8 Procambarus fallax f. virginalis 13 Tamias sibiricus 18 Callosciurus erythraeus 23 Gunnera tinctoria Giant rhubarb, Chilean rhubarb, Chilean gunnera, Nalca, Panque General description: Synonyms Gunnera chilensis Lam., Gunnera scabra Ruiz. & Deep-green herbaceous, deciduous, Pav., Panke tinctoria Molina. clump-forming, perennial plant with thick, wholly rhizomatous stems Species ID producing umbrella-sized, orbicular or Kingdom: Plantae ovate leaves on stout petioles.
    [Show full text]
  • Gunnera Manicata
    Gunnera manicata COMMON NAME Brazilian giant-rhubarb; giant rhubarb FAMILY Gunneraceae AUTHORITY Gunnera manicata Linden FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Herbs - Dicotyledons other than Composites BRIEF DESCRIPTION Giant rhubarb-like herb to 4 m wide or more, dying back to the large creeping stems over winter, with huge prickly leaves on erect petioles up to 2.5 m tall and large sausage-like flower spikes up to 1 m tall with tiny flowers and fruit covering the spike. HABITAT In cultivation requires wet conditions - pond and stream margins, bogs. Seedlings sometimes appear near planted plants in NZ but have been seen ‘escaped’ in e.g. the Isle of Mull in 2013 (pers.obs. C C Ogle) FEATURES Giant, clump-forming, gynomonoecious, summergreen herb, with short, Dunedin Botanic Garden. Photographer: John stout, horizontal rhizomes. Winter resting buds massive, to about 25cm Barkla long. Lvs to about 2.5 m high, rhubarb-like, but rough to the touch. Petiole to 1m long, studded with conic, short, often reddish, prickles. Inflorescence spike-like and up to 1 m long, with very small flowers. small round orange fruit 1.5-2 mm long. SIMILAR TAXA Very similar superficially to the much more common adventive and garden species, G. tinctoria. In the field the most obvious differences are the long narrow flower spikes of G. manicata cf. the short thick spikes of G. tinctoria. The slender radiating inflor. branches are 9.5-11 cm long in G. manicata cf. the thicker branches 4-7 cm X 5-7 mm in central part of panicle (Webb et al.1988).
    [Show full text]
  • Structure and Synthesis of Gunnera Perpensa Secondary Metabolites
    STRUCTURE AND SYNTHESIS OF GUNNERA PERPENSA SECONDARY METABOLITES By XOLANI KEVIN PETER Submitted in fulfillment of the requirements for the degree of Philosophiae Doctor In the School of Chemistry University of KwaZuIu-Natal Pietermaritzbu rg January 2007 DECLARATION I hereby certify that this research is a result of my own investigation, which has not already been accepted in substance for any degree and is not being submitted in candidature for any other degree. Signed h- Xolani Kevin Peter I hereby certify that this statement is correct Signed . Professor F.R. van Heerden Supervisor School of Chemistry University of KwaZulu-Natal Pietermaritzburg January 2007 ACKNOWLEDGEMENTS I would like thank my supervisor Professor van Heerden for her unstinting professional guidance and encouragement and was a major motivating influence throughout this work. I would also like to express thanks to Professor Drewes for useful discussions. Thanks are also due to my colleagues (past and present) for helpful discussions and for creating a pleasant working atmosphere. I would also like to thank the following people whose support was a necessary part of this work: > Mr C. Grimmer for running NMR spectra > Professor O.Q. Munro for analysing X-ray crystallography > Dr C. Southway for assistance with the HPLC > Mr L. Mayne for assistance with mass spectroscopy > Mr R. Somaru and Mr F. Shaik for technical assistance I am indebted to my family for all the support and love they have offered me. I also gratefully acknowledge the financial support from the NRF. TABLE OF CONTENTS Page Abstract i List of Figures ii List of Tables iii List of abbreviations iv CHAPTER ONE: INTRODUCTION 1.1 Bioactive natural products 1 1.2 Aim of the study 4 1.3 References 4 CHAPTER TWO: PLANTS WITH UTEROACTIVITY (OXYTOCIC PLANTS) 2.1 Introduction 6 2.2 South African oxytocic plants 7 2.3 Non-South African oxytocic plants 11 2.4 Conclusion 18 2.5 References 18 CHAPTER THREE: PHYTOCHEMICAL STUDY OF GUNNERA PERPENSA L.
    [Show full text]