The Anatomy of the Foveola Reinvestigated

Total Page:16

File Type:pdf, Size:1020Kb

The Anatomy of the Foveola Reinvestigated A peer-reviewed version of this preprint was published in PeerJ on 12 March 2018. View the peer-reviewed version (peerj.com/articles/4482), which is the preferred citable publication unless you specifically need to cite this preprint. Tschulakow AV, Oltrup T, Bende T, Schmelzle S, Schraermeyer U. 2018. The anatomy of the foveola reinvestigated. PeerJ 6:e4482 https://doi.org/10.7717/peerj.4482 The anatomy of the foveola reinvestigated Alexander V. Tschulakow 1 , Theo Oltrup 2 , Thomas Bende 2 , Sebastian Schmelzle 3 , Ulrich Schraermeyer Corresp. 1, 4 1 Division of Experimental Vitreoretinal Surgery, University Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany 2 Division of Experimental Ophthalmic Surgery, University Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany 3 Ecological Networks, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany 4 Ocutox (www.ocutox.com), Hechingen, Germany Corresponding Author: Ulrich Schraermeyer Email address: [email protected] Objective. In the foveola of the eye, photoreceptors and Müller cells with a unique morphology have been described, but little is known about their 3D structure and orientation. Considering that there is an angle-dependent change in the foveolar photoreceptor response for the same light beam, known as the Stiles Crawford Effect of the first kind (SCE I), which is still not fully understood, a detailed analysis of the anatomy of the foveolar cells might help to clarify this phenomenon. Methods. Serial semithin and ultrathin sections, and focused ion beam (FIB) tomography were -prepared from 32 foveolae from monkeys (Macaca fascicularis) and humans. Foveolae were also analyzed under the electron microscope. Serial sections and FIB analysis were then used to construct 3D models of central Müller and photoreceptor cells. In addition, we measured the transmission of collimated light under the light microscope at different angles after it had passed through human foveae from flat mounted isolated retinae. Results. In monkeys, outer segments of central foveolar cones are twice as long as those from parafoveal cones and do not run completely parallel to the incident light. Unique Müller cells are present in the central foveolae (area of 200 µm in diameter) of humans and monkeys. Light entering the fovea center, which is composed only of cones and Müller cells, at an angle of 0 degrees causes a very bright spot after passing through this area. However, when the angle of the light beam is changed to 10 degrees, less light is measured after transpasssing through the retina, the foveolar center becomes darker and the SCE-like phenomenon is directly visible. Measurements of the intensities of light transmission through the central foveola for the incident angles 0 and 10 degrees resemble the relative luminance efficiency for narrow light bundles as a function of the location where the beam enters the pupil as reported by Stiles and Crawford. The effect persisted after carefully brushing away the outer segments. Conclusion. We show that unique cones and Müller cells with light fibre-like properties are present in the center of PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26518v1 | CC BY 4.0 Open Access | rec: 13 Feb 2018, publ: 13 Feb 2018 the fovea. These unique Müller cells cause an angle dependent, SCE-like drop in the intensity of light guided through the foveola. Outer segments from the foveola cones of monkeys are not straight. 1 The anatomy of the foveola reinvestigated 3 Authors: Alexander V. Tscdulakow1, Tdeo Oltrup2, Tdomas Bende2, Sebastian Scdmelzle3, 4 Ulricd Scdraermeyer1,4 5 Affiliations: 6 1Division of Experimental Vitreoretinal Surgery, Center for Opdtdalmology, Tuebingen, Germany 7 2 Division for Experimental Opdtdalmic Surgery, University Hospital Tuebingen, Center for 8 Opdtdalmology, Institute for Opdtdalmic Researcd, Tuebingen, Germany. 9 3 Ecological Networks, Department of Biology, Tecdniscde Universitaet Darmstadt, Darmstadt, 10 Germany. 11 4 STZ Ocutox, Burgackerstr. 1, 72379 Hecdingen (www.ocutox.com) 12 *Correspondence to: Prof. Dr. Ulricd Scdraermeyer, Division of Experimental Vitreoretinal 13 Surgery, Center for Opdtdalmology, Scdleicdstrasse 12/1, 72076 Tuebingen, Germany. 14 Email: [email protected] 15 Tel.: +49 7071 29 80715, Fax: +49 7071 29 4554 16 Abstract 17 Objective. In tde foveola of tde eye, pdotoreceptors and Müller cells witd a unique morpdology 18 dave been described, but little is known about tdeir 3D structure and orientation. Considering 19 tdat tdere is an angle-dependent cdange in tde foveolar pdotoreceptor response for tde same ligdt 20 beam, known as tde Stiles Crawford Effect of tde first kind (SCE I), wdicd is still not fully 21 understood, a detailed analysis of tde anatomy of tde foveolar cells migdt delp to clarify tdis 22 pdenomenon. 23 Methods. Serial semitdin and ultratdin sections, and focused ion beam (FIB) tomograpdy were 24 -prepared from 32 foveolae from monkeys (Macaca fascicularis) and dumans. Foveolae were 25 also analyzed under tde electron microscope. Serial sections and FIB analysis were tden used to 26 construct 3D models of central Müller and pdotoreceptor cells. In addition, we measured tde 27 transmission of collimated ligdt under tde ligdt microscope at different angles after it dad passed 28 tdrougd duman foveae from flat mounted isolated retinae. 29 Results. In monkeys, outer segments of central foveolar cones are twice as long as tdose from 30 parafoveal cones and do not run completely parallel to tde incident ligdt. Unique Müller cells are 31 present in tde central foveolae (area of 200 µm in diameter) of dumans and monkeys. Ligdt 32 entering tde fovea center, wdicd is composed only of cones and Müller cells, at an angle of 0 33 degrees causes a very brigdt spot after passing tdrougd tdis area. However, wden tde angle of tde 34 ligdt beam is cdanged to 10 degrees, less ligdt is measured after transpasssing tdrougd tde retina, 35 tde foveolar center becomes darker and tde SCE-like pdenomenon is directly visible. 36 Measurements of tde intensities of ligdt transmission tdrougd tde central foveola for tde incident 37 angles 0 and 10 degrees resemble tde relative luminance efficiency for narrow ligdt bundles as a 38 function of tde location wdere tde beam enters tde pupil as reported by Stiles and Crawford. Tde 39 effect persisted after carefully brusding away tde outer segments. 40 Conclusion. We sdow tdat unique cones and Müller cells witd ligdt fibre-like properties are 41 present in tde center of tde fovea. Tdese unique Müller cells cause an angle dependent, SCE-like 42 drop in tde intensity of ligdt guided tdrougd tde foveola. Outer segments from tde foveola cones 43 of monkeys are not straigdt. 44 Introduction 45 Tde primate retina contains two types of pdotoreceptors, rods for nigdt vision and cones for 46 dayligdt vision. Cones are predominately located in tde macula lutea. Tdis das a diameter of 47 around 5.5 mm in dumans and is subdivided into tde fovea and parafovea witd diameters of 1.8 48 mm and 2.3 mm respectively(Hogan et al. 1971). 49 Tde fovea is a small pit in tde retina wdicd contains tde largest concentration of cones and is 50 responsible for sdarp central vision. Tde central part of tde fovea is called tde foveola(Hogan et 51 al. 1971) and das been regarded as being 350 µm in diameter since 1941(Polyak 1941). Only in 52 tde foveola does visual acuity reacd 100 percent(Trauzettel-Klosinski 2010). 53 Tde original discovery by Stiles and Crawford described tdat tde apparent brigdtness of an object 54 is not proportional to tde pupil area because ligdt rays entering tde pupil distant from tde axis are 55 not so visually effective as rays entering along or near to tde central axis(Stiles & Crawford 56 1933). 57 Stiles also sdowed tdat monocdromatic ligdt will differ in due between on- and off-axis even after 58 tde ligdt beams are equated for brigdtness. Tdis was described as tde Stiles–Crawford effect of 59 tde second kind (SCE 2). 60 Tde Stiles Crawford Effect of tde first kind (SCE I) was regarded as one of tde most important 61 discoveries in visual science of tde last century(Westdeimer 2008). Tde explanation of tde SCE 62 das so far been dandled in abstract models involving specific pdotoreceptor orientation, subtle 63 morpdological differences in rods and cones, ancdoring of pdoto-pigment molecules in 64 membranes or possible pdototropism of retinal cells(Laties 1969). But none of tdese models 65 could be proven and a full explanation of tde SCE continues to provide cdallenges(Westdeimer 66 2008). 67 Since tde first report of Stiles and Crawford, a large body of distological and psycdopdysical 68 evidence das accumulated (for review see(Westdeimer 2008)) sdowing tdat cones in different 69 retinal regions are directionally sensitive. 70 It was speculated tdat a cdange in tde sdape or tde orientation of foveal cones was probably 71 responsible for tde SCE(Westdeimer 1967). But until now, no morpdologic evidence for tdis 72 assumption das been found, and in contrast a different orientation of foveal and parafoveal cones 73 in monkeys and dumans(Hogan et al. 1971) was ruled out by distologic examinations more tdan 74 four decades ago(Laties 1969; Westdeimer 2008). To study tde SCE I, monkey eyes are suitable 75 because duman and monkey foveae are very similar(Krebs & Krebs 1991) and tde existence of 76 tde SCE I das also been demonstrated for monkeys(Matsumoto et al. 2012). 77 Tde most renowned publication about tde distology of tde duman eye(Hogan et al. 1971) states 78 tdat in meridional sections of tde foveolar region, tde cones are perfectly straigdt and oriented 79 vertically witd respect to tde retinal surface, and tdeir axes are parallel to eacd otder. Tdus, tde 80 view tdat foveal cones lack directional morpdology das remained valid rigdt up to tde present 81 day.
Recommended publications
  • Symptoms of Age Related Macular Degeneration
    WHAT IS MACULAR DEGENERATION? wavy or crooked, visual distortions, doorway and the choroid are interrupted causing waste or street signs seem bowed, or objects may deposits to form. Lacking proper nutrients, the light- Age related macular degeneration (AMD) is appear smaller or farther away than they sensitive cells of the macula become damaged. a disease that may either suddenly or gradually should, decrease in or loss of central vision, and The damaged cells can no longer send normal destroy the macula’s ability to maintain sharp, a central blurry spot. signals from the macula through the optic nerve to central vision. Interestingly, one’s peripheral or DRY: Progression with dry AMD is typically slower your brain, and consequently your vision becomes side vision remains unaffected. AMD is the leading de-gradation of central vision: need for increasingly blurred cause of “legal blindness” in the United States for bright illumination for reading or near work, diffi culty In either form of AMD, your vision may remain fi ne persons over 65 years of age. AMD is present in adapting to low levels of illumination, worsening blur in one eye up to several years even while the other approximately 10 percent of the population over of printed words, decreased intensity or brightness of eye’s vision has degraded. Most patients don’t the age of 52 and in up to 33 percent of individuals colors, diffi culty recognizing faces, gradual increase realize that one eye’s vision has been severely older than 75. The macula allows alone gives us the in the haziness of overall vision, and a profound drop reduced because your brain compensates the bad ability to have: sharp vision, clear vision, color vision, in your central vision acuity.
    [Show full text]
  • Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
    pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s).
    [Show full text]
  • How Clean Is Your Capsule?
    Eye (1989) 3, 678-684 How Clean is Your Capsule? W. T. GREEN and D. L. BOASE Portsmouth Summary Proliferation of residual lens epithelial cells is believed to be the major cause of pos­ terior capsule opacification following extracapsular cataract extraction. During sur­ gery these cells can be visualised with appropriate illumination facilitating their mechanical removal with the McIntyre cannula. When flat preparations of the anterior capsule are examined by light microscopy, the areas 'cleaned' of cells in this way appear transparent but scanning electron microscopy reveals tufts of remaining debris which may represent points of cellular attachment to the capsule. Control of lens epithelial cell proliferation is important for the future development of cataract surgery. The undoubted advantages of extracapsular and also on human cadaver eyes. A horizontal cataract extraction are offset in many patients capsulotomy in the upper part of the lens by posterior capsule opacification requiring allowed nucleus removal. Irrigation and caps ulotomy. Not only is this disappointing aspiration of the cortical lens material was for the patient, but the procedure carries a then carried out using a McIntyre cannula risk of serious complications. with Hartman's irrigation solution. During in The major cause of posterior capsule opac­ vitro surgery this was aided by first removing ification is proliferation of residual lens epi­ the entire cornea and iris to improve visual­ thelial cells. I If these cells could be removed at isation and explore different methods of the time of surgery we believe that the inci­ illumination. dence of posterior capsule opacification and The importance of illumination was first the need for subsequent capsulotomy would suspected when it was observed, during rou­ be reduced.
    [Show full text]
  • Selective Attention Within the Foveola
    ARTICLES Selective attention within the foveola Martina Poletti1 , Michele Rucci1,2 & Marisa Carrasco3,4 Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer is already looking—that is, within the high-acuity foveola, the small yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field. Covert attention is essential for visual perception. Among its many previous studies. We then investigated the consequences of attention advantages, covert allocation of attentional resources increases con- for both detection (experiment 2) and discrimination (experiments trast sensitivity and spatial resolution, speeds information accrual and 3 and 4) tasks within the foveola. reaction times1–4, and alters the signal at the target location during saccade preparation5–7. Covert attention has been studied sometimes RESULTS in the parafovea (1°–5°) and mostly in the perifovea (5°–10°) and Experiment 1 consisted of a central spatial cueing task with para- periphery (>10° of eccentricity)—that is, far outside the foveola, the foveal stimuli (Fig.
    [Show full text]
  • Sclera and Retina Suturing Techniques 9 Kirk H
    Chapter 9 Sclera and Retina Suturing Techniques 9 Kirk H. Packo and Sohail J. Hasan Key Points 9. 1 Introduction Surgical Indications • Vitrectomy Discussion of ophthalmic microsurgical suturing tech- – Infusion line niques as they apply to retinal surgery warrants atten- – Sclerotomies tion to two main categories of operations: vitrectomy – Conjunctival closure and scleral buckling. Th is chapter reviews the surgical – Ancillary techniques indications, basic instrumentation, surgical tech- • Scleral buckles niques, and complications associated with suturing – Encircling bands techniques in vitrectomy and scleral buckle surgery. A – Meridional elements brief discussion of future advances in retinal surgery Instrumentation appears at the end of this chapter. • Vitrectomy – Instruments – Sutures 9.2 • Scleral buckles Surgical Indications – Instruments – Sutures Surgical Technique 9.2.1 • Vitrectomy Vitrectomy – Suturing the infusion line in place – Closing sclerotomies Typically, there are three indications for suturing dur- • Scleral buckles ing vitrectomy surgery: placement of the infusion can- – Rectus muscle fi xation sutures nula, closure of sclerotomy, and the conjunctival clo- – Suturing encircling elements to the sclera sure. A variety of ancillary suturing techniques may be – Suturing meridional elements to the sclera employed during vitrectomy, including the external – Closing sclerotomy drainage sites securing of a lens ring for contact lens visualization, • Closure of the conjunctiva placement of transconjunctival or scleral fi xation su- Complications tures to manipulate the eye, and transscleral suturing • General complications of dislocated intraocular lenses. Some suturing tech- – Break in sterile technique with suture nee- niques such as iris dilation sutures and transretinal su- dles tures in giant tear repairs have now been replaced with – Breaking sutures other non–suturing techniques, such as the use of per- – Inappropriate knot creation fl uorocarbon liquids.
    [Show full text]
  • Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma
    Investigative Ophthalmology & Visual Science, Vol. 32, No. 3, March 1991 Copyright © Association for Research in Vision and Ophthalmology Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma Yoseph Glovinsky,* Harry A. Quigley,f and Gregory R. Dunkelbergerf Thirty-two areas located in the temporal midperipheral retina were evaluated in whole-mount prepara- tions from four monkeys with monocular experimental glaucoma. Diameter frequency distributions of remaining ganglion cells in the glaucomatous eye were compared with corresponding areas in the normal fellow eye. Large cells were significantly more vulnerable at each stage of cell damage as determined by linear-regression analysis. The magnitude of size-dependent loss was moderate at an early stage (20% loss), peaked at 50% total cell loss, and decreased in advanced damage (70% loss). In glaucomatous eyes, the lower retina had significantly more large cell loss than the corresponding areas of the upper retina. In optic nerve zones that matched the retinal areas studied, large axons selectively were damaged first. Psychophysical testing aimed at functions subserved by larger ganglion cells is recommended for detection and follow-up of early glaucoma; however, assessment of functions unique to small cells is more appropriate for detecting change in advanced glaucoma. Invest Ophthalmol Vis Sci 32:484-491, 1991 Current psychophysical tests do not detect glau- tage of ideal cellular preservation. Eyes with mild, comatous damage until a substantial minority of reti- moderate, and late damage were evaluated. In addi- nal ganglion cells have died.1'2 To develop more sen- tion, we correlated the damage patterns in the retinas sitive tests, a comprehensive understanding of the and optic nerves of the glaucomatous eyes.
    [Show full text]
  • The Nature of Foveal Representation Projections from the Nasal Part of the Retinae to Reach the Ipsilateral Hemispheres
    PERSPECTIVES OPINION hemiretina, project to the ‘wrong’ laminae of the LGN. These results were taken to show that the crossing of the nasal retinal fibres in the optic chiasm is incomplete, allowing some The nature of foveal representation projections from the nasal part of the retinae to reach the ipsilateral hemispheres. Normally, Michal Lavidor and Vincent Walsh however, foveal stimuli received by the nasal retinae are projected to the contralateral visual Abstract | A fundamental question in visual the visual midline. This is what Descartes1 cortex. A later study10 indicated that the perception is whether the representation of suggested in his description of the visual dendritic coverage of the centre of the fovea the fovea is split at the midline between the system — he identified the pineal gland as the by RGCs provides a possible neural basis for two hemispheres, or bilaterally represented organ of integration (FIG. 1).Unfortunately, 2–3° of bilateral representation of the fovea by overlapping projections of the fovea in this intuitive, appealing explanation is in the central visual pathways. There is also each hemisphere. Here we examine not true, and we therefore have to assume evidence that the nasotemporal overlap psychophysical, anatomical, that the two cerebral hemispheres cooperate increases towards the upper and lower regions neuropsychological and brain stimulation or compete over the representation of the of the retina11. experiments that have addressed this human foveal area. Most studies that have labelled RGCs with question, and argue for a shift from the When a person is fixating centrally (looking HRP after unilateral injections into the mon- current default view of bilateral straight ahead), information that is to key optic tract have found a nasotemporal representation to that of a split the right of fixation (in the right visual field) is overlap zone along the vertical meridian12.
    [Show full text]
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • Foveola Nonpeeling Internal Limiting Membrane Surgery to Prevent Inner Retinal Damages in Early Stage 2 Idiopathic Macula Hole
    Graefes Arch Clin Exp Ophthalmol DOI 10.1007/s00417-014-2613-7 RETINAL DISORDERS Foveola nonpeeling internal limiting membrane surgery to prevent inner retinal damages in early stage 2 idiopathic macula hole Tzyy-Chang Ho & Chung-May Yang & Jen-Shang Huang & Chang-Hao Yang & Muh-Shy Chen Received: 29 October 2013 /Revised: 26 February 2014 /Accepted: 5 March 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Keywords Fovea . Foveola . Internal limiting membrane . Purpose The purpose of this study was to investigate and macular hole . Müller cell . Vitrectomy present the results of a new vitrectomy technique to preserve the foveolar internal limiting membrane (ILM) during ILM peeling in early stage 2 macular holes (MH). Introduction Methods The medical records of 28 consecutive patients (28 eyes) with early stage 2 MH were retrospectively reviewed It is generally agreed that internal limiting membrane (ILM) and randomly divided into two groups by the extent of ILM peeling is important in achieving closure of macular holes peeing. Group 1: foveolar ILM nonpeeling group (14 eyes), (MH) [1]. An autopsy study of a patient who had undergone and group 2: total peeling of foveal ILM group (14 eyes). A successful MH closure showed an area of absent ILM sur- donut-shaped ILM was peeled off, leaving a 400-μm-diameter rounding the sealed MH [2]. ILM over foveola in group 1. The present ILM peeling surgery of idiopathic MH in- Results Smooth and symmetric umbo foveolar contour was cludes total removal of foveolar ILM. However, removal of restored without inner retinal dimpling in all eyes in group 1, all the ILM over the foveola causes anatomical changes of the but not in group 2.
    [Show full text]
  • The Influence of Pupil Responses on Subjective Brightness Perception
    1 The influence of pupil responses on subjective brightness perception I. K. Wardhania, b, C. N. Boehlera, and S. Mathôtb, ∗ aDepartment of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium bDepartment of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, the Netherlands Abstract When the pupil dilates, the amount of light that falls onto the retina increases as well. However, in daily life, this does not make the world look brighter. Here we asked whether pupil size (resulting from active pupil movement) influences subjective brightness in the absence of indirect cues that, in daily life, support brightness constancy. We measured the subjective brightness of a tester stimulus relative to a referent as a function of pupil size during tester presentation. In Ex- periment 1, we manipulated pupil size through a secondary working-memory task (larger pupils with higher load and after errors). We found some evidence that the tester was perceived as darker, rather than brighter, when pupils were lar- ger. In Experiment 2, we presented a red or blue display (larger pupils following red displays). We again found that the tester was perceived as darker when pu- pils were larger. We speculate that the visual system takes pupil size into account when making brightness judgments. Finally, we highlight the challenges associ- ated with manipulating pupil size. In summary, the current study (as well as a recent pharmacological study on the same topic) are intriguing first steps towards understanding the role of pupil size in brightness perception. Keywords: pupillometry, pupil light reflex, psychosensory pupil reflex, pupil size, luminance, subjective brightness perception ∗Corresponding author.
    [Show full text]
  • How the Eye Works
    HOW THE EYE WORKS The Eyes & Vision Our ability to "see" starts when light reflects off an object and enters the eye. As it enters the eye, the light is unfocused. The first step in seeing is to focus the light rays onto the retina, which is the light sensitive layer found inside the eye. Once the light is focused, it stimulates cells to send millions of electrochemical impulses along the optic nerve to the brain. The portion of the brain at the back of the head interprets the impulses, enabling us to see the object. The Refraction of Light by the Eye Light entering the eye is first bent, or refracted, by the cornea -- the clear window on the outer front surface of the eyeball. The cornea provides most of the eye's optical power or light- bending ability. After the light passes through the cornea, it is bent again -- to a more finely adjusted focus -- by the crystalline lens inside the eye. The lens focuses the light on the retina. This is achieved by the ciliary muscles in the eye. They change the shape of the lens, bending or flattening it to focus the light rays on the retina. This adjustment in the lens is necessary for bringing near and far objects into focus. The process of bending light to produce a focused image on the retina is called "refraction". Ideally, the light is "refracted" in such a manner that the rays are focused into a precise image on the retina. Many vision problems occur because of an error in how our eyes refract light.
    [Show full text]
  • Retinal Anatomy and Histology
    1 Q Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? 2 Q/A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigmentthree epithelium words (RPE). 3 A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigment epithelium (RPE). 4 Q Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigment epithelium (RPE). The neurosensory retina contains three classes of cells—what are they? There are five types of neural elements—what are they? What are the three types of glial cells? The two vascular cell types? --? ----PRs ----Bipolar cells ----Ganglion cells ----Amacrine cells ----Horizontal cells --? ----Müeller cells ----Astrocytes ----Microglia --? ----Endothelial cells ----Pericytes 5 A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms.
    [Show full text]