The Nature of Foveal Representation Projections from the Nasal Part of the Retinae to Reach the Ipsilateral Hemispheres

Total Page:16

File Type:pdf, Size:1020Kb

The Nature of Foveal Representation Projections from the Nasal Part of the Retinae to Reach the Ipsilateral Hemispheres PERSPECTIVES OPINION hemiretina, project to the ‘wrong’ laminae of the LGN. These results were taken to show that the crossing of the nasal retinal fibres in the optic chiasm is incomplete, allowing some The nature of foveal representation projections from the nasal part of the retinae to reach the ipsilateral hemispheres. Normally, Michal Lavidor and Vincent Walsh however, foveal stimuli received by the nasal retinae are projected to the contralateral visual Abstract | A fundamental question in visual the visual midline. This is what Descartes1 cortex. A later study10 indicated that the perception is whether the representation of suggested in his description of the visual dendritic coverage of the centre of the fovea the fovea is split at the midline between the system — he identified the pineal gland as the by RGCs provides a possible neural basis for two hemispheres, or bilaterally represented organ of integration (FIG. 1).Unfortunately, 2–3° of bilateral representation of the fovea by overlapping projections of the fovea in this intuitive, appealing explanation is in the central visual pathways. There is also each hemisphere. Here we examine not true, and we therefore have to assume evidence that the nasotemporal overlap psychophysical, anatomical, that the two cerebral hemispheres cooperate increases towards the upper and lower regions neuropsychological and brain stimulation or compete over the representation of the of the retina11. experiments that have addressed this human foveal area. Most studies that have labelled RGCs with question, and argue for a shift from the When a person is fixating centrally (looking HRP after unilateral injections into the mon- current default view of bilateral straight ahead), information that is to key optic tract have found a nasotemporal representation to that of a split the right of fixation (in the right visual field) is overlap zone along the vertical meridian12. representation, to provide a greater projected to the visual cortex of the left However, Tootell et al.13 injected the optic 14 understanding of higher visual processes. cerebral hemisphere, and information that is to tract of monkeys with [ C]2-deoxy-D-glucose the left of fixation (in the left visual field) (2DG) and presented stimuli at various loca- Basic anatomical facts dictate that what is projected to the visual cortex of the right tions in their visual fields, including some appears as a whole percept (a foveally fixated cerebral hemisphere. However, it is not entirely stimuli presented only 0.15° from the vertical target) is in fact represented by separate entities clear how the visual half-fields flank one meridian. If the close-to-fixation targets are — the two cerebral hemispheres — at the early another along the vertical meridian2 to bilaterally projected, then they should activate stages of cortical processing. The often-ignored represent the foveal area — the central 2° of neurons in the primary visual cortex on both question of how the two hemispheres repre- the retina3.The bilateral projection theory sug- sides of the brain, and both sides should sent foveal stimuli in the human brain is the gests that the representation of foveal stimuli is become labelled with 2DG. However, only the focus of this article. We also look at the poten- projected to both hemispheres (with various hemisphere opposite to the stimulated visual tial implications of foveal representation for degrees of overlap). Alternatively, the foveal field was labelled, even for targets close to models of visual cognition. representation could be entirely split between fixation. The authors concluded that this Models that use word or object recognition the two hemispheres, as proposed by the split evidence was inconsistent with a bilateral usually begin by assuming that the ‘simple’ fovea theory. It is a textbook assumption representation of the foveal area13. task of bringing together the two retinal that the visual fields overlap according to the Functional anatomical studies of humans outputs has been achieved by the occipital bilateral projection theory 4,and therefore little also support the split foveal theory. Given the cortex before the more interesting psycho- attention is paid to evidence that supports cortical magnification of the fovea14 and the logical processes begin. However, it is becom- a split. It is this assumption that we wish to limited ability of humans to fixate stably15, it is ing increasingly clear that the assumptions challenge. difficult to investigate foveal representation made about retinal representation of the fovea using brain imaging (such as functional MRI severely constrain the degrees of freedom Anatomical studies (fMRI)), as the fMRI signal becomes increas- available in such models. The important theo- The first direct anatomical evidence for hemi- ingly sensitive to inaccurate fixation the closer retical question is whether visual processing spheric overlap of the visual representation one gets to the fovea16.For this reason, stimuli at higher levels might be influenced or con- along the vertical meridian came from studies are often presented at least 0.5° away from the strained by theoretical concerns that are based in which horseradish peroxidase (HRP) was vertical meridian17,18. on either a split foveal representation or a injected unilaterally into the dorsal lateral However, some recent brain imaging studies bilateral projection of the retinal images onto geniculate nucleus (dLGN) of cats or mon- might be interpreted as supporting the split the visual cortex. Recent advances in this field keys to trace the projections from the retinal foveal theory. In a magnetoencephalographic allow us to reassess this issue and to present ganglion cells (RGCs)5–8.Ifthe optic fibres (MEG) study15,18,Portin and colleagues pre- the implications of this relatively low-level split precisely, the prediction would be that sented visual stimuli at different eccentricities question for theories of higher-level visual only cells in one half of each retina would (0.5–6.0°), which evoked strong responses in representation. be stained: for example, injections into the contralateral occipital cortex. Stimuli at all the right LGN should stain cells in the tempo- of these eccentricities evoked activity only Views of foveal representation ral hemiretina of the right eye and the nasal in the contralateral primary visual cortex, as It has long been known that visual acuity is hemiretina of the left eye2.Contrary to this predicted by the split fovea theory. If there best when the target is presented at the point prediction, these studies have found that were a bilateral foveal representation, targets in of fixation. Given the organization of the ipsilaterally and contralaterally projecting the foveal area should have activated both optic nerves, an intuitive explanation for this ganglion cells generally blend together along hemispheres. Similarly, in an fMRI study, increased acuity would be that there must be the vertical midline. Leventhal et al.9 reported Sereno et al.17 mapped the representation of a central brain structure that corresponds to that some RGCs, particularly those in the nasal different eccentricities in the visual cortex, and NATURE REVIEWS | NEUROSCIENCE VOLUME 5 | SEPTEMBER 2004 | 729 PERSPECTIVES Hemispheric differences Despite the anatomical and neurological evidence for the split fovea theory, the concept failed to take hold in experimental psychol- ogy, and many studies still implicitly assume that there is a bilateral representation. This is partly because more lateral presentations of stimuli make eye movement artefacts easier to avoid. However, the split fovea theory has inspired recent studies of human cognition. The starting point was to look at established hemispheric differences in cognition and to test whether they could be applied to the left and right halves of centrally presented words. Figure 1 | The projection of visual foveal stimuli to the pineal gland (Descartes, 1644). In The The hypothesis was that, according to the split 1 Philosophical Writings of Descartes , Descartes wrote (105–106), ‘The rays which come from point B fovea theory, aspects of word recognition that [arrow centre] enlarge the openings of the tiny tube 4…suppose next that the spirits [from the pineal gland] tend to enter each of the tiny tubes…those spirits coming from point b [pineal gland centre] tend to enter are more characteristic of the right hemi- tubes 4…Thus, just as a figure corresponding to point B is traced on the internal surface of the brain sphere would be found for the processing of according to the different ways in which tubes 4 are opened, likewise that figure is traced on the surface of the left halves of centrally presented words. the pineal gland according to the ways which the spirits leave from point b.’ Correspondingly, patterns that are typical of the left hemisphere should be found for the processing of the right halves of words. also found that positions to the left of fixation of a split fovea has simply not stuck. Perhaps One variable that demonstrates the value are represented only in the right primary visual the body of evidence that has contributed most of this approach is word length (number of cortex and vice versa (FIG. 2). to the persistence of the bilateral projection letters), which has been reported to have theory is that of patients with visual cortex different effects in the two hemispheres, such Human behavioural studies damage, which is discussed next. that performance measured by response Studies of human behaviour conducted in the times deteriorated with increasing word 1970s and 1980s showed that there is no func- Foveal sparing and foveal splitting length in the left, but not the right, visual tional overlap between the two hemispheres in Unilateral lesions in the central visual pathways field38–40.The split fovea theory predicts length relation to the representation of foveal stimuli. can result in two qualitatively different central effects for the letters to the left of fixation, but For example, Harvey19 presented visual targets visual field defects — foveal (or macular) not for the letters to the right of fixation.
Recommended publications
  • Foveola Nonpeeling Internal Limiting Membrane Surgery to Prevent Inner Retinal Damages in Early Stage 2 Idiopathic Macula Hole
    Graefes Arch Clin Exp Ophthalmol DOI 10.1007/s00417-014-2613-7 RETINAL DISORDERS Foveola nonpeeling internal limiting membrane surgery to prevent inner retinal damages in early stage 2 idiopathic macula hole Tzyy-Chang Ho & Chung-May Yang & Jen-Shang Huang & Chang-Hao Yang & Muh-Shy Chen Received: 29 October 2013 /Revised: 26 February 2014 /Accepted: 5 March 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Keywords Fovea . Foveola . Internal limiting membrane . Purpose The purpose of this study was to investigate and macular hole . Müller cell . Vitrectomy present the results of a new vitrectomy technique to preserve the foveolar internal limiting membrane (ILM) during ILM peeling in early stage 2 macular holes (MH). Introduction Methods The medical records of 28 consecutive patients (28 eyes) with early stage 2 MH were retrospectively reviewed It is generally agreed that internal limiting membrane (ILM) and randomly divided into two groups by the extent of ILM peeling is important in achieving closure of macular holes peeing. Group 1: foveolar ILM nonpeeling group (14 eyes), (MH) [1]. An autopsy study of a patient who had undergone and group 2: total peeling of foveal ILM group (14 eyes). A successful MH closure showed an area of absent ILM sur- donut-shaped ILM was peeled off, leaving a 400-μm-diameter rounding the sealed MH [2]. ILM over foveola in group 1. The present ILM peeling surgery of idiopathic MH in- Results Smooth and symmetric umbo foveolar contour was cludes total removal of foveolar ILM. However, removal of restored without inner retinal dimpling in all eyes in group 1, all the ILM over the foveola causes anatomical changes of the but not in group 2.
    [Show full text]
  • Retinal Anatomy and Histology
    1 Q Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? 2 Q/A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigmentthree epithelium words (RPE). 3 A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigment epithelium (RPE). 4 Q Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigment epithelium (RPE). The neurosensory retina contains three classes of cells—what are they? There are five types of neural elements—what are they? What are the three types of glial cells? The two vascular cell types? --? ----PRs ----Bipolar cells ----Ganglion cells ----Amacrine cells ----Horizontal cells --? ----Müeller cells ----Astrocytes ----Microglia --? ----Endothelial cells ----Pericytes 5 A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms.
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]
  • Anatomy & Physiology of The
    Anatomy & Physiology of The Eye 2017-2018 Done By: 433 Team Abdullah M. Khattab Important Doctor’s Notes Extra Abdullah AlOmair Resources: Team 433, Doctors Notes, Vaughan & Asbury’s General ophthalmology. Editing File Embryology of The Eye ............................................................................................. 2 ● Defects: ........................................................................................................................... 2 Development of The Eye After Birth .......................................................................... 3 ● Refractive power depends on two factors: ...................................................................... 3 The Orbit ................................................................................................................... 4 ● Seven bones contribute the bony orbit and surrounded by nasal sinuses. .................... 4 ● The orbital wall, pear-like shaped, formed by: ................................................................ 4 ● Structures Passing Through the Optic Openings: ........................................................... 4 Extraocular Muscles .................................................................................................. 1 ● Anatomy .......................................................................................................................... 1 ● Notes: .............................................................................................................................. 1 ● Field of action:
    [Show full text]
  • The Anatomy of the Foveola Reinvestigated
    A peer-reviewed version of this preprint was published in PeerJ on 12 March 2018. View the peer-reviewed version (peerj.com/articles/4482), which is the preferred citable publication unless you specifically need to cite this preprint. Tschulakow AV, Oltrup T, Bende T, Schmelzle S, Schraermeyer U. 2018. The anatomy of the foveola reinvestigated. PeerJ 6:e4482 https://doi.org/10.7717/peerj.4482 The anatomy of the foveola reinvestigated Alexander V. Tschulakow 1 , Theo Oltrup 2 , Thomas Bende 2 , Sebastian Schmelzle 3 , Ulrich Schraermeyer Corresp. 1, 4 1 Division of Experimental Vitreoretinal Surgery, University Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany 2 Division of Experimental Ophthalmic Surgery, University Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany 3 Ecological Networks, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany 4 Ocutox (www.ocutox.com), Hechingen, Germany Corresponding Author: Ulrich Schraermeyer Email address: [email protected] Objective. In the foveola of the eye, photoreceptors and Müller cells with a unique morphology have been described, but little is known about their 3D structure and orientation. Considering that there is an angle-dependent change in the foveolar photoreceptor response for the same light beam, known as the Stiles Crawford Effect of the first kind (SCE I), which is still not fully understood, a detailed analysis of the anatomy of the foveolar cells might help to clarify this phenomenon. Methods. Serial semithin and ultrathin sections, and focused ion beam (FIB) tomography were -prepared from 32 foveolae from monkeys (Macaca fascicularis) and humans. Foveolae were also analyzed under the electron microscope. Serial sections and FIB analysis were then used to construct 3D models of central Müller and photoreceptor cells.
    [Show full text]
  • The Dark Choroid in Posterior Retinal Dystrophies
    Br J Ophthalmol: first published as 10.1136/bjo.65.5.359 on 1 May 1981. Downloaded from British Journal of Ophthalmology, 1981, 65, 359-363 The dark choroid in posterior retinal dystrophies G. FISH, R. GREY, K. S. SEHMI, AND A. C. BIRD From the Professorial Unit, Moorfields Eye Hospital, City Road, London EC] V 2PD SUMMARY Many patients with heredomacular degeneration exhibit a peculiar fluorescein angiographic finding of absence of the normal background fluorescence (a dark choroid). The cause of this is unknown but may relate to the deposition of an abnormal material in the retinal pigment epithelial cells. The finding does not correlate with severity or duration ofdisease but is more frequent in patients with flecks. The finding may be useful in subdividing heredomacular degenerations into more specific disease groups. Inherited macular degeneration comprises several visual loss after 60 years of age, and those with different diseases of unknown aetiology, some of degeneration due to toxic agents were excluded. which are well recognised and believed to be single Stereo colour fundus photographs and stereo an- neurological entities, for example, Best's disease, giography were accomplished on all patients, and as polymorphous dystrophy, pseudoinflammatory mac- many as possible had electrodiagnostic studies and ular dystrophy, and central areolar choroidal testing of visual fields and colour vision. sclerosis. In the remainder the individual disorders Colour vision testing included HRR plates, are unrecognised, and attempts have been made to Ishihara places, panel D 15, and Farnsworth-Munsell subdivide and catagorise them in terms of their 100 hue. Visual fields were recorded on a Goldmann functional, genetic, and morphological character- perimeter, and electrodiagnostic tests included istics.
    [Show full text]
  • Focal Temporal Scleral Bulge with Choroidal Thinning
    perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l m l a o n l r o Dolz-Marco et al., J Clin Exp Ophthalmol 2015, 6:2 g u y o J Ophthalmology 10.4172/2155-9570.1000419 ISSN: 2155-9570 DOI: Research Article Open Access Focal Temporal Scleral Bulge with Choroidal Thinning: An Under-Recognized Tomographic Feature Rosa Dolz-Marco1*, Roberto Gallego-Pinazo1, Maria Isabel López-Gálvez2, Jose I Tembl3, Manuel Díaz-Llopis4 and Carol Shields5 1Department of Ophthalmology, University and Polytechnic Hospital La Fe, Valencia, Spain 2Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain 3Department of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain 4Faculty of Medicine, University of Valencia 5Ocular Oncology Service Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, United States of America (USA) *Corresponding author: Rosa Dolz-Marco, Department of Ophthalmology, University and Polytechnic Hospital La Fe. Bulevar Sur s/n. 46026, Valencia, Spain, Tel: 0034 650314806; Email: [email protected] Received date: Feb 05, 2015, Accepted date: Apr 15, 2015, Published date: Apr 20, 2015 Copyright: © 2015 Dolz-Marco R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Purpose: To describe the swept source tomographic characteristics of focal temporal scleral bulge with choroidal thinning as a normal variation of the ocular anatomy in healthy eyes. Methods: Cross-sectional observational study.
    [Show full text]
  • Canine Retina Has a Primate Fovea-Like Bouquet of Cone Photoreceptors Which Is Affected by Inherited Macular Degenerations
    Canine Retina Has a Primate Fovea-Like Bouquet of Cone Photoreceptors Which Is Affected by Inherited Macular Degenerations William A. Beltran1*., Artur V. Cideciyan2*., Karina E. Guziewicz1, Simone Iwabe1, Malgorzata Swider2, Erin M. Scott1, Svetlana V. Savina1, Gordon Ruthel3, Frank Stefano4, Lingli Zhang5, Richard Zorger5, Alexander Sumaroka2, Samuel G. Jacobson2, Gustavo D. Aguirre1 1 Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 3 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 4 Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 5 Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America Abstract Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans) is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs) that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local increase in RGC density is found in a topographically comparable retinal area defined as the area centralis. While the canine retina is devoid of a foveal pit, no detailed examination of the photoreceptors within the area centralis has been reported. Using both in vivo and ex vivo imaging, we identified a retinal region with a primate fovea-like cone photoreceptor density but without the excavation of the inner retina.
    [Show full text]
  • Anatomy of the Globe 09 Hermann D. Schubert Basic and Clinical
    Anatomy of the Globe 09 Hermann D. Schubert Basic and Clinical Science Course, AAO 2008-2009, Section 2, Chapter 2, pp 43-92. The globe is the home of the retina (part of the embryonic forebrain, i.e.neural ectoderm and neural crest) which it protects, nourishes, moves or holds in proper position. The retinal ganglion cells (second neurons of the visual pathway) have axons which form the optic nerve (a brain tract) and which connect to the lateral geniculate body of the brain (third neurons of the visual pathway with axons to cerebral cortex). The transparent media of the eye are: tear film, cornea, aqueous, lens, vitreous, internal limiting membrane and inner retina. Intraocular pressure is the pressure of the aqueous and vitreous compartment. The aqueous compartment is comprised of anterior(200ul) and posterior chamber(60ul). Aqueous and vitreous compartments communicate across the anterior cortical gel of the vitreous which seen from up front looks like a donut and is called the “annular diffusional gap.” The globe consists of two superimposed spheres, the corneal radius measuring 8mm and the scleral radius 12mm. The superimposition creates an external scleral sulcus, the outflow channels anterior to the scleral spur fill the internal scleral sulcus. Three layers or ocular coats are distinguished: the corneal scleral coat, the uvea and neural retina consisting of retina and pigmentedepithelium. The coats and components of the inner eye are held in place by intraocular pressure, scleral rigidity and mechanical attachments between the layers. The corneoscleral coat consists of cornea, sclera, lamina cribrosa and optic nerve sheath.
    [Show full text]
  • 1 Eyes and Vision
    Anatomy of the Eye Anatomy of the Eye Sharon J. Oliver, CPC, CDEO, CRC, CPMA, CPC/CRC-I, All rights reserved Eyes and Vision Eyesight provides the brain with more input than all other senses combined. Each optic nerve contains one million nerve fibers. It is estimated that more than half of the information in the conscious mind enters through the eyes. The eyes are the most complex of the four special sense organs. All rights reserved All rights reserved Coding Fiesta 2019 Sharon J. Oliver, CPC, CDEO, CRC, CPMA, CPC/CRC-I October 26, 2019 1 Anatomy of the Eye Sequence of Vision Rays of light enter the eye through the clear, domed front of the eyeball, the cornea, where they are partly bent (refracted). The rays then pass through the transparent lens, which changes shape to fine-focus the image, a mechanism known as accommodation. The light continues through the fluid, or vitreous humor, within the eyeball and shines an upside-down image onto the retina lining. The retina contains over 120 million cone cells and about 7 million rod signals. All rights reserved Sequence of Vision Rods are scattered through the retina and respond to low levels of light, but do not differentiate colors. Cones are concentrated in the fovea, need brighter conditions to function, and distinguish colors and fine details. Nerve fibers from the rods and cones connect via intermediate retinal cells to the fibers that form the optic nerve. Through this, the image is transmitted to the visual cortex in the brain, where it is turned upright.
    [Show full text]
  • Retinal Fixation Point Location in the Foveal Avascular Zone
    Investigative Ophthalmology & Visual Science, Vol. 31, No. 10, October 1990 Copyright © Association for Research in Vision and Ophthalmology Retinal Fixation Point Location in the Foveal Avascular Zone Bernard 5. Zeffren,* Raymond A. Applegare,* Arthur Bradley,f and W. A. J. van Heuven" The site of normal fixation is often assumed to be centered in the foveal avascular zone (FAZ). This assumed anatomic relationship is used during photocoagulation therapy as an objective guide to avoid damaging critical retinal structures on or near fixation. With laser therapy being directed closer and closer to the center of the FAZ, the accuracy with which the center of the FAZ locates the retinal point of fixation becomes an important therapeutic issue. Using an optimized technique for visualizing the retinal vasculature entoptically, the authors determined the location of the retinal point of fixation with respect to the foveal area vasculature in 26 eyes of 14 healthy subjects. In 23 eyes (12 subjects), a traditional FAZ was observed, the other three eyes (two subjects) had capillaries near or crossing the center of fixation. Of the 23 eyes with a traditional FAZ, 20 had centers of fixation located eccentric to the center but in the FAZ, (average deviation from the center of the FAZ, 66.5 ± 49.5 /xm) with the direction of deviation from the FAZ center appearing random. Consequently, when following protocols that advocate photocoagulation treatment with spot centers closer to the FAZ center than 300 nm, the center of the FAZ is a poor locator of a subject's retinal point of fixation. When using the FAZ as a reference, the resulting uncertainty in the location of the subject's retinal point of fixation increases the probability of significant damage to the actual point of fixation by up to 20%.
    [Show full text]
  • Task-Driven Visual Exploration at the Foveal Scale
    Task-driven visual exploration at the foveal scale Natalya Shelchkovaa, Christie Tangb, and Martina Polettia,1 aDepartment of Neuroscience, University of Rochester Medical Center, Rochester, NY 14627; and bDepartment of Psychological and Brain Sciences, Boston University, Boston, MA 02215 Edited by Michael E. Goldberg, Columbia University College of Physicians, New York, NY, and approved January 31, 2019 (received for review July 18, 2018) Humans use saccades to inspect objects of interest with the look at the mouth region (9, 11), whereas scanning the upper foveola, the small region of the retina with highest acuity. This part of the face is mostly associated with recognition tasks (10). process of visual exploration is normally studied over large When the face is presented at an eccentric location, the first scenes. However, in everyday tasks, the stimulus within the saccade to the face is the most important for facial recogni- foveola is complex, and the need for visual exploration may tion (12). It normally brings the gaze close to the nose, but its extend to this smaller scale. We have previously shown that exact landing location is also biased by the task demands (12). fixational eye movements, in particular microsaccades, play an Therefore, by examining saccade landing positions and the scan important role in fine spatial vision. Here, we investigate whether paths of observers looking at faces it is possible to infer the task task-driven visual exploration occurs during the fixation pauses performed (13). Crucially, while these patterns of visual explo- in between large saccades. Observers judged the expression of ration are seen in most subjects, there are significant individual faces covering approximately 1◦, as if viewed from a distance of variations (13–15).
    [Show full text]