What We Can Learn from the Privatizations of the Internet Backbone Network and the Domain Name System

Total Page:16

File Type:pdf, Size:1020Kb

What We Can Learn from the Privatizations of the Internet Backbone Network and the Domain Name System Washington University Law Review Volume 79 Issue 1 2001 Fool Us Once Shame on You—Fool Us Twice Shame on Us: What We Can Learn from the Privatizations of the Internet Backbone Network and the Domain Name System Jay P. Kesan University of Illinois School of Law Rajiv C. Shah University of Illinois at Urbana-Champaign Follow this and additional works at: https://openscholarship.wustl.edu/law_lawreview Part of the Internet Law Commons Recommended Citation Jay P. Kesan and Rajiv C. Shah, Fool Us Once Shame on You—Fool Us Twice Shame on Us: What We Can Learn from the Privatizations of the Internet Backbone Network and the Domain Name System, 79 WASH. U. L. Q. 89 (2001). Available at: https://openscholarship.wustl.edu/law_lawreview/vol79/iss1/2 This Article is brought to you for free and open access by the Law School at Washington University Open Scholarship. It has been accepted for inclusion in Washington University Law Review by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. FOOL US ONCE SHAME ON YOU—FOOL US TWICE SHAME ON US: WHAT WE CAN LEARN FROM THE PRIVATIZATIONS OF THE INTERNET BACKBONE NETWORK AND THE DOMAIN NAME SYSTEM JAY P. KESAN* RAJIV C. SHAH** I. INTRODUCTION.......................................................................................91 A. The Importance of the Internet’s Privatizations............................93 B. Summary of Our Thesis..................................................................95 II. THE HISTORY OF THE NATIONAL SCIENCE FOUNDATION NETWORK (NSFNET)..............................................................................................99 A. Early Computer Networks ...........................................................101 B. Early History of the NSFNET ......................................................103 1. The Vision and Origins of the NSFNET ..............................104 2. Governmental Advocacy for the NSFNET...........................106 3. Construction of the NSFNET...............................................107 C. Privatizing the NSFNET ..............................................................111 1. Commercial Use of the NSFNET.........................................112 2. Creation of Advance Network Services (ANS) to Manage the NSFNET.........................................................................113 3. National Science Foundation’s (NSF) Planning for the NSFNET Privatization.........................................................114 D. Privatization as the Dominant Policy Approach.........................117 III. THE PROBLEMS WITH ADVANCED NETWORK SERVICES (ANS).........120 A. A Backroom Deal Gives Control of the NSFNET to ANS ...........120 B. How ANS Took Advantage of the Public.....................................122 C. How ANS Stifled Competition......................................................124 D. Congressional Hearings Regarding the Management of the NSFNET .......................................................................................125 E. Lessons Learned from the ANS Debacle .....................................127 * Assistant Professor, College of Law and Institute of Government and Public Affairs, University of Illinois at Urbana-Champaign. ** Graduate Student, Institute of Communications Research, University of Illinois at Urbana- Champaign. The helpful comments provided by Rochelle Dreyfuss, Brian Kahin, Andy Leipold, Mark Lemley, Robert McChesney, Jim Pfander, Malla Pollack, and David Post have benefited this Article. This research is supported by a grant from the National Science Foundation (ITR-0081426). 89 Washington University Open Scholarship p 89 Kesan.doc 7/17/01 3:33 PM 90 WASHINGTON UNIVERSITY LAW QUARTERLY [VOL. 79:89 IV. REDESIGNING THE INTERNET FOR PRIVATIZATION..............................130 A. General Background on a Privatization Process........................131 B. The Lack of Guidance for the NSF ..............................................133 C. The NSF Decides the Details.......................................................135 D. The Draft Solicitation for Public Comment.................................137 E. The Revised Solicitation...............................................................140 F. Limitations of the Redesign..........................................................141 V. THE CONSEQUENCES OF THE NSF’S REDESIGN FOR PRIVATIZATION: THE CHANGING RELATIONSHIP BETWEEN THE GOVERNMENT, THE PRIVATE SECTOR, AND “CODE”...........................................................143 A. Lack of Competition in the Backbone Industry............................143 1. Problems with Interconnecting at the Public Network Access Points (NAPs)...........................................................144 2. How the Lack of an Interconnection Policy Affects Backbone Services ...............................................................147 3. How Network Effects Reduce Competition for Backbone Services ................................................................................151 4. Lack of Competition in the Backbone Industry: Past, Present, and Future .............................................................154 B. A Potential Problem with Private Sector Management of the Internet .........................................................................................156 C. The Redesign: A Lost Opportunity to Address Societal Concerns ......................................................................................159 D. Lessons Learned from the Privatization of the Internet’s Backbone......................................................................................165 VI. PRIVATIZATION OF THE DOMAIN NAME SYSTEM (DNS).....................167 A. Background on the DNS ..............................................................168 B. A Short History of the DNS..........................................................169 1. Early History of the DNS.....................................................170 2. Proposals for New Top Level Domains (TLDs)..................171 3. Creation of the Internet Corporation for Assigned Names and Numbers (ICANN) ........................................................174 C. Problems with the Management of the DNS................................176 1. Transparency in Decision Making ......................................176 2. Accountability and Public Input ..........................................178 3. Problems with Network Solutions, Inc. (NSI)......................181 a. NSI’s “Jackpot Amendment” ......................................181 b. Competition on NSI’s Terms .......................................183 D. Déjà Vu All Over Again: Problems with the Privatization of the DNS ..............................................................................................185 https://openscholarship.wustl.edu/law_lawreview/vol79/iss1/2 p 89 Kesan.doc 7/17/01 3:33 PM 2001] PRIVATIZATIONS OF THE INTERNET 91 VII. AN ANALYSIS OF THE PRIVATIZATIONS OF THE INTERNET BACKBONE AND THE DOMAIN NAME SYSTEM (DNS)........................188 A. Problems Occurring During the Privatization Processes...........189 1. The Procedural Problems in the Privatization Processes...189 2. The Government’s Inadequate Management of Competition..........................................................................191 3. The Government’s Problems with “Code” .........................194 B. The Consequences of the Problems with the Privatizations........196 1. Lack of Competition for Backbone Services........................196 2. Lack of Competition in the DNS..........................................198 C. How to Prevent These Problems from Reoccurring and Remedying Their Effects on Competition ....................................200 1. The Role of Procedures in Privatizations............................201 a. The Need for Transparency, Public Input, and Accountability..............................................................201 b. The Need to Treat All Competitors Fairly...................202 2. How to Manage Competition in a Privatization..................203 a. When the Government Should Privatize......................203 b. The Use of Cooperative Agreements...........................204 c. Issue of Network Effects and Interconnection Policies.........................................................................204 i. Interconnection Policies in the Telecommunications Industry .............................205 ii. Interconnection Policies for Backbone Services................................................................206 iii. Interconnection Polices for the DNS...................207 3. Ensuring “Code” Supports Competition and Societal Interests................................................................................207 a. “Code” and Competition ............................................208 b. “Code” and Societal Interests.....................................211 D. The Limitations of Decentralized Rulemaking During the Privatizations ...............................................................................213 VIII. CONCLUSION .......................................................................................216 I. INTRODUCTION The Internet has transformed our everyday life. Already in the United States, more than 100 million people use the Internet for communication with Washington University Open Scholarship p 89 Kesan.doc 7/17/01 3:33 PM 92 WASHINGTON UNIVERSITY LAW QUARTERLY [VOL. 79:89 friends and family, as an information source,
Recommended publications
  • QUILT CIRCLE2020 a Letter from the President
    THE QUILT CIRCLE2020 A Letter From the President This 2020 Quilt Circle edition commemorates the 20th Anniversary of The Quilt. The fabric of our research and education (R&E) networking community has never been stronger. While our Quilt community has evolved in new and exciting ways in the past two decades, we have also been faced with a number of challenges which we take head-on and always with the spirit of collaboration. As we address the unprecedented challenges presented by the current global public health crisis due to the COVID-19 pandemic, the work of our members is more important than ever to the missions of their member communities. U.S. higher education institutions rely on R&E networks to give them a competitive edge in the most impactful scientific research initiatives which is essential in this crisis. We connect the educational institutions that support university medical centers and their associated hospitals. R&E networks also connect tens of thousands of other community anchor institutions, including K-12 schools, public libraries, local/state government, research sites, cultural institutions, public safety, and tribal lands. Being responsive and providing vital networking infrastructure and resources right now to address immediate needs is who we are and what we do. R&E networks are part of our nation’s critical infrastructure. This year’s edition of The Quilt Circle showcases several examples of the key role of R&E network members in both providing and facilitating the use-network infrastructure to further scientific discovery and collaborations at higher education institutions of all sizes.
    [Show full text]
  • On Multi-Point, In-Network Filtering of Distributed Denial-Of-Service Traffic
    On Multi-Point, In-Network Filtering of Distributed Denial-of-Service Traffic Mingwei Zhang∗, Lumin Shi∗, Devkishen Sisodia∗, Jun Li∗, Peter Reihery ∗ University of Oregon fmingwei, luminshi, dsisodia, [email protected] y University of California, Los Angeles [email protected] Abstract—Research has shown that distributed denial-of- in a common language. Further, it is also unknown how these service (DDoS) attacks on the Internet could often be better solutions perform under insufficient knowledge of the attacks handled by enlisting the in-network defense of multiple au- or against intelligent adversaries who can dynamically revise tonomous systems (ASes), rather than relying entirely on the victim’s Internet Service Provider at the edge. Less noticed their attack strategies to escape defense. Without a quantitative but important is the fact that an in-network defense can also comparison, it is hard for a DDoS victim to select the most remove DDoS traffic from the Internet early en route to the suitable solution to achieve its defense goal and meet the victim, thus decreasing the overall load on the Internet and resource requirements. reducing chances of link congestion. However, it is not well In this paper, we introduce a modeling and simulation understood to what degree different in-network defense strategies can achieve such benefits. In this paper, we model the existing framework to systematically evaluate in-network DDoS de- two main categories of in-network DDoS defense algorithms fense algorithms. The framework contains a general model (PushBack, SourceEnd) and propose a new type of algorithm that can describe the attack and defense for various defense (StrategicPoints).
    [Show full text]
  • THE INGHAM COUNTY NE.WS Section 2 and Diu Ll, I Gue11h 'Lhnl'u Tl Good Hally Is 'Mnlhi!L''• Lltllll Hpitl· Wny Lo Do If You Lceep Pu Ttlng CJ',' Something Orr, Mr
    ' I INGHAM COUNTY Ninety-second No, 42 THE Year~ MASON, MICHIGAN. THURSDAY, OCTOBER 18, 1951 3 Sections - 20 Pagc11 Hunters Shoot FIREWORKS AND SWORD-PLAY, TOO /~ Charity Dri~e Rice Oparates a Squash Ranch Halloween Program ~Q Council Names More Birds as Leaders· Start Is Growing Bigger ··-~-· I Ralph Hall as Pressure Eases Mn~on f{lwllnlnn~ rtl'e piilllnJl "'1'11" r1rrh J'iH'> WPifl slrlllorl 19 11onwwhr••r. nrounrl !11400 into the yenrs ngn I o MIJlplnnt the dnngrl­ On Canvassing Monday Opening Reduces pol In Hlflfl'e 1he enmtnlllllty'~ hlg­ g-rHI Hnllowccn pur•! y. llUH nnrl <'OII~Iy horscplny whlclt Prcssm·e on Pheasrmts, then wrrs lhl' Halloween c11stom Chief of Police AI n meeting 'I~IC~r!ny nl~rht Red Fenthe1· Campaign Hags Show Big I ncreasc thry s.11rl that the rutnunl party B11smcss mrn nnd Yotlnl:"stcl s Is Opened Out-County G1·oup Insurance Proglfllll flnH' hPCil showing- KlgnA of pctci­ have r•cnchcrl an implleri agree­ Tu Haisc Local Quotas Fcwcr huntc1s, mole buds rng- rml, Tlw flrrll:"rnrn outhnorl Jnr ment lhnt Halloween fun wlll be May Be Offered Employeoa and Ideal weather marked the this yr1n Hlinulrl 1 cvivc it In n big' cnntlnt•d to Athletic field uml lh,ll Instead of Sick Leaves wny, ·they dcclr11 cd the! o will he no sonpmg ol wln­ fi1 st three days of the bird sea· The pn 1ty will he IJCid the nlll'ht clows or trlrolt nncl lrel\t Rllll! son, Consc1 vat1on Officer of Wcdnnlldny, Octobc1 3t, nt Waltc1 Mutchler 1cportcd.
    [Show full text]
  • Growth of the Internet
    Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission.
    [Show full text]
  • 1117 M. Stahl Obsoletes Rfcs: 1062, 1020, 997, 990, 960, 943, M
    Network Working Group S. Romano Request for Comments: 1117 M. Stahl Obsoletes RFCs: 1062, 1020, 997, 990, 960, 943, M. Recker 923, 900, 870, 820, 790, 776, 770, 762, SRI-NIC 758, 755, 750, 739, 604, 503, 433, 349 August 1989 Obsoletes IENs: 127, 117, 93 INTERNET NUMBERS Status of this Memo This memo is an official status report on the network numbers and the autonomous system numbers used in the Internet community. Distribution of this memo is unlimited. Introduction This Network Working Group Request for Comments documents the currently assigned network numbers and gateway autonomous systems. This RFC will be updated periodically, and in any case current information can be obtained from Hostmaster at the DDN Network Information Center (NIC). Hostmaster DDN Network Information Center SRI International 333 Ravenswood Avenue Menlo Park, California 94025 Phone: 1-800-235-3155 Network mail: [email protected] Most of the protocols used in the Internet are documented in the RFC series of notes. Some of the items listed are undocumented. Further information on protocols can be found in the memo "Official Internet Protocols" [40]. The more prominent and more generally used are documented in the "DDN Protocol Handbook" [17] prepared by the NIC. Other collections of older or obsolete protocols are contained in the "Internet Protocol Transition Workbook" [18], or in the "ARPANET Protocol Transition Handbook" [19]. For further information on ordering the complete 1985 DDN Protocol Handbook, contact the Hostmaster. Also, the Internet Activities Board (IAB) publishes the "IAB Official Protocol Standards" [52], which describes the state of standardization of protocols used in the Internet.
    [Show full text]
  • Broadband for Education: the National Internet2 K20 Initiative’S and WICHE’S Recommendations to the FCC
    Broadband for Education: The National Internet2 K20 Initiative’s and WICHE’s Recommendations to the FCC Who are we? Internet2: We bring together Internet2’s world-class network and research community members with innovators from colleges and universities, primary and secondary schools, libraries, museums and other educational institutions, the full spectrum of America’s education community, including both formal and informal education. The National K20 Initiative extends new technologies, applications, and rich educational content to all students, their families and communities – no matter where they’re located. We have had immense success connecting the institutions above – in fact, over 65,000 institutions are now connected to the National Internet2 network – but to realize fully the potential of Internet2 all institutions must have adequate bandwidth. What follows are principles we endorse and urge the FCC to adopt. We divide our recommendations into two interrelated categories: connectivity and e-rate support. Western Interstate Commission for Higher Education (WICHE): WICHE and its 15 member states work to improve access to higher education and ensure student success. Our student exchange programs, regional initiatives, and our research and policy work allow us to assist constituents in the West and beyond. Equitable access to broadband technology and, in particular, technology-enabled education, is among our strategies. At present much of the West, particularly the “frontier West,” has little or no access to adequate bandwidth. Many of our institutions are not among those connected by and participating in the Internet2 K20 Initiative. The principles and recommendations below would remedy this situation. Our recommendations: (1) Connectivity • Elementary schools, secondary schools, and branch libraries should be connected at 100 Mbps to 10 Gbps.
    [Show full text]
  • Remarks on the Anniversary of the Merit Computer Network
    Remarks on the Anniversary of the Merit Computer Network James J. Duderstadt President Emeritus and University Professor of Science and Engineering Ann Arbor November 16, 2006 2 Introduction Happy 40th Anniversary!!! • It is an honor to be able to participate in this celebration and well-deserved recognition of the extraordinary impact Merit has had on our state, the nation, and, indeed, the world. • • It is also great to see so many of those responsible for its achievements present…and still ticking! • • Actually, I arrived at Michigan about the same time that Merit was launched, and my career has been not only heavily influenced by at times interwoven with Merit’s. • • Hence, I thought it might be appropriate to take a quick nostalgia trip through these years, commenting on various aspects of Merit’s history from a personal perspective as a user, occasional defender, and strong admirer of the Merit Network. • • Before dredging up what my failing memory has to offer, let me stay in the present mode for just a moment to mention an experience I had just last week. Salzburg Seminar • Just arrived back from Salzburg, where I led a week long session of 45 higher education leaders from 25 nations and all five continents on a discussion of the changing needs and nature of higher education in the face of o rapidly changing demographics o globalization o and the knowledge economy • Whether in developed nations in Europe, Asia, or North America or in developing nations elsewhere, there is a growing recognition of two imperatives o “massification” of teriary education o lifelong learning 3 • And everywhere there is also a recognition that the scaffolding for this effort will be provided by cyberinfrastructure–or as the rest of the world calls it, ICT–information and communications technology.
    [Show full text]
  • The Evolution of Internet Evidence 1
    Name: Sam Kavande Rocha Enrollment: 2777582 Nombre del curso: Name of professor: Information technologies Tania Zertuche Module: Activity: 1 Evidence 1 Date: 8 / September / 2015 References: The evolution of Internet Evidence 1 1 Table of contents: Introduction Page 2 Topic explanation Page 2 to 3 Conclusions Page 4 Bibliography Page 5 references 2 Introduction: The Internet is evolving. The majority of end-users perceive this evolution in the form of changes and updates to the software and networked applications that they are familiar with, or with the arrival of entirely new applications that change the way they communicate, do business, entertain themselves, and so on. Evolution is a constant feature throughout the network Topic explanation: The history of the Internet begins with the development of electronic computers in the 1950s. Initial concepts of packet networking originated in several computer science laboratories in the United States, Great Britain, and France. The US Department of Defense awarded contracts as early as the 1960s for packet network systems, including the development of the ARPANET (which would become the first network to use the Internet Protocol.) The first message was sent over the ARPANET from computer science Professor Leonard Kleinrock's laboratory at University of California, Los Angeles (UCLA) to the second network node at Stanford Research Institute (SRI). Packet switching networks such as ARPANET, NPL network, CYCLADES, Merit Network, Tymnet, and Telnet, were developed in the late 1960s and early 1970s using a variety of communications protocols. Donald Davies was the first to put theory into practice by 3 designing a packet-switched network at the National Physics Laboratory in the UK, the first of its kind in the world and the cornerstone for UK research for almost two decades.
    [Show full text]
  • Smith 1 CINE-GT 1807 Fall 2019 Madeline Smith December 13
    Smith 1 CINE-GT 1807 Fall 2019 Madeline Smith December 13, 2019 Assignment 2: Final Research Paper The History of Web Archiving and the Evolution of Archive-It’s Brozzler Since the beginning of the Internet and the World Wide Web in 1991, an unimaginable amount of data and content has been created, shared, posted, and stored on the World Wide Web. When the World Wide Web began, there was no system in place to archive and preserve the Web content, as no one could imagine how massive the infrastructure would become. It was not until the 1990s that users began to recognize the gravity of archiving and preserving all the incredibly diverse born-digital data and content on the Web. Web crawlers are a key component in accomplishing the mission to archive Web content before it is lost for good. While there have been advancements in web archiving over the years, considering the speed at which digital technology and the varied uses of the Internet are changing, there is still work to be done. One of the more recent web crawling technologies is Archive-It’s Brozzler. This report aims to frame Brozzler within the larger landscape of web archiving and web crawler technology. The report will attempt to answer whether Brozzler as a web archiving tool is effective for capturing dynamic websites and the rapidly evolving content of the modern web. The end of this report will be an examination of my own experience attempting to use Brozzler. In order to understand web archiving and web crawling, a few terms used in describing the evolution of the Internet and the World Wide Web need to be defined.
    [Show full text]
  • The Internet Is a Worldwide System of Interconnected Computer Networks That Use the TCP/IP Set of Network Protocols to Reach Billions of Users
    WHAT IS THE INTERNET ? The Internet is a global system of interconnected computer networks that use the standard Internet protocol suite (TCP/IP) to link several billion devices worldwide. It is a network of networks that consists of millions of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies. The Internet carries an extensive range of information resources and services, such as the inter- linked hypertext documents and applications of the World Wide Web (WWW), the infrastructure to support email, and peer-to-peer networks for file sharing and telephony. The Internet is a large group of computers that are connected to each other. The Internet is used to send information quickly between computers around the world. It has millions of smaller domestic, academic, business, and government networks and websites, which together carry many different kinds of information (facts and details) and services. So in other words, the Internet is a network of networks. The Internet is a worldwide system of interconnected computer networks that use the TCP/IP set of network protocols to reach billions of users. The Internet began as a U.S Department of Defense network to link scientists and university professors around the world. A network of networks, today, the Internet serves as a global data communications system that links millions of private, public, academic and business networks via an international telecommunications backbone that consists of various electronic and optical networking technologies. Decentralized by design, no one owns the Internet and it has no central governing authority.
    [Show full text]
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • The Quilt Circle 2015
    The quilt Circle National Regional Networks Consortium ...Advanced regional networking in support of research and education 2015 Edition A Letter from the President This year’s edition of The Quilt Circle is bursting with projects and programs enabled by the regional research and education networks that comprise our Quilt membership. Naturally, The Quilt is proud of the positive impact our member networks and organizations have on the communities they serve. Our annual publication gives us the opportunity to showcase the work of our members and highlight the collective impact each have on the institutions they serve and support across the nation. Given the depth and breadth of our members’ work, it can be challenging to select a single image that effectively captures and communicates its impact. This year’s cover, the image of DNA strands, is truly a fitting one to represent the work of our regional research and education network community. For those of you already familiar with the work of the regional research and education (R&E) network in your area and for those who are just learning about them for the first time in The Quilt Circle, you will quickly learn that our R&E networking DNA is indeed unique. It is in our R&E networking DNA to ensure our community of connected institutions are able to access advanced networking capabilities, tools and services when and how they need it, with the best possible performance so that the network is not an impediment to scientific progress. It is in our DNA for our networking organizations to be driven by the interests of our user communities to enable these institutions to fulfill their promise and mission.
    [Show full text]