Space Suit Development for Orion

Total Page:16

File Type:pdf, Size:1020Kb

Space Suit Development for Orion 48th International Conference on Environmental Systems ICES-2018-199 8-12 July 2018, Albuquerque, New Mexico Space Suit Development for Orion Shane E. Jacobs1 and Donald B. Tufts2 David Clark Company Incorporated, Worcester, MA, 01604 Dustin M. Gohmert3 Johnson Space Center, Houston, TX, 77058 This paper describes the recent design and development of a launch/entry and contingency space suit for NASA’s Orion spacecraft. The suit is designed to be worn during launch, ascent, and entry, to protect crewmembers from a variety of hazards and contingencies, most notably cabin depressurization. The paper details design efforts to improve shoulder and elbow mobility. Additionally, structural design activities are presented- including multiple rounds of analysis and testing – to ensure significant margins of safety when the suit is pressurized to 8 psid. Two new suits with the latest design features were built and human-tested in multiple vacuum chamber tests, which are described. Nomenclature ACES = Advanced Crew Escape Suit CCA = Communications Carrier Assembly DCCI = David Clark Company Incorporated DSC = Dual Suit Controller ECLSS = Environmental Control and Life Support System EVA = Extravehicular Activity LCG = Liquid Cooling Garment OCSS = Orion Crew Survival System ppCO2 = partial pressure of carbon dioxide psia = pounds per square inch absolute psid = pounds per square inch differential sccm = standard cubic centimeters per minute VPIST2 = Vacuum Pressure Integrated Suit Test 2 I. Introduction HE Orion spacecraft is NASA’s next generation exploration spacecraft. It is designed to transport astronauts to T lunar orbit and other destinations beyond Low Earth Orbit. It will nominally carry four crewmembers, transporting them through launch, ascent, travel through deep space, and reentry back to Earth, with a design mission length of 21 days or greater. Due to the unique requirements of this vehicle and mission, a new launch/entry and contingency space suit was required for Orion. The suit is required to not only protect the crew in the event of short term cabin depressurization emergencies during dynamic phases of flight (launch and landing), but also for deep space contingencies that would require the crew to seek safe haven in the suit during transit back to Earth. This key requirement – long duration survival – is the primary design driver that significantly differentiates this suit from conventional launch/entry suits, or short duration Extravehicular Activity (EVA) suits. David Clark Company Incorporated and NASA have worked together to design and develop this new space suit, part of the Orion Crew Survival System (OCSS). The new suit is termed the S1041 OCSS Suit. The S1041 OCSS Suit evolved from the S1035 [1] Advanced Crew Escape Suit (ACES) worn during the second half of the space shuttle program. While many features of the S1035 ACES have been preserved, most have been 1 Softgoods Design Manager, Research and Development, 360 Franklin St. Worcester, MA 01604 2 Program Manager, Research and Development, 360 Franklin St. Worcester, MA 01604 3 OCSS Program Manager, Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058 Copyright © 2018 David Clark Company, Incorporated redesigned due to new requirements driven by Orion’s operational concepts. For example, the suit is designed to function at an operational manned pressure of 8 psid (the S1035 ACES was designed to an operational requirement of 3.5 psid), and works within Orion’s closed loop, continuous flow Environmental Control and Life Support System (ECLSS) architecture (whereas the S1035 ACES was open loop, demand based). The S1041 OCSS Suit ensemble consists of the coverall, helmet, gloves, footwear and a variety of ancillary equipment. This paper focuses on the coverall. Ongoing design efforts for gloves, helmet, footwear and many other subsystems will be presented in future papers. A new neck seal and gas inlet assembly have been designed, which ensure efficient CO2 washout and allows crewmembers to close the neck seal for contingency water egress operations upon landing. Higher mobility elbows and shoulders have been incorporated to provide crewmembers with much improved two-handed work envelope mobility. Structural analysis and testing have driven new designs and materials in much of the restraint layer. In the following sections, the key driving requirements are outlined, which drove suit architecture and critical design trades. The core architecture is outlined, and the details of each design element are discussed. The design work led up to a series of vacuum chamber tests, which are discussed. Finally, future work and plans are outlined as development activities continue towards the pursuit of the first manned test flight of Orion. II. Suit Requirements The requirements for the OCSS Suit consist of those specific to the Orion vehicle and operations, and those generic to launch and entry suits and spaceflight hardware for maintaining a minimum survivability and crew safety capability. In general, all requirements are either directly from NASA or derived collaboratively by NASA and DCCI. The Orion vehicle-specific requirements are being developed in tandem with those for complementary subsystems. This allows for subject matter experts to negotiate and effectively allocate the physical and functional requirements to best support cross-subsystem integration and mission concept of operations. The key driving requirements are paraphrased and listed in Table 1 below. It should be noted that many of the suit requirements continue to evolve as complementary subsystems mature. Therefore many of these are better categorized as design goals rather than strict requirements. Table 1. Suit Driving Requirements/Design Goals Number Requirement Description 1 Suit Pressure The Suit shall operate at 4.3 psia/psid for long duration contingency operations, and at 8 psia/psid for shorter durations 2 Suit ppCO2 Level The suit must maintain the inhaled partial pressure of carbon dioxide in the oral nasal region at or below acceptable limits. 3 Pressure Drop The suit shall have minimal pressure drop to the extent possible. 4 Unassisted Suit The Suit shall be donnable and doffable by an unassisted crew member. Donning/Doffing 5 Anthropometric The Suit shall accommodate the full anthropometric range from the 1st Dimensions and percentile female to the 99th percentile male. Sizing 6 Long-duration The suit shall operate pressurized at 4.3 psia, in a vacuum, for a period of 144 Pressurized hours Operations 7 Mobility The Suit shall provide significant pressurized mobility in the two-handed work envelope at 4.3 psid 8 Pressurized The Suit shall comply with the applicable performance requirements during and Environment after exposure to oxygen environments of 30% and 100% 9 Minimum The Suit hardware shall be operable by all crewmembers Operational Loads 10 Crew Extraction The Suit shall provide handles, an internal harness, and other crew extraction aids/features To fully understand the genesis of the long-duration pressurized requirement noted above, it is important to understand Orion’s contingency depressurized cabin operations concepts. Orion’s mission profile places it at certain mission points of limited return – up to 144 hours away from Earth. Orion nominally operates at 14.7 psia with a 2 International Conference on Environmental Systems normal 80/20 mix of nitrogen and oxygen, respectively. In the event of a cabin depressurization, the Orion capsule is capable of feeding a 0.25-in. hole for 1 hour while maintaining a minimum 8.0 psia cabin pressure. During this 1- hour interim period, the crew would don the OCSS suit ensemble with all ancillary gear required for long duration survival. To minimize risk of decompression sickness, the OCSS suit will be initially held at 8.0 psia for a period of approximately 9 hours. This allows sufficient time for the suit loop to enrich to greater than 95% oxygen within the first hour and for denitrogenation of the crew during the remaining time. Upon completion of this denitrogenation period, the crew will reduce the suit operational pressure to 4.3 psia. This protocol leverages thousands of hours of historical performance data gathered by NASA in the Extravehicular Mobility Unit to ensure crew safety through minimizing adverse physiological reactions. The crew would remain at 4.3 psia for the duration of the depressurization event until return home. While mobility requirements would be minimal during the initial 8.0 psia denitrogenation phase, the crew will be required to eat, drink, sleep, and generally live within the suits at 4.3 psia for the balance of the 6 day duration. III. Design Overview After a comprehensive review of the requirements and concept of operations, and based on lessons learned from years of suit design, development, test and evaluation activities [2-5], the baseline suit architecture was established. The primary focus of the design effort for the coverall was to preserve unpressurized comfort, mobility and crew survivability, while meeting the challenges associate to 8 psia/psid (assuming the cabin has been completely evacuated to vacuum, the absolute pressure inside the suit of 8 psia will yield an equivalent differential pressure of 8 psid. Both are important, as the differential pressure drives the structural loading of the suit, while the absolute pressure drives mass flow requirements, communications, etc.) and 144 hour contingency requirements. These two goals required delicate balance, as typically efforts to
Recommended publications
  • Contingency Shuttle Crew Support (Cscs)/Rescue Flight Resource Book
    CSCS/Rescue Flight Resource Book JSC-62900 CONTINGENCY SHUTTLE CREW SUPPORT (CSCS)/RESCUE FLIGHT RESOURCE BOOK OVERVIEW 1 Mission Operations CSCS 2 Directorate RESCUE 3 FLIGHT DA8/Flight Director Office Final July 12, 2005 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas FINAL 07/12/05 2-i Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 CONTINGENCY SHUTTLE CREW SUPPORT (CSCS)/RESCUE FLIGHT RESOURCE BOOK FINAL JULY 12, 2005 PREFACE This document, dated May 24, 2005, is the Basic version of the Contingency Shuttle Crew Support (CSCS)/Rescue Flight Resource Book. It is requested that any organization having comments, questions, or suggestions concerning this document should contact DA8/Book Manager, Flight Director Office, Building 4 North, Room 3039. This is a limited distribution and controlled document and is not to be reproduced without the written approval of the Chief, Flight Director Office, mail code DA8, Lyndon B. Johnson Space Center, Houston, TX 77058. FINAL 07/12/05 2-ii Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 1.0 - OVERVIEW Section 1.0 is the overview of the entire Contingency Shuttle Crew Support (CSCS)/Rescue Flight Resource Book. FINAL 07/12/05 2-iii Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 This page intentionally blank. FINAL 07/12/05 2-iv Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 2.0 - CONTINGENCY SHUTTLE CREW SUPPORT (CSCS) 2.1 Procedures Overview.......................................................................................................2-1 2.1.1 ................................................................................
    [Show full text]
  • The EVA Spacesuit
    POLITECNICO DI TORINO Repository ISTITUZIONALE Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design Original Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design / Favetto, Alain. - (2014). Availability: This version is available at: 11583/2546950 since: Publisher: Politecnico di Torino Published DOI:10.6092/polito/porto/2546950 Terms of use: openAccess This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 04 August 2020 POLITECNICO DI TORINO DOCTORATE SCHOOL Ph. D. In Informatics and Systems – XXV cycle Doctor of Philosophy Thesis Glove Exoskeleton for Extra-Vehicular Activities Analysis of Requirements and Prototype Design (Part One) Favetto Alain Advisor: Coordinator: Prof. Giuseppe Carlo Calafiore Prof. Pietro Laface kp This page is intentionally left blank Dedicato a mio Padre... Al tuo modo ruvido di trasmettere le emozioni. Al tuo senso del dovere ed al tuo altruismo. Ai tuoi modi di fare che da piccolo non capivo e oggi sono parte del mio essere. A tutti i pensieri e le parole che vorrei averti detto e che sono rimasti solo nella mia testa. A te che mi hai sempre trattato come un adulto. A te che te ne sei andato prima che adulto lo potessi diventare davvero. opokp This page is intentionally left blank Index INDEX Index .................................................................................................................................................5
    [Show full text]
  • SPACE SUIT DEVELOPMENT STATUS by Richard S
    NASA TECHNICAL NOTE NASA TN D-3291 -_ -_ c-- *­ a/ A KI R -1- i SPACE SUIT DEVELOPMENT STATUS by Richard S. Johnston, James V. Correale, and Matthew I. Radnofsky Manned Spacecraft Center Hozcston, Texas N AT10 N A 1 AERO N AUT1CS AND SPACE ADMINISTRATION WASHINGTON, D. C. FEBRUARY 1966 n TECH LIBRARY KAFB, NM , Illllll 11111 Illlll I llllllllll Ill1111 i 00797BL NASA 'I"D-3291 SPACE SUIT DEVELOPMENT STATUS By Richard S. Johnston, James V. Correale, and Matthew I. Radnofsky Manned Spacecraft Center Houston, Texas NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00 ABSTRACT Space suit development, starting with the Mercury program, has progressed to its present sta­ tus as a result of the changing goals of each manned spacecraft mission. The first space suits were de­ signed primarily for protection of flight crews against the possibility of cabin pressure failure. Longer flights and extravehicular activities required design philosophies to change drastically, particularly in the areas of comfort, mobility, reliability, and life- sustaining systems. Future mission goals will re­ quire new design objectives and requirements. ii SPACE SUIT DEVELOPMENT STATUS By Richard S. Johnston, James V. Correale, and Matthew I. Radnofsky Manned Spacecraft Center SUMMARY Space suits for the Mercury missions were designed primarily for pro­ tection of flight crews against the possibility of cabin pressure failure. How­ ever, goals of the Gemini program, particularly extravehicular activities, caused space suit design philosophies to change drastically. The suit had-to sustain life. A basic design was selected to satisfy all mission requirements.
    [Show full text]
  • Balloon Astronaut San Jose, CA 95113 1-408-294-8324 Design Challenge Learning Thetech.Org
    201 S. Market St. Balloon Astronaut San Jose, CA 95113 1-408-294-8324 Design Challenge Learning thetech.org Students investigate properties of materials and colliding objects by designing spacesuits for balloon astronauts. The objective is to design spacesuits that can withstand the hazards of high velocity impacts from space debris and meteoroids. As students iterate through this design challenge, they gain firsthand experience in the design process. Balloon Astronaut1 Grades 2-8 Estimated time: 45 minutes Student Outcomes: 1. Students will be able to design and build a protective device to keep their balloon astronaut from popping when impaled by a falling nail. 2. Students will be able to explain design considerations based on material characteristics, and concepts of energy, velocity, and the physics of colliding objects. 3. Students will be able to utilize the three step design process to meet an engineering challenge. Next Generation Science Standards Grade 2-5: Engineering Design K-2-ETS1-1, K-2-ETS1-2, K-2-ETS1-3, 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3 Grade 2: Physical Science 2-PS1-1, 2-PS1-2 Grade 3: Physical Science 3-PS2-1 Grade 4: Physical Science 4-PS3-1, 4-PS3-3, 4-PS3-4 Grade 5: Physical Science 5-PS2-1 Grade 6-8: Engineering Design MS-ETS1-1, MS-ETS1-2, MS-ETS1-3, MS-ETS1-4; Physical Science MS-PS2-1, MS-PS2-2, MS-PS3-2, MS-PS3-5 Common Core Language Arts-Speaking and Listening Grade 2: SL.2.1a-c, SL.2.3, SL.2.4a Grade 3: SL.3.1b-d, SL.3.3, SL.3.4a Grade 4: SL.4.1b-d, SL.4.4a Grade 5: SL.5.1b-d, SL.5.4 Grade 6: SL.6.1b-d Grade 7: SL.7.1b-d Grade 8: SL.8.1b-d California Science Content Grade 2: Physical Science 1.a-c; Investigation and Experimentation 4.a, 4.c-d Grade 3: Investigation and Experimentation 5.a-b, d Grade 4: Investigation and Experimentation 6.a, 6.c-d Grade 5: Investigation and Experimentation 6.a-c, 6.h Grade 6: Investigation and Experimentation 7.a-b, 7.d-e Grade 7: Investigation and Experimentation 7.a, 7.c-e Grade 8: Physical Science 1.a-e, 2.a-g; Investigation and Experimentation 9.b-c 1 Developed from a program designed by NASA.
    [Show full text]
  • Life Support Baseline Values and Assumptions Document
    NASA/TP-2015–218570 Life Support Baseline Values and Assumptions Document Editors: Molly S. Anderson Michael K. Ewert John F. Keener Sandra A. Wagner Responsible National Aeronautics and Space Administration Official: Molly S. Anderson CTSD, Lyndon B. Johnson Space Center National Aeronautics and Space Administration Mail Code EC2 2101 NASA Road One Houston, Texas 77058 March 2015 THE NASA STI PROGRAM OFFICE . IN PROFILE Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical conferences, NASA Scientific and Technical Information (STI) symposia, seminars, or other meetings sponsored Program Office plays a key part in helping NASA or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the lead center for NASA’s projects, and mission, often concerned with scientific and technical information. The NASA STI subjects having substantial public interest. Program Office provides access to the NASA STI Database, the largest collection of aeronautical and • TECHNICAL TRANSLATION. English- space science STI in the world. The Program Office language translations of foreign scientific and is also NASA’s institutional mechanism for technical material pertinent to NASA’s mission. disseminating the results of its research and development activities. These results are published Specialized services that complement the STI by NASA in the NASA STI Report Series, which Program Office’s diverse offerings include creating includes the following report types: custom thesauri, building customized databases, organizing and publishing research results .
    [Show full text]
  • Preparation of Papers for AIAA Technical Conferences
    Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study 1 2 3 4 5 6 Jonathan T. Bowie , Raul A. Blanco , Richard D. Watson , Cody Kelly , Jesse Buffington , Stephanie A. Sipila NASA Johnson Space Center, Houston, TX 77058 This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided. Nomenclature ACES = Advanced Crew Escape Suit ACFM = Actual cubic feet per minute AEMU = Advanced Extravehicular Mobility Unit AES = Advanced Exploration Systems ARCM = Asteroid Redirect Crewed Mission ARGOS = Active Response Gravity Offload System BRT = Body Restraint Tether DCCI = David Clark Company Inc. DRM = Design Reference Mission EMU = Extravehicular Mobility Unit EOS = Emergency Oxygen System EVA = Extravehicular Activity FSA = Feedwater Supply Assembly ISS = International Space Station
    [Show full text]
  • Complex Garment Systems to Survive in Outer Space
    Volume 7, Issue 2, Fall 2011 Complex Garment Systems to Survive in Outer Space Debi Prasad Gon, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA [email protected] Palash Paul, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA ABSTRACT The success of astronauts in performing Extra-Vehicular Activity (EVA) is highly dependent on the performance of the spacesuit they are wearing. Since the beginning of the Space Shuttle Program, one basic suit design has been evolving. The Space Shuttle Extravehicular Mobility Unit (EMU) is a waist entry suit consisting of a hard upper torso (HUT) and soft fabric mobility joints. The EMU was designed specifically for zero gravity operations. With a new emphasis on planetary exploration, a new EVA spacesuit design is required. Now the research scientists are working hard and striving for the new, lightweight and modular designs. Thus they have reached to the Red surface of Mars. And sooner or later the astronauts will reach the other planets too. This paper is a review of various types of spacesuits and the different fabrics required for the manufacturing of the same. The detailed construction of EMU and space suit for Mars is discussed here, along with certain concepts of Biosuit- Mechanical Counter pressure Suit. Keywords: Extra-Vehicular Activity (EVA), spacesuits, Biosuit-Mechanical Counter pressure Suit Tissues (skin, heart,
    [Show full text]
  • Modeling Space Suit Mobility: Applications to Design and Operations
    2001-01-2162 Modeling Space Suit Mobility: Applications to Design and Operations P. B. Schmidt and D. J. Newman Massachusetts Institute of Technology E. Hodgson Hamilton Sundstrand Space Systems International Copyright © 2001 Society of Automotive Engineers, Inc. ABSTRACT date repetitive tasks. Computer simulation also aids in future space suit design by allowing new space suit or Computer simulation of extravehicular activity (EVA) is component designs to be evaluated without the expense increasingly being used in planning and training for EVA. of constructing and certifying prototypes for human test- A space suit model is an important, but often overlooked, ing. While dynamic simulation is not currently used for component of an EVA simulation. Because of the inher- EVA planning, it has been used for post-flight analyses ent difficulties in collecting angle and torque data for [1, 2]. Other computer-based modeling and analysis space suit joints in realistic conditions, little data exists on techniques are used in pre-flight evaluations of EVA tasks the torques that a space suit’s wearer must provide in and worksites [3, 4]. order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuver- An important shortcoming of current EVA models is that ing Unit (EMU), with a novel measurement technique that they lack an accurate representation of the torques that used both human test subjects and an instrumented are required to bend the joints of the space suit. The robot. Using data collected in the experiment, a hystere- shuttle EMU, like all pressurized space suits, restricts sis modeling technique was used to predict EMU joint joint motion to specific axes and ranges and has a ten- torques from joint angular positions.
    [Show full text]
  • Physiology of Decompressive Stress
    CHAPTER 3 Physiology of Decompressive Stress Jan Stepanek and James T. Webb ... upon the withdrawing of air ...the little bubbles generated upon the absence of air in the blood juices, and soft parts of the body, may by their vast numbers, and their conspiring distension, variously streighten in some places and stretch in others, the vessels, especially the smaller ones, that convey the blood and nourishment: and so by choaking up some passages, ... disturb or hinder the circulation of the blouod? Not to mention the pains that such distensions may cause in some nerves and membranous parts.. —Sir Robert Boyle, 1670, Philosophical transactions Since Robert Boyle made his astute observations in the Chapter 2, for details on the operational space environment 17th century, humans have ventured into the highest levels and the potential problems with decompressive stress see of the atmosphere and beyond and have encountered Chapter 10, and for diving related problems the reader problems that have their basis in the physics that govern this is encouraged to consult diving and hyperbaric medicine environment, in particular the gas laws. The main problems monographs. that humans face when going at altitude are changes in the gas volume within body cavities (Boyle’s law) with changes in ambient pressure, as well as clinical phenomena THE ATMOSPHERE secondary to formation of bubbles in body tissues (Henry’s law) secondary to significant decreases in ambient pressure. Introduction In the operational aerospace setting, these circumstances are Variations in Earthbound environmental conditions place of concern in high-altitude flight (nonpressurized aircraft limits and requirements on our activities.
    [Show full text]
  • AIAA-95-1 062 the Suitport's Progress M. Cohen NASA Ames Research
    NASA-TM-111836 /t/ .' I I AIAA-95-1 062 The Suitport's Progress M. Cohen NASA Ames Research Center Moffett Field, CA Life Sciences and Space Medicine Conference April 3-5, 1995 / Houston, TX For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, SOW., Washington, D.C. 20024 AIAA-95-106; THE SUITPORT'S PROGRESS Marc M. Cohen* NASA-Ames Research Center Moffett Field, California Abstract Origins of the Suitport NASA-Ames Research Center developed The Suitport Extravehicular Access Facility the Suitport as an advanced space suit originated during the early phase of the airlock to support a Space Station suit, Space Station Advanced Development based on the AX-5 hard suit. Several third Program. It grew from a recognition that the parties proposed their own variations the construction and operation of Space Station Suitport on the moon and Mars. The Freedom (SSF) would require several Suitport recently found its first practical use thousand hours of EVA time (This finding as a terrestrial application in the NASA- has not changed much for the new design Ames Hazmat vehicle for the clean-up of for "Space Station Alpha." To make the best hazardous and toxic materials. In the Hazmat use of SSF crew time, it will become application, the Suitport offers substantial necessary to make the entire space suit improvements over conventional hazard donning and doffing, and airlock suits, by eliminating the necessicty to egress/ingress as safe, rapid, and efficient decontaminate before doffing the suit. as possible. Definitions The Space Shuttle EMU suit and airlock AX-5 Ames Experimental Suit 5 systems pose several potential CCPS Command/Control Pressure Suit disadvantages for frequent and routine EMU Extra-Vehicular Mobility Unit Space Station operations.
    [Show full text]
  • Happy Holidays!!!
    December 2000 Cosmonotes Décembre 2000 The Newsletter of the Canadian Alumni of the International Space University Le Bulletin des Anciens Etudiants Canadiens de l’Université Internationale de l’Espace reminiscing on an Aerospace Medicine docked to the Station, three HAPPY Elective at KSC, and an article from the spacewalks will be conducted to busy, busy, busy MSS6. Another deliver, assemble, and activate the opinion piece is included in this issue, U.S. electrical power system on board HOLIDAYS!!! this time on The Dreams our Star Stuff the ISS. The electrical power system, Here is the December 2000 edition of is Made of – thank you to Eric Choi which is built into a 47-foot integrated your CAISU newsletter, Cosmonotes, (SSP 99) for polling the alumni and truss structure known as P6, consists again packed with many fascinating writing a delightful article from all of solar arrays, radiators for cooling, articles from alumni and friends. This responses received. batteries for solar energy storage, and electronics. P6 is the first section of a issue of Cosmonotes was slightly Thank you to all alumni who system that ultimately will deliver 60 delayed to include an article on the volunteered to write articles for times more power to the ISS research November 30th launch of STS-97 with Cosmonotes! It is thanks to the facilities than was possible on Mir. Canadian Astronaut Marc Garneau on constant willingness of alumni to board, a launch that many CAISU contribute that this newsletter keeps Mission Specialist Marc Garneau members were present in Florida to getting better (and thicker!) with each (Ph.D.) will attach P6 to the evolving view thanks to an invitation from the issue.
    [Show full text]
  • Benefits of a Single-Person Spacecraft for Weigh Less Operations
    Future In-Space Operations Colloquium B Griffin Benefits of a Single-Person Spacecraft for Weigh less Operations Brand Griffin August 15, 2012 1 Why Look at a Single-Person Spacecraft? B Griffin Past EVA Contributions Future NASA Plans Emphasize Weightless Operation Weightless Operations 13+ years Add New Capability Samples Current to Improve Weightless Operations 5 to 11 yrs L1 Moon L2 Retrieval/ Repair 13 yrs Asteroid 20 yrs (weightless transit) Mars Assembly 8/15/2012 Benefits of a Single-Person Spacecraft for Weightless Operations 2 Idea is Not New B Griffin 8/15/2012 Benefits of a Single-Person Spacecraft for Weightless Operations 3 Single-Person Spacecraft B Griffin No Reentry Venues ISS Operations Weightless Operations 8/15/2012 Benefits of a Single-Person Spacecraft for Weightless Operations 4 Implications of Low Pressure B Griffin User Design ISS Atmosphere Low pressure space suit •Range of motion •Gas retention 101.3 kPa (14.7 psi) 29.6 kPa (4.3 psi) •Tactile feedback •Restraint •Low forces •Thermal •Minimum fatigue •Micrometeoroid •Comfort •Puncture Prebreathe Glove pressure determines suit pressure O2 O2 29.6 kPa Prebreathe O2 21 % 100% (4.3psi) Purge N2 101.3 kPa N (14.7psi) 2 N 79 % 2 Risk of Decompression Sickness “Bends” 8/15/2012 Benefits of a Single-Person Spacecraft for Weightless Operations 5 Less Overhead Time Better Work Efficiency Index (WEI) B Griffin EMU EVA Overhead Time Gone Away Egress WEI 12.5-14 hr Ingress + 2.5 hr 2.0 0.43 (ISS) 12.0 Direct access without prebreathing minimizes overhead 8/15/2012 Benefits
    [Show full text]