AIAA-95-1 062 the Suitport's Progress M. Cohen NASA Ames Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design of a Human Settlement on Mars Using In-Situ Resources
46th International Conference on Environmental Systems ICES-2016-151 10-14 July 2016, Vienna, Austria Design of a Human Settlement on Mars Using In-Situ Resources Marlies Arnhof1 Vienna University of Technology, Vienna, 1040, Austria Mars provides plenty of raw materials needed to establish a lasting, self-sufficient human colony on its surface. Due to the planet's vast distance from Earth, it is neither possible nor economically reasonable to provide permanent, interplanetary supply. In-situ resource utilization (ISRU) will be necessary to keep the Earth launch burden and mission costs as low as possible, and to provide – apart from propellant and life support – a variety of construction material. However, to include outposts on other planets into the scope of human spaceflight also opens up new psychological and sociological challenges. Crews will live in extreme environments under isolated and confined conditions for much longer periods of time than ever before. Therefore, the design of a Mars habitat requires most careful consideration of physiological as well as psychosocial conditions of living in space. In this design for a Martian settlement, the author proposes that – following preliminary automated exploration – a basic surface base brought from Earth would be set up. Bags of unprocessed Martian regolith would be used to provide additional shielding for the habitat. Once the viability of the base and its production facilities are secured, the settlement would be expanded, using planetary resources. Martian concrete – processed regolith with a polymeric binder – would be used as main in-situ construction material. To provide optimum living and working conditions, the base would respond to the environment and the residents' number and needs, thereby evolving and growing continuously. -
The EVA Spacesuit
POLITECNICO DI TORINO Repository ISTITUZIONALE Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design Original Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design / Favetto, Alain. - (2014). Availability: This version is available at: 11583/2546950 since: Publisher: Politecnico di Torino Published DOI:10.6092/polito/porto/2546950 Terms of use: openAccess This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 04 August 2020 POLITECNICO DI TORINO DOCTORATE SCHOOL Ph. D. In Informatics and Systems – XXV cycle Doctor of Philosophy Thesis Glove Exoskeleton for Extra-Vehicular Activities Analysis of Requirements and Prototype Design (Part One) Favetto Alain Advisor: Coordinator: Prof. Giuseppe Carlo Calafiore Prof. Pietro Laface kp This page is intentionally left blank Dedicato a mio Padre... Al tuo modo ruvido di trasmettere le emozioni. Al tuo senso del dovere ed al tuo altruismo. Ai tuoi modi di fare che da piccolo non capivo e oggi sono parte del mio essere. A tutti i pensieri e le parole che vorrei averti detto e che sono rimasti solo nella mia testa. A te che mi hai sempre trattato come un adulto. A te che te ne sei andato prima che adulto lo potessi diventare davvero. opokp This page is intentionally left blank Index INDEX Index .................................................................................................................................................5 -
SPACE SUIT DEVELOPMENT STATUS by Richard S
NASA TECHNICAL NOTE NASA TN D-3291 -_ -_ c-- * a/ A KI R -1- i SPACE SUIT DEVELOPMENT STATUS by Richard S. Johnston, James V. Correale, and Matthew I. Radnofsky Manned Spacecraft Center Hozcston, Texas N AT10 N A 1 AERO N AUT1CS AND SPACE ADMINISTRATION WASHINGTON, D. C. FEBRUARY 1966 n TECH LIBRARY KAFB, NM , Illllll 11111 Illlll I llllllllll Ill1111 i 00797BL NASA 'I"D-3291 SPACE SUIT DEVELOPMENT STATUS By Richard S. Johnston, James V. Correale, and Matthew I. Radnofsky Manned Spacecraft Center Houston, Texas NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00 ABSTRACT Space suit development, starting with the Mercury program, has progressed to its present sta tus as a result of the changing goals of each manned spacecraft mission. The first space suits were de signed primarily for protection of flight crews against the possibility of cabin pressure failure. Longer flights and extravehicular activities required design philosophies to change drastically, particularly in the areas of comfort, mobility, reliability, and life- sustaining systems. Future mission goals will re quire new design objectives and requirements. ii SPACE SUIT DEVELOPMENT STATUS By Richard S. Johnston, James V. Correale, and Matthew I. Radnofsky Manned Spacecraft Center SUMMARY Space suits for the Mercury missions were designed primarily for pro tection of flight crews against the possibility of cabin pressure failure. How ever, goals of the Gemini program, particularly extravehicular activities, caused space suit design philosophies to change drastically. The suit had-to sustain life. A basic design was selected to satisfy all mission requirements. -
Suitport Feasibility - Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests
Suitport Feasibility - Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests Robert M. Boyle1, Kathryn Mitchell2, Charles Allton3, Hsing Ju4 Lyndon B. Johnson Space Center National Aeronautics and Space Administration Houston, Texas 77058 E-Mail: [email protected]; Phone: 281.483.5349 The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. -
Complex Garment Systems to Survive in Outer Space
Volume 7, Issue 2, Fall 2011 Complex Garment Systems to Survive in Outer Space Debi Prasad Gon, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA [email protected] Palash Paul, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA ABSTRACT The success of astronauts in performing Extra-Vehicular Activity (EVA) is highly dependent on the performance of the spacesuit they are wearing. Since the beginning of the Space Shuttle Program, one basic suit design has been evolving. The Space Shuttle Extravehicular Mobility Unit (EMU) is a waist entry suit consisting of a hard upper torso (HUT) and soft fabric mobility joints. The EMU was designed specifically for zero gravity operations. With a new emphasis on planetary exploration, a new EVA spacesuit design is required. Now the research scientists are working hard and striving for the new, lightweight and modular designs. Thus they have reached to the Red surface of Mars. And sooner or later the astronauts will reach the other planets too. This paper is a review of various types of spacesuits and the different fabrics required for the manufacturing of the same. The detailed construction of EMU and space suit for Mars is discussed here, along with certain concepts of Biosuit- Mechanical Counter pressure Suit. Keywords: Extra-Vehicular Activity (EVA), spacesuits, Biosuit-Mechanical Counter pressure Suit Tissues (skin, heart, -
Physiology of Decompressive Stress
CHAPTER 3 Physiology of Decompressive Stress Jan Stepanek and James T. Webb ... upon the withdrawing of air ...the little bubbles generated upon the absence of air in the blood juices, and soft parts of the body, may by their vast numbers, and their conspiring distension, variously streighten in some places and stretch in others, the vessels, especially the smaller ones, that convey the blood and nourishment: and so by choaking up some passages, ... disturb or hinder the circulation of the blouod? Not to mention the pains that such distensions may cause in some nerves and membranous parts.. —Sir Robert Boyle, 1670, Philosophical transactions Since Robert Boyle made his astute observations in the Chapter 2, for details on the operational space environment 17th century, humans have ventured into the highest levels and the potential problems with decompressive stress see of the atmosphere and beyond and have encountered Chapter 10, and for diving related problems the reader problems that have their basis in the physics that govern this is encouraged to consult diving and hyperbaric medicine environment, in particular the gas laws. The main problems monographs. that humans face when going at altitude are changes in the gas volume within body cavities (Boyle’s law) with changes in ambient pressure, as well as clinical phenomena THE ATMOSPHERE secondary to formation of bubbles in body tissues (Henry’s law) secondary to significant decreases in ambient pressure. Introduction In the operational aerospace setting, these circumstances are Variations in Earthbound environmental conditions place of concern in high-altitude flight (nonpressurized aircraft limits and requirements on our activities. -
Dust Mitigation Gap Assessment Report
DUST MITIGATION GAP ASSESSMENT REPORT Feb 9, 2016 International Agency Working Group “I think dust is probably one of our greatest inhibitors to a nominal operation on the Moon. I think we can overcome other physiological or physical or mechanical problems except dust.” Gene Cernan, Apollo 17 Technical Debrief “Dust is still a principal limiting factor in returning to the lunar surface for missions of any extended duration. However, viable technology solutions have been identified, but need maturation to be available to support both lunar and Mars missions.” Dust Mitigation Gap Assessment Team, Final Report DUST MITIGATION GAP ASSESSMENT REPORT WORKING GROUP MEMBERSHIP ASI (Agenzia Spaziale Italiana) Raffaele Mugnuolo Simone Pirrotta CSA (Canadian Space Agency) Mireille Bedirian Daniel Lefebvre Martin Picard Taryn Tomlinson Michel Wander (Co-Chair) ESA (European Space Agency) Henry Wong JAXA (Japan Aerospace Exploration Agency) Satoshi Hosoda Sachiko Wakabayashi Hiroshi Ueno NASA (National Aeronautics and Space Administration) Phil Abel Juan Agui Jesse Buffington Carlos Calle James (Jim) Gaier Natalie Mary Drew Smith Sharon Straka Scott Vangen (Chair) Page 2 DUST MITIGATION GAP ASSESSMENT REPORT DUST MITIGATION GAP ASSESSMENT REPORT INTERNATIONAL AGENCY WORKING GROUP Table of Contents 1. Objectives and Approach 1.1. TWG and SME Objectives for Gap Assessment Team 1.2. Gap Assessment Approach (Tasks) 1.3. Executive Summary of Key Findings 2. Dust Mitigation Challenges 2.1. Life Support Systems 2.2. EVA Systems 2.3. Mobility Systems 2.4. Human Health and Performance 2.5. Systems 2.6. Ascent/Descent Vehicles 2.7. In Situ Resource Utilization 3. Dust Mitigation Solutions 3.1. Active Technologies 3.2. -
Z-1 Prototype Space Suit Testing Summary
https://ntrs.nasa.gov/search.jsp?R=20130011564 2019-08-31T00:40:26+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server Z-1 Prototype Space Suit Testing Summary Amy Ross1 NASA Johnson Space Center, Houston, Texas, 77058 The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented. Nomenclature A = amplitude of oscillation a = cylinder diameter [To be completed] I. Introduction A principal role of the Johnson Space Center advanced space suit pressure garment team, herein referred to as “suit team”, is to characterize space suit pressure garment components and full suit architectures. Each mobility joint system and full suit architecture has different capabilities and limitations. -
Benefits of a Single-Person Spacecraft for Weightless Operations (Stop Walking and Start Flying)
42nd International Conference on Environmental Systems AIAA 2012-3630 15 - 19 July 2012, San Diego, California Benefits of a Single-Person Spacecraft for Weightless Operations (Stop Walking and Start Flying) Brand N. Griffin1 Gray Research, Engineering, Science, and Technical Services Contract, 655 Discovery Drive Ste. 300, Huntsville, AL 35806 U.S.A Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work. For planetary operations space suits are still the logical choice; however, for safe and rapid access to the weightless environment, spacecraft offer compelling advantages. FlexCraft, a concept for a single-person spacecraft, enables any- time access to space for short or long excursions by different astronauts. For the International Space Station (ISS), going outside is time-consuming, requiring pre-breathing, donning a fitted space suit, and pumping down an airlock. For each ISS EVA this is between 12.5 and 16 hours. FlexCraft provides immediate access to space because it operates with the same cabin atmosphere as its host. Furthermore, compared to the space suit pure oxygen environment, a mixed gas atmosphere lowers the fire risk and allows use of conventional materials and systems. For getting to the worksite, integral propulsion replaces hand-over- hand translation or having another crew member operate the robotic arm. This means less physical exertion and more time at the work site. Possibly more important, in case of an emergency, FlexCraft can return from the most distant point on ISS in less than a minute. The one-size-fits-all FlexCraft means no on-orbit inventory of parts or crew time required to fit all astronauts. -
Human Spaceflight: Phobos Base
2017 AIAA Student Design Competition HUMAN SPACEFLIGHT: PHOBOS BASE Timothy Bishop Victor Kitmanyen Thomas Lagarde Zachary Taylor Faculty Advisor: Olga Bannova, Ph.D. Sasakawa International Center for Space Architecture (SICSA) Cullen College of Engineering, University of Houston Houston, Texas, USA ~ 2 ~ Copyright © 2017 by Timothy Bishop, Victor Kitmanyen, Thomas Lagarde & Zachary Taylor. All Rights Reserved. Published with express permission, by the American Institute of Aeronautics and Astronautics, Inc. ~ 3 ~ Signature Page Timothy Bishop Project Manager AIAA #: 677333 Victor Kitmanyen Microgravity Countermeasures Architect AIAA #: 819885 Zachary Taylor Space Architect AIAA #: 819283 Thomas Lagarde RECLSS Architect AIAA #: 819864 Dr. Olga Bannova Faculty & Project Advisor Copyright © 2017 by Timothy Bishop, Victor Kitmanyen, Thomas Lagarde & Zachary Taylor. All Rights Reserved. Published with express permission, by the American Institute of Aeronautics and Astronautics, Inc. ~ 4 ~ Table of Contents LIST OF FIGURES ___________________________________________________________________________ 6 ACRONYMS _________________________________________________________________________________ 8 1.0 ABSTRACT _______________________________________________________________________________ 9 2.0 PROJECT INTRODUCTION ______________________________________________________________ 10 3.0 REQUIREMENTS: ANALYSIS AND INTERPRETATION ____________________________________ 11 3.1 SITE ___________________________________________________________________________________ -
Charting the Course for Sustainable Human Space Exploration Table of Contents
National Aeronautics and Space Administration Voyages Charting the Course for Sustainable Human Space Exploration Table of Contents Executive Summary: Charting the Course 2 NASA Vision Why We Explore 4 Reach for How We Explore: A Capability-Driven Approach 6 new heights and reveal The International Space Station: Cornerstone the unknown, of Human Space Exploration 8 so that what we do and learn Destination: Cis-Lunar Space 10 will benefit all Destination: Near-Earth Asteroid 12 humankind. Destination: Moon 14 Destination: Mars 16 NASA Mission Capabilities: Foundations of Human Space Exploration 18 Drive advances Transportation Capabilities 20 in science, technology, Capabilities for Mission Operations 24 and exploration to enhance Habitation and Destination Capabilities 26 knowledge, Conclusion: Firsts from LEO to Mars 32 education, innovation, Acknowledgements 34 economic vitality, and stewardship of Earth. 1 Executive Summary: Charting the Course This report articulates NASA’s multi-destination human space exploration strategy using a capability-driven approach NASA is ensuring that the United States fosters a safe, robust, affordable, sustainable, and flexible space program by developing a set of core evolving capabilities instead of specialized, destination-specific hardware These core capabilities allow NASA the flexibility to conduct increasingly complex missions to a range of destinations over time By expanding human presence throughout the solar system, we increase our scientific knowledge, enable technological and economic growth, -
Eva-Exp-0031 Baseline
EVA-EXP-0031 BASELINE National Aeronautics and EFFECTIVE DATE: 04/18/2018 Space Administration EVA OFFICE EXTRAVEHICULAR ACTIVITY (EVA) AIRLOCKS AND ALTERNATIVE INGRESS/EGRESS METHODS DOCUMENT The electronic version is the official approved document. ECCN Notice: This document does not contain export controlled technical data. Revision: Baseline Document No: EVA-EXP-0031 Release Date: 04/18/2018 Page: 2 of 143 Title: EVA Airlocks and Alternative Ingress Egress Methods Document REVISION AND HISTORY PAGE Revision Change Description Release No. No. Date EVA-EXP-0031 Baseline Baseline per CR# EVA-CR-00031 04/18/2018 Document dated 03/07/2018 submitted and approved through DAA process/DAA # TN54054 approved April 9, 2018 EVA-REF-001 DAA Pre Baseline 03/12/2015 33134 Draft EVA-RD-002 05/14/2015 SAA 12/15/2015 DRAFT The electronic version is the official approved document. ECCN Notice: This document does not contain export controlled technical data. Revision: Baseline Document No: EVA-EXP-0031 Release Date: 04/18/2018 Page: 3 of 143 Title: EVA Airlocks and Alternative Ingress Egress Methods Document Executive Summary This document captures the currently perceived vehicle and EVA trades with high level definition of the capabilities and interfaces associated with performing an Extravehicular Activity (EVA) using an exploration EVA system and ingress/egress methods during future missions. Human spaceflight missions to Cislunar space, Mars transit, the moons of Mars (Phobos and Deimos), the Lunar surface, and the surface of Mars will include both microgravity and partial-gravity EVAs, and potential vehicles with which an exploration EVA system will need to interface.