Come L'evoluzione Tecnologica Può Mitigare L'effetto Del Peso Dei Materiali, Degli Equipaggiamenti E Dell'armamento Del Soldato Nell'ambito Delle Operazioni Appiedate
Total Page:16
File Type:pdf, Size:1020Kb
Centro Militare di Studi Strategici Rapporto di Ricerca 2014 - STEPI AH-T- 06 Come l'evoluzione tecnologica può mitigare l'effetto del peso dei materiali, degli equipaggiamenti e dell'armamento del soldato nell'ambito delle operazioni appiedate. Aniello RICCIO, Ph.D. Andrea SELLITTO, Ph.D. data di chiusura della ricerca: Ottobre 2014 Index INDEX 1 LIST OF ACRONYMS 3 SOMMARIO 5 INTRODUCTION 6 ANALITYCAL SECTION 1. INTRODUCTION TO THE EVOLUTION OF THE SOLDIER’S LOAD 8 1.1. PRE-MUSKET ERA (700 BCE – 1651 CE) 8 1.2. MUSKETEERS (1651 – 1865 CE) 16 1.3. WORLD WARS (1914 – 1946 CE) 22 1.4. MODERN ERA (1950 CE – PRESENT) 31 1.5. CONCLUSIONS 41 2. MATERIALS 44 2.1. HISTORICAL BACKGROUND 44 2.2. STATE OF THE ART 54 2.3. FUTURE DEVELOPMENT 58 2.3.1. SHEAR-THICKENING FLUID 58 2.3.2. MAGNETORHEOLOGICAL FLUID 61 2.3.3. CARBON NANOTUBES 63 2.3.4. SPIDER-SILK 67 3. UNMANNED GROUND VEHICLES 69 3.1. HISTORICAL BACKGROUND 69 3.2. STATE OF THE ART AND FUTURE DEVELOPMENT 76 3.2.1. FRONTLINE ROBOTICS TELEOPERATED UGV 77 3.2.2. BATTLEFIELD EXTRACTION-ASSIST ROBOT 78 3.2.3. MULTI-MISSION UNMANNED GROUND VEHICLE 81 3.2.4. TERRAMAX 84 1 3.2.5. LEGGED SQUAD SUPPORT SYSTEM 85 4. POWERED EXOSKELETON 88 4.1. HISTORICAL BACKGROUND 88 4.2. STATE OF THE ART AND FUTURE DEVELOPMENT 99 4.2.1. XOS 99 4.2.2. HUMAN UNIVERSAL LOAD CARRIER 104 4.2.3. HYBRID ASSISTIVE LIMB 111 4.2.4. REWALK 114 4.2.5. TACTICAL ASSAULT LIGHT OPERATOR SUIT 116 5. CONCLUSIONS 119 SPECIALIZED SECTION 6. MATERIALS 121 6.1. PERFORMANCE STANDARDS 121 6.2. BACKING MATERIALS 123 7. UNMANNED GROUND VEHICLES 125 7.1. FRONTLINE ROBOTICS TELEOPERATED UGV 125 7.2. BATTLEFIELD EXTRACTION-ASSIST ROBOT 127 7.3. MULTI-MISSION UNMANNED GROUND VEHICLE 128 7.4. TERRAMAX 129 7.5. LEGGED SQUAD SUPPORT SYSTEM 130 8. POWERED EXOSKELETON 131 8.1. XOS 2 131 8.2. HUMAN UNIVERSAL LOAD CARRIER 132 8.3. HYBRID ASSISTIVE LIMB 133 8.3.1. LOWER LIMB 133 8.3.2. SINGLE JOINT 134 8.4. REWALK 135 8.5. TACTICAL ASSAULT LIGHT OPERATOR SUIT 136 REFERENCE 137 2 List of Acronyms AP Armor-Piercing BAP Body Armor, Powered BCE Before Common Era BEAR Battlefield Extraction-Assist Robot BES Bio-Electric Signals BLEEX Berkeley Lower Extremity EXoskeleton CBRNe Chemical, Biological, Radiological, Nuclear, and explosive CCF Chinese Communist Forces CE Common Era CNT Carbon NanoTube CPVF Chinese People’s Volunteers Force CVD Chemical Vapor Deposition DARPA Defense Advanced Research Projects Agency DARPA-AI Defense Advanced Research Projects Agency for Artificial Intelligence DBB Dynamic Balance Behavior EAP ElectroActive Polymers eLEGS exoskeleton Lower Extremity Gait System EOD Explosive Ordnance Disposal ESAPI Enhanched Small Arms Protective Inserts FMJ Full Metal Jacketed FMJ FN Full Metal Jacketed Flat Nose FMJ RN Full Metal Jacketed Round Nose HAL Hybrid Assistive Limb HOSDB UK Home Office Scientific Development Branch HULC Human Universal Load Carrier IED Improvised Explosive Device IOTV Improved Outer Tactical Vest LR LRN Long Rifle Lead Round Nose LS3 Legged Squad Support System MR MagnetoRheological MTVR Medium Tactical Vehicle Replacement MULE Multifunction Utility/Logistics Equipment vehicle MWCNT Multi-Walled Carbon NanoTubes 3 NIJ National Institute of Justice NKPA North Korean People’s Army PASGT Personnel Armor System for Ground Troops PBO poly(P-phenylene-2,6-BenzobisOxazole) – Zylon PMC Precious Metal Clay PSDB Police Scientific Development Branch RAR Royal Australian Regiment RDECom U.S. Army Research, Development and Engineering Command RISS Robotic Infantry Support System RoK Republic of Korea S-MET Squad Multipurpose Equipment Transport SJHP Semi Jacketed Hollow Point STF Shear-Thickening Fluid STRIPS STanford Research Institute Problem Solver SWCNT Single Walled Carbon NanoTube TA Control Tank TALOS Tactical Assault Light Operator Suit TT TeleTank TUGV Frontline Robotics Teleoperated UGV UGV Unmanned Ground Vehicle UHMWPE Ultra-High-Molecular-Weight PolyEthylene VBIED Vehicle Borne IED 4 Sommario Uno dei requisiti di un soldato è stato e sarà quello di trasportare armi, munizioni e viveri: inoltre, la diversità e la complessità delle operazioni militari spesso richiedono al soldato di trasportare uno specifico equipaggiamento per la missione e di muoversi, a piedi, attraverso varie tipologie di terreno per lunghi periodi in condizioni di tempo molto differenti. Mentre l’equipaggiamento è spesso cruciale per il successo della missione e per la sopravvivenza del soldato, il suo peso, se in eccesso, può avere effetti negativi. Lo scopo di questo lavoro è quello di descrivere in che modo è possibile mitigare il peso dei materiali, degli equipaggiamenti e dell’armamento del soldato nell’ambito delle operazioni appiedate ed è stato diviso in due sezioni: nel primo capitolo della prima sezione, quella analitica, è stata effettuata una panoramica del carico trasportato dai soldati nel corso della storia. Particolare interessante è che, mentre il carico è stato soggetto a leggere fluttuazioni nel corso dei tempi, la sua percentuale rispetto al peso medio del soldato non ha subito grosse variazioni escludendo particolari eccezioni, questo soprattutto perché spesso ad una riduzione del peso dell’equipaggiamento non è corrisposto una diminuzione del carico, ma un aumento dell’equipaggiamento trasportato (per esempio più munizioni e più acqua). I capitoli successivi vertono sui modi specifici in cui è possibile mitigare l’effetto del carico, in particolare sui materiali, sugli UGV (Unmanned Ground Vehicle – veicoli senza pilota) e sugli esoscheletri. Mentre per i materiali è stato possibile fare una netta distinzione tra ciò che è allo stato dell’arte e quelli che sono gli sviluppi futuri, tale distinzione non è stata fatta per quel che riguarda UGV ed esoscheletri: per queste ultime due categorie, infatti, il confine tra lo stato dell’arte e gli sviluppi futuri è talmente labile da non riuscirne a fare una netta distinzione, in quanto molte di tali tecnologie sono attualmente in fase di sperimentazione e di sviluppo. A valle della sezione analitica è stata presentata una sezione specialistica di supporto, in cui sono state inserite le specifiche della tecnologia esposta nella sezione analitica. 5 Introduction Since ancient times, there has always been a complex relationship between the loads carried by soldiers and the requirements of their mission. One of the requirements of a soldiers is, was and will be to carry arms, ammunition, clothing and sustenance, that is the basis for their survival. In addition, the diversity and complexity of military operations often requires the soldier to carry mission-specific equipment and move, on foot, through various terrains for long and continuous periods in very different weather conditions. While the equipment is often crucial for mission success and survival, its weight, when in excess, has led to combat deaths. The purpose of this work is to describe how to mitigate the effects of the load carried by soldiers by means of improvements in materials, and by adopting UGVs or exoskeletons. The work has been divided into a first analytical section and a specialized one: The analytical section is structured in the following way: o The first chapter debates about the evolution of the soldier’s load, from ancient times to modern era; o The second chapter is focused on the materials adopted by soldiers’ equipment; o The third chapter is focused on UGVs; o The fourth chapter debates about the exoskeletons. In the specialized support section, the specifications of the technology described into the analytical section are reported. 6 ANALITYCAL SECTION 7 1. Introduction to The Evolution of the Soldier’s Load Before starting the review of the evolution of soldiers’ load, several considerations have to be taken into account: first of all, all the loads described in this chapter are the estimated dry loads and may change according to the environment. As a matter of facts, the 3.2 kilogram coat adopted by the British Army during the Great War could absorb up to an additional 9 kilograms of water [1]. British soldiers, who would start a march with 27.5 kilograms, could well finish with loads in excess of 43.5 kilograms taking into account the effects of water saturation and mud; the American overcoat in the World War II would likewise increase in weight by around 3.6 kilograms. In most cases the loads carried by soldiers described herein are based on an average; this may dilute the true appreciation of loads carried by individual soldiers, most notably those who had specific roles within their unit: a machine gunner or signal operator, for example, would usually carry a load noticeably heavier than a rifleman. 1.1. Pre-Musket Era (700 BCE – 1651 CE) The first iron army ever created was the Assyrian one in the seventh century BCE, during the reign of Sargon II [2]. The production and storage of iron weapons and other metal materials of war became a central feature of the army’s logistical base: a single room in Sargon’s palace at Dur-Sharrukin, also known as Fort Sargon, contained 200 tons of iron weapons, helmets and body armor. The Assyrian soldier was equipped with iron scale armor, helmet, iron shinned boots, shield, sword and spear: equipped in such a way, the Assyrian spearman was thought to bear a load of between 27.5 and 36.5 kilograms. Considering a mean weight of an Assyrian equal to 65 kg, means a carried load between 42 and 56 per cent of body weight. 8 Figure 1.1: Assyrian soldier fully equipped. A century later, the Greek infantry soldier, the Hoplite, was thought to carry a load of between 22.5 and 32 kilograms when dressed in a complete panoply of breastplate, greaves, helmet, shield, spear and sword.