Rockets Educator Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
19940015753.Pdf
National Aeronautics and Educational Product Space Administration Teachers I Grades 2-6 I Office of Education and Human Resources Education Division _o N N cO 0 u_ 0 N t_ I ,.-, CO ,4" U O" 0_ _ Z _ 0 0 tM < u Is LIJ I-. _-.q4" W_ O ul ,,_ W;Z. INWel I I,,-. UJ .... 0,. i,-,{ .... u4 uJ I-,- .. IU_ Z_ .1 i ! I i I j | ] ROCKETS Physical Science Teacher's Guide with Activities National Aeronautics and Space Administration Office of Human Resources and Education Education Division This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication. EP-291 July 1993 Acknowledgments This publication was developed for the National Aeronautics and Space Administra- tion with the assistance of the many educa- tors of the Aerospace Education Services Program, Oklahoma State University. Writer: Gregory L. Vogt, Ed.D. Teaching From Space Program NASA Johnson Space Center Houston, TX Editor: Carla R. Rosenberg Teaching From Space Program NASA Headquarters Washington, DC Table of Contents How To Use This Guide ............................... 1 Activities and Demonstration Matrix ............. 2 Brief History of Rockets ................................ 3 Rocket Principles ......................................... 8 Practical Rocketry ...................................... 12 Activities and Demonstrations .................... 19 Glossary ..................................................... 40 NASA Educational Materials And Suggested Readings .......................... 41 NASA Educational Resources ................... 42 Evaluation Card ..................................... Insert ii How To Use This Guide vehiclesockets arein theexistence.oldest formEarlyofrocketsself-containedwere in use more than two thousand years ago. Over a long and exciting history, rockets have evolved from simple tubes filled with black powder into mighty vehicles capable of launching a spacecraft out into the galaxy. -
A Pictorial History of Rockets
he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here. -
Howard Seifert Papers
http://oac.cdlib.org/findaid/ark:/13030/tf0z09n4j4 No online items Guide to the Howard Seifert Papers Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California 2001 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Howard Seifert SC0173 1 Papers Overview Call Number: SC0173 Creator: Seifert, Howard, 1911-1977 Creator: Seifert,, 1911-1977. Title: Howard Seifert papers Dates: 1960-1977 Physical Description: 39.5 Linear feet Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Custodial History Gift of Mrs. Howard Seifert, 1977, and administrative transfer, Department of Aeronautics and Astronautics, 1979. Information about Access None. Ownership & Copyright Property rights reside with the repository. Literary rights reside with the creators of the documents or their heirs. To obtain permission to publish or reproduce, please contact the Public Services Librarian of the Dept. of Special Collections and University Archives. Cite As [Identification of item], Howard Seifert Papers, SC 173, Stanford University Archives, Stanford, Calif. Biography Howard Seifert, an authority on rocket propulsion of space vehicles, was professor of aeronautics and astronautics at Stanford from 1960 to 1976. He also directed the Physical Sciences Laboratory at the United Aircraft Corporation (1960-65) and was president of the American Rocket Society (1960). Before joining the Stanford faculty, he was on the staff at the Jet Propulsion Laboratory and Space Technology Laboratories and a visiting professor at UCLA. -
Global Factory List As of August 3Rd, 2020
Global Factory List as of August 3rd, 2020 Target is committed to providing increased supply chain transparency. To meet this objective, Target publishes a list of all tier one factories that produce our owned-brand products, national brand products where Target is the importer of record, as well as tier two apparel textile mills and wet processing facilities. Target partners with its vendors and suppliers to maintain an accurate factory list. The list below represents factories as of August 3rd, 2020. This list is subject to change and updates will be provided on a quarterly basis. Factory Name State/Province City Address AMERICAN SAMOA American Samoa Plant Pago Pago 368 Route 1,Tutuila Island ARGENTINA Angel Estrada Cla. S.A, Buenos Aires Ciudad de Buenos Aires Ruta Nacional N 38 Km. 1,155,Provincia de La Rioja AUSTRIA Tiroler Glashuette GmbH Werk: Schneegattern Oberosterreich Lengau Kobernauserwaldstrase 25, BAHRAIN WestPoint Home Bahrain W.L.L. Al Manamah (Al Asimah) Riffa Building #1912, Road # 5146, Block 951,South Alba Industrial Area, Askar BANGLADESH Campex (BD) Limited Chittagong zila Chattogram Building-FS SFB#06, Sector#01, Road#02, Chittagong Export Processing Zone,, Canvas Garments (Pvt.) Ltd Chittagong zila Chattogram 301, North Baizid Bostami Road,,Nasirabad I/A, Canvas Building Chittagong Asian Apparels Chittagong zila Chattogram 132 Nasirabad Indstrial Area,Chattogram Clifton Cotton Mills Ltd Chittagong zila Chattogram CDA plot no-D28,28-d/2 Char Ragmatia Kalurghat, Clifton Textile Chittagong zila Chattogram 180 Nasirabad Industrial Area,Baizid Bostami Road Fashion Watch Limited Chittagong zila Chattogram 1363/A 1364 Askarabad, D.T. Road,Doublemoring, Chattogram, Bangladesh Fortune Apparels Ltd Chittagong zila Chattogram 135/142 Nasirabad Industrial Area,Chattogram KDS Garment Industries Ltd. -
Studies on National Space Legislation for the Purpose of Drafting China's
Studies on National Space Legislation for the Purpose of Drafting China’s Space Law From the Faculty of Business and Economics Leuphana University Lueneburg in order to obtain the degree Dr. iur. approved dissertation by Huan Yu born on 28. 10. 1987 in Harbin/ P.R. China Contents Preface ....................................................................................................... VII Introduction .................................................................................................. 1 A. Research Problem and Purpose ....................................................... 2 B. Research Methodology .................................................................... 3 I. Doctrinal Methodology ................................................................ 3 II. Comparative Method................................................................... 5 C. Research Structure ........................................................................... 6 Chapter I. The Legal Basis and Necessity of National Space Legislation ....................................................................................................................... 9 A. International Space Law and the National Space Legislation ....... 10 I. International Space Treaties and National Space Law ............... 10 II. International Space Soft Law and National Space Law ............ 10 B. The Outer Space Treaty (OST) and National Space Legislation ..... 13 I. Art. VI: International Responsibility - the Motivation of States to Create National Space Legislation................................................ -
Review of Advance Rocket Engine
International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 Review of Advance Rocket Engine Sanjana Sharma Research Scholar, Chandigarh University, Punjab (India) Abstract: The rocket engine is the main and very important part of the space transportation system. In this paper an attempt has been made about the history of Rocket Engine, types of Rocket Engines and future scope in the technology of theRocket Engines. Also, an attempt about physics behind the jets, and advantages and disadvantages of every rocket engine is made in this review paper. 1. Introduction creating incendiary weapons from the mid-eighth to the end of the thirteenth century—two of which are rockets. The first Rocket Engines are basically used to store the rocket mass of recipe calls for one part, which is sulfur, added to six parts rocket propellant for forming its high speed propulsive jet. of saltpeter (potassium nitrate) dissolved in laurel oil, then Those vehicles which are propelled by rocket engines are inserted into hollow wood and lit to actually fly away commonly known as rockets. Rockets function on the whenever you want, to whatever destination you wish and principle of Newton’s 3rd law of motion. We always see that burn up everything. The second recipe combines a pound of most of the rocket engines use combustion, but non- sulfur, two pounds of charcoal, and six pounds of saltpeter— combusting (such as cold gas thrusters) forms also exist. all finely powdered on a marble slab. Then this powder mixture is packed firmly into a long and narrow case. -
Space19+ Taikonauten TNO RF Technology Van De Hoofdredacteur
Space19+ Taikonauten TNO RF technology Van de hoofdredacteur: Voor u ligt alweer het laatste nummer van 2019. Traditiege- trouw hebben we weer een voorbeschouwing van de driejaar- lijkse ESA Ministersconferentie, met dit keer extra aandacht voor de processen die in Nederland plaatsvinden in de voorbereiding. Verder besteden we aandacht aan nationale ruimtevaartontwikkelingen in artikels over de Space Campus Noordwijk en RF technologie van TNO, raketmotoren uit de Oekraïne, de viering van 50 jaar Apollo 11 in Nederland, de utopische Space Shuttle beloften van 1979, en Piet Smolders persoonlijke herinneringen aan de legendarische vluchtleider Bij de voorplaat Gene Kranz. Op het moment van schrijven vindt het 70ste International Lancering van een Lange Mars 2F raket met de bemande Shenzhou Astronautical Congress (IAC) plaats in Washington DC, dat 10 capsule vanuit het Jiuquan Satellite Launch Center, op 11 juni 2013. in teken staat van de eerste maanlanding die dit jaar 50 jaar [CCTV] geleden plaatsvond. De vaderlandse ruimtevaartindustrie is op het IAC ruim vertegenwoordigd en zal aldaar de ter gelegenheid van het International Space University Space Studies Program 2018 uitgegeven Ruimtevaart Special, met daarin een goed overzicht van de Nederlandse ruimtevaart- gemeenschap, verspreiden. Eerder werd deze Special ook al verspreid tijdens de handelsreis naar Bremen (zie het vorige nummer). We zijn verheugd te melden dat Bert Vis bereid gevonden is om, naast Michel van Pelt, de rol van eindredacteur over te nemen van Frank Wokke. Bert is al bekend bij de lezers door zijn regelmatig in ons blad verschijnende artikels over Chinese en Russische ruimtevaart; ook in dit nummer vindt u weer een mooi artikel van zijn hand. -
New Rocket Guide
National Aeronautics and Space Administration Educator Guide 1 www.nasa.gov rockets U S AAA eates an eaction rocket U N I Pronunciation: \rä-kət\ noun (It rocchetta) T ockets are self- E D A vehicle, typically cylindrical, containing liquidS or solid T propellants which produce hot gases or ionsA that are ejected T rearward through a nozzle and, in doing so,E cr action force accompanied by an opposite Sand equal r force driving the vehicle forward. Because r contained, they are able to operate in outer space. DISCOVERY 2 National Aeronautics and Space Administration ROCKETS Educator’s Guide with Activities in Science, Technology, Engineering and Mathematics This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication. EG-2008-05-060-KSC 3 Acknowledgements The original Rockets Teacher Guide was Special Thanks To: published by NASA’s Education Division in the NASA Headquarters mid-1990s. It has found widespread use in Jerry G. Hartman both formal and informal educational settings Merrill King, Ph.D. because of the exciting nature of the topic and Allota Taylor because of its dynamic classroom activities Carla Rosenberg that match and support both national and state education standards for science, mathematics, Special appreciation is extended and technology. to NASA's Exploration Systems Mission Direcorate and Space This revision of the guide, by the original Operations Mission Directorate authors, updates educators on NASA’s 21st for their generosity and Century Space Exploration Policy and the commitment to the continuation vehicles that will make this vision possible. -
Experimental Study of Cavitation and Flow Instabilities in Space Rocket Turbopumps and Hydrofoils
Università degli Studi di Pisa DOTTORATO DI RICERCA IN INGEGNERIA AEROSPAZIALE CURRICULUM: PROPULSIONE AEROSPAZIALE XVIII CICLO EXPERIMENTAL STUDY OF CAVITATION AND FLOW INSTABILITIES IN SPACE ROCKET TURBOPUMPS AND HYDROFOILS Candidata Cristina Bramanti Tutore Prof. Luca d’Agostino Dipartimento di Ingegneria Aerospaziale Via G. Caruso, 56122 – Pisa ABSTRACT The present work is aimed at the description of the research activity performed by the author during the years 2003-2005 in the framework of the Ph.D. course in Aerospace Engineering at Pisa University. The research activity was mainly focused on the experimental characterization of the dynamics of cavitation, and its impact on the development of fluid dynamic and rotordynamic instabilities of high performance turbopumps for space applications. The experimental tests were carried out at Centrospazio Research Laboratory by means of a test facility called CPRTF (Cavitating Pump Rotordynamic Test Facility), which is based on a water loop specifically designed and engineered for the experimental analysis of turbopump cavitation and cavitation-induced instabilities in similar fluid dynamic and thermal cavitation conditions, in order to accurately reproduce the pump operation with common liquid propellants used in space propulsion rockets (LH2, LOX, NTO, MMH, etc.). The realization, the assembly and validation of the facility and the design of the reconfiguration of the pump loop into a small water tunnel for thermal cavitation were one the subjects of the Master thesis of the author, while the experiments for investigating cavitation phenomena on test bodies by the use of the hydrodynamic tunnel were carried out during the first ten mounths of the Ph.D. research activity. -
The International Space Transit Vehicle Concept
Construction of an International Space Transit Vehicle Using the Space Station Dan Roukos* and Madhu Thangavelu† University of Southern California, Los Angeles, CA 90089-1191 Figure 1: ISV in Space _______________________________ *Graduate Student, Department of Astronautical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA †Conductor, ASTE 527 Space Concepts Studio, Department of Astronautical Engineering, Viterbi School of Engineering, Graduate Thesis Advisor, School of Architecture, University of Southern California, Los Angeles, CA, AIAA Member 1 Abstract After abandoning the possibility of directly evolving the ISS for cislunar, lunar orbital or interplanetary applications, we looked at the potential of the ISS as the prime and opportune assembly node for such missions beyond LEO. We note that space station concepts in the past have referred to such a facility in LEO for this purpose; a manned station in LEO to build large vehicles and structures for outbound destinations, since such systems cannot be lofted directly from the Earth, using current technology. The International Space Vehicle (ISV), as shown in figure 1, is a concept architecture for a new kind of spacecraft presented here as the initial platform for evolving systems for space exploration and extraterrestrial settlement goals set by the U.S. and shared by the world; namely manned return to the Moon and manned missions to Mars and beyond. The nature of these missions, using current technology, demand long duration manned space presence for several years. No vehicle built or planned yet, with the partial exception of the ISS, which requires constant logistics support from Earth, can effectively support life in space for such periods. -
Richard Nakka's Experimental Rocketry Web Site
Richard Nakka's Experimental Rocketry Web Site Solid Propellant Burn Rate • Introduction • What Influences Burning Rate? • Modification of Burning Rate • Combustion Process • Burn Rate Measurement Introduction The burning surface of a rocket propellant grain recedes in a direction perpendicular to this burning surface. The rate of regression, typically measured in inches per second (or mm per second), is termed burning rate (or burn rate). This rate can differ significantly for different propellants, or for one particular propellant, depending on various operating conditions as well as formulation. Knowing quantitatively the burning rate of a propellant, and how it changes under various conditions, is of fundamental importance in the successful design of a solid rocket motor. This web page discusses the factors that influence burn rate, how it may be modified, how the burn rate can be determined experimentally, and the physical processes that occur at the burning surface of a propellant that governs the burning rate. What Influences Burning Rate? An illustration of the concept of burning surface regression is given in Figure 1, for a section of a hollow cylindrical grain, with an inhibited outer surface ( "inhibited" means that the propellant surface is protected from the heat of combustion and as such, burning does not occur). Burning commences along the length of the central core, with the burning surface receding radially outward (shown at arbitrary times t1, t2, t3). Note that the burning surface area (represented by the arc length of the red lines in this figure) is continually increasing. Also note that the surface regression rate (burn rate) is not constant. -
Work Breakdown Structure (WBS) • Milestone Schedule • Funding and Personnel Resources • WBS Details PROGRAM ROAD MAP
INTRODUCTION • Background • Hydrogen vs. Water • Project Objective • Program Plan Status • Conclusions To Date ISRU BACKGROUND • "ISRU" -- Insitu Space Resource Utilization • The Utilization of Lunar Water Ice Near the Lunar Poles (cold traps) Is Expected to Have a Dramatic Effect on the Affordability of Future Lunar and Mars Exploration and Colonization • The Latest Lunar Prospector Data Indicates up to 260 Million Tons of Water Ice is Present • The Use of Water Includes: Hydrogen and Oxygen Propellants for: Space Transport Systems, Life Support, Food Production, Chemical Energy Storage, Rover Fuels/Oxidizers, Concrete Production for Infrastructure, etc. • The Discovery and Use of Water Ice on the Moon is a Tremendously Important Event for Man's Exploration and Colonization of the Solar System • In This Effort, We Are Developing a Detailed Program Plan that NASA May Choose to Use to “Discover, Extract and Use” Lunar Water or Lunar Hydrogen and Oxygen LUNAR PROSPECTOR DATA WATER VS. HYDROGEN • Lunar Prospector’s Neutron Spectrometer (NS) is Designed to Detect the Presence of Hydrogen, which Is Believed by Many to Indicate the Presence of Water Ice • Current Data Indicate up to 260 Million Metric Tons of Water Ice Have Been Predicted by the Science Team, (July 1999) • Estimates Indicate 200 Million MT at the South Pole and 60 Million MT at the North Pole • Ice Likely in Deposites of Pure Water Ice Burried Beneath ~5 cm of Dry Regolith in ~1.5% Concentrations • Concentrations Appear Higher at the North Pole • Kulcinski, Schmidt and Others