Download (Pdf, 7.05
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extreme Miniaturization of a New Amniote Vertebrate and Insights Into the Evolution of Genital Size in Chameleons
www.nature.com/scientificreports OPEN Extreme miniaturization of a new amniote vertebrate and insights into the evolution of genital size in chameleons Frank Glaw1*, Jörn Köhler2, Oliver Hawlitschek3, Fanomezana M. Ratsoavina4, Andolalao Rakotoarison4, Mark D. Scherz5 & Miguel Vences6 Evolutionary reduction of adult body size (miniaturization) has profound consequences for organismal biology and is an important subject of evolutionary research. Based on two individuals we describe a new, extremely miniaturized chameleon, which may be the world’s smallest reptile species. The male holotype of Brookesia nana sp. nov. has a snout–vent length of 13.5 mm (total length 21.6 mm) and has large, apparently fully developed hemipenes, making it apparently the smallest mature male amniote ever recorded. The female paratype measures 19.2 mm snout–vent length (total length 28.9 mm) and a micro-CT scan revealed developing eggs in the body cavity, likewise indicating sexual maturity. The new chameleon is only known from a degraded montane rainforest in northern Madagascar and might be threatened by extinction. Molecular phylogenetic analyses place it as sister to B. karchei, the largest species in the clade of miniaturized Brookesia species, for which we resurrect Evoluticauda Angel, 1942 as subgenus name. The genetic divergence of B. nana sp. nov. is rather strong (9.9‒14.9% to all other Evoluticauda species in the 16S rRNA gene). A comparative study of genital length in Malagasy chameleons revealed a tendency for the smallest chameleons to have the relatively largest hemipenes, which might be a consequence of a reversed sexual size dimorphism with males substantially smaller than females in the smallest species. -
Zootaxa, Integrative Taxonomy of Malagasy Treefrogs
Zootaxa 2383: 1–82 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2383 Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and comparative morphology reveals twelve additional species of Boophis FRANK GLAW1, 5, JÖRN KÖHLER2, IGNACIO DE LA RIVA3, DAVID R. VIEITES3 & MIGUEL VENCES4 1Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany 2Department of Natural History, Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany 3Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas (CSIC), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain 4Zoological Institute, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany 5Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by S. Castroviejo: 8 Dec. 2009; published: 26 Feb. 2010 Frank Glaw, Jörn Köhler, Ignacio De la Riva, David R. Vieites & Miguel Vences Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and com- parative morphology reveals twelve additional species of Boophis (Zootaxa 2383) 82 pp.; 30 cm. 26 February 2010 ISBN 978-1-86977-485-1 (paperback) ISBN 978-1-86977-486-8 (Online edition) FIRST PUBLISHED IN 2010 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2010 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. -
MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour. -
The Freshwater Crab Liberonautes Latidactylus (De Man, 1903) Preys on Adult Allen’S Giant Frog, Conraua Alleni (Barbour and Loveridge, 1927)
Herpetology Notes, volume 12: 1073-1076 (2019) (published online on 29 October 2019) The freshwater crab Liberonautes latidactylus (de Man, 1903) preys on adult Allen’s Giant Frog, Conraua alleni (Barbour and Loveridge, 1927) Marvin Schäfer1,*, Joseph Doumbia2, and Mark-Oliver Rödel1 Post-metamorphic anuran amphibians are preyed therein), the role of freshwater crabs as predators is upon by many vertebrates (reviewed by Toledo et less well documented, but particularly for frogs, might al., 2007) and invertebrate predators (Toledo, 2005; be underrated. Freshwater crabs are known to feed on Wells, 2007). Amongst invertebrates, spiders are eggs (Hayes, 1983), tadpoles (Gray and Christy, 2000), most frequently listed (for a recent review concerning juvenile (Affonso and Signorelli, 2011) and adult African examples, see Babangenge et al., 2019), but frogs (Tsuji, 2005; Rosa et al., 2014; Wehrtmann et al., unusual anuran specialists like the carabid beetles 2019). Hence, all anuran life stages are potential prey Epomis have become known as well (Wizen and Gasith, of freshwater crabs. Interestingly, the ability to hunt 2011). Although Diesel (1989) reports an example seems to decrease in freshwater crabs exceeding 25 mm of a tree-hole breeding crab, occasionally preying on of carapace width. Large individuals are supposed to be anuran eggs and tadpoles, crustaceans are only rarely less agile, and hence less effective in capturing elusive mentioned as amphibian predators. Toledo (2005) only prey (Williams, 1962; Williams, 1965; Dobson, 2004). lists one species of decapod crab as a predator of post- Consequently, one might assume that larger and agile metamorphic anurans. More recently, Pyke et al. -
Analyses of Proposals to Amend
CoP17 Prop. 38 Inclusion of False Tomato Frog Dyscophus guineti and Antsouhy Tomato Frog D. insularis in Appendix II Proponent: Madagascar Summary: The False Tomato Frog Dyscophus guineti and the Antsouhy Tomato Frog D. insularis comprise two of three species in the genus Dyscophus, all of which are endemic to Madagascar. The third species, D. antongilii was included in Appendix I in 1987. It is subject to a separate proposal to be transferred from Appendix I to Appendix II (Proposal 37). All three are attractive red-orange coloured frogs. Dyscophus are known to breed explosively with the availability of water during the rainy season (typically January-March) and during that time they can be found in abundance at breeding sites. Hundreds of eggs are laid in water following mating. Dyscophus guineti The known distribution of D. guineti includes a number of patches in the remnant central eastern rainforest of Madagascar. The species is secretive and believed likely to be more widespread than records indicate1. Overall population is unknown; locally the species can vary from extremely common to very rare1. Sexual maturity is attained between two and four years, comparatively earlier in males than in females2. The habitat of the species is affected by conversion of forest to agriculture, timber extraction, charcoal production and potentially small-scale mining activities. The species reportedly does not tolerate severe degredation1. There is not known to be local use of the species. As a consequence of the Appendix-I listing in 1987 of the similar Dyscophus antongilii, collectors interested in "red Dyscophus" have shifted their attention to D. -
Cop17 Prop. 37
Original language: English CoP17 Prop. 37 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September – 5 October 2016 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Downlisting of Dyscophus antongilii from Appendix I to Appendix II B. Proponent Madagascar* C. Supporting statement 1. Taxonomy 1.1 Class: Amphibia 1.2 Order: Anura 1.3 Family: Microhylidae Gunther 1859, subfamily Dyscophinae 1.4 Genus, species: Dyscophus antongilii Grandidieri 1877 1.5 Scientific synonyms: 1.6 Common names: English: Tomato Frog French: La grenouille tomate, crapaud rouge de Madagascar Malagasy: Sahongoangoana, Sangongogna, Sahogongogno (and similar writings) 2. Overview The genus Dyscophus contains three species of large microhylids composing the subfamily Dyscophinae endemic to Madagascar. D. antongilii, D. guineti and D. insularis. Dyscophus antongilii is red-orange in coloration and commonly called the tomato frogs because of its appearance. It is well-known and iconic amphibian species. Described by Alfred Grandidier in the 1877, D. antongilii occurs in a moderate area of northeast and east of Madagascar. Dyscophus antongilii has been listed within CITES Appendix I since 1987 while the other two species currently have no CITES listing but proposed to be inserted into Appendix II for this year by a separate proposal. Some studies on the species led by F. Andreone demonstrate that this species is frequently found outside of protected area and one of the strategies to conservation purpose is the trade. The species is listed as Near Threatened on the IUCN Red List. -
Correlates of Eye Colour and Pattern in Mantellid Frogs
SALAMANDRA 49(1) 7–17 30Correlates April 2013 of eyeISSN colour 0036–3375 and pattern in mantellid frogs Correlates of eye colour and pattern in mantellid frogs Felix Amat 1, Katharina C. Wollenberg 2,3 & Miguel Vences 4 1) Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400 Granollers, Catalonia, Spain 2) Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, 640 Dr. Mary McLeod Bethune Blvd., Daytona Beach, FL 32114, USA 3) Department of Biogeography, Trier University, Universitätsring 15, 54286 Trier, Germany 4) Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 18 March 2013 Abstract. With more than 250 species, the Mantellidae is the most species-rich family of frogs in Madagascar. These frogs are highly diversified in morphology, ecology and natural history. Based on a molecular phylogeny of 248 mantellids, we here examine the distribution of three characters reflecting the diversity of eye colouration and two characters of head colouration along the mantellid tree, and their correlation with the general ecology and habitat use of these frogs. We use Bayesian stochastic character mapping, character association tests and concentrated changes tests of correlated evolu- tion of these variables. We confirm previously formulated hypotheses of eye colour pattern being significantly correlated with ecology and habits, with three main character associations: many tree frogs of the genus Boophis have a bright col- oured iris, often with annular elements and a blue-coloured iris periphery (sclera); terrestrial leaf-litter dwellers have an iris horizontally divided into an upper light and lower dark part; and diurnal, terrestrial and aposematic Mantella frogs have a uniformly black iris. -
New Sahonagasy Action Plan 2016-2020
New Sahonagasy Action Plan 2016-2020 1 New Sahonagasy Action Plan 2016 – 2020 Nouveau plan d’Action Sahonagasy 2016 – 2020 Edited by: Franco Andreone, IUCN SSC Amphibian Specialist Group - Madagascar Jeff S. Dawson, Durrell Wildlife Conservation Trust Falitiana C. E. Rabemananjara, IUCN SSC Amphibian Specialist Group - Madagascar Nirhy H.C. Rabibisoa, IUCN SSC Amphibian Specialist Group - Madagascar Tsanta F. Rakotonanahary, Durrell Wildlife Conservation Trust With assistance from: Candace M. Hansen-Hendrikx, Amphibian Survival Alliance James P. Lewis, Amphibian Survival Alliance/Rainforest Trust Published by: Museo Regionale di Scienze Naturali (Turin, Italy) and Amphibian Survival Alliance (Warrenton, VA) Publication date: June 2016 Recommended citation: Andreone, F., Dawson, J.S., Rabemananjara, F.C.E., Rabibisoa, N.H.C. & Rakotonanahary, T.F. (eds). 2016. New Sahonagasy Action Plan 2016–2020 / Nouveau Plan d'Action Sahonagasy 2016–2020. Museo Regionale di Scienze Naturali and Amphibian Survival Alliance, Turin. ISBN: 978-88-97189-26-8 Layout by: Candace M. Hansen-Hendrikx, Amphibian Survival Alliance Translation into French: Mathilde Malas, Speech Bubbles, www.speechbubbles.eu Printed by: Centro Stampa Regione Piemonte, Turin Front cover: Spinomantis aglavei, Gonçalo M. Rosa Back cover: Mantella expectata, Gonçalo M. Rosa IUCN - International Union for Conservation of Nature Founded in 1948, The International Union for Conservation of Nature brings together States, government agencies and a diverse range of nongovernmental organizations in a unique world partnership: over 1,000 members in all spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. -
Species Limits, and Evolutionary History of Glassfrogs
!" # $"%!&"'(!$ ! )*)') !+ ,-.',)'**'-*)*' /0/ // ')11,2 !"#"$$$%$$& ' & & (' ') ' * ') + ,-'.)"$$). / 0 &1& )2 ) #3")44 ) )56,7,443,5474,3) 8 9 '' & ' & ' & ' * ) ' & ** ,& % & & & ' & ' ): '& ' ' ' '2 ) : ' ' ' ; < ;=2 > < ' * & &' '& ;& <) '' *'' & & ' &'' 9 * ' )? ' & ' & @ ' & ) ' '&' * & ' ' ;* ' '< &'>&' ) (' ' & 7$$ && ' ' ' & ' * ' ' )= &' & &*'' ' ) > * *& *'' ' ) : ' & & & ) > & 65 : , * A ) ' & & *' ' ' & & ' '= & ) 2 '2 ' & - ! (' = ( . . ! "# $ " # "% " "#!&'()* " B. + ,-'"$$ :..=7#47,#"73 :.=56,7,443,5474,3 % %%% ,7$$"C;' %AA )@)A D E % %%% ,7$$"C< Mathematical representation is inevitably simplistic, and occasionally one has to be brutal in forcing it to suit a reality that can only be very complex. And yet, there is a beauty about trees because of the simplicity with which they allow you to describe a series of events […]. But one must ask whether one is justified simplifying reality to the extent necessary to represent it as a tree. Cavalli-Sforza, Genes, People, and Languages (2001) The universe is no narrow thing and the order within it is not constrained by any latitude in is conception to repeat what exists in one part in any other part. Even in this world more things exist -
Volume 2. Animals
AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Hylidae: Hyloscirtus) and the Evolution of Acoustic Characters
SALAMANDRA 53(2) 237–244 Advertisement15 May 2017 callsISSN in Hyloscirtus 0036–3375 larinopygion group Statistical differences and biological implications: a comparative analysis of the advertisement calls of two Andean stream treefrogs (Hylidae: Hyloscirtus) and the evolution of acoustic characters Mauricio Rivera-Correa1,4, Fernando Vargas-Salinas2 & Taran Grant3 1) Laboratório de Sistemática de Vertebrados, Programa de Pós-Graduação em Zoologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil 2) Programa de Biología, Facultad de Ciencias básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia 3) Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil 4) Current address: Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Calle 67 # 53–108, Bloque 7–121, A.A. 1226, Medellín, Colombia Corresponding author: Mauricio Rivera-Correa, e-mail: [email protected] Manuscript received: 1 September 2015 Accepted: 1 February 2016 by Michael F. Barej Abstract. We describe and compare the advertisement calls of Hyloscirtus antioquia and H. larinopygion, two sibling spe- cies of the Andean stream treefrogs of the Hyloscirtus larinopygion group. We recorded individual calls at seven locali- ties in Colombia, including the type locality of H. antioquia. The advertisement calls of both species consist of a single, low-pitched, multi-pulsed note, with some overlaps in frequency and the duration of pulses (dominant frequency 1642.7– 1756.5 Hz and 5–6 periodic pulses in H. antioquia and 1722.7–1894.9 Hz and 5–6 periodic pulses in H. larinopygion).