Anura, Mantellidae)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Zootaxa, Integrative Taxonomy of Malagasy Treefrogs
Zootaxa 2383: 1–82 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2383 Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and comparative morphology reveals twelve additional species of Boophis FRANK GLAW1, 5, JÖRN KÖHLER2, IGNACIO DE LA RIVA3, DAVID R. VIEITES3 & MIGUEL VENCES4 1Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany 2Department of Natural History, Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany 3Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas (CSIC), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain 4Zoological Institute, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany 5Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by S. Castroviejo: 8 Dec. 2009; published: 26 Feb. 2010 Frank Glaw, Jörn Köhler, Ignacio De la Riva, David R. Vieites & Miguel Vences Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and com- parative morphology reveals twelve additional species of Boophis (Zootaxa 2383) 82 pp.; 30 cm. 26 February 2010 ISBN 978-1-86977-485-1 (paperback) ISBN 978-1-86977-486-8 (Online edition) FIRST PUBLISHED IN 2010 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2010 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. -
The Freshwater Crab Liberonautes Latidactylus (De Man, 1903) Preys on Adult Allen’S Giant Frog, Conraua Alleni (Barbour and Loveridge, 1927)
Herpetology Notes, volume 12: 1073-1076 (2019) (published online on 29 October 2019) The freshwater crab Liberonautes latidactylus (de Man, 1903) preys on adult Allen’s Giant Frog, Conraua alleni (Barbour and Loveridge, 1927) Marvin Schäfer1,*, Joseph Doumbia2, and Mark-Oliver Rödel1 Post-metamorphic anuran amphibians are preyed therein), the role of freshwater crabs as predators is upon by many vertebrates (reviewed by Toledo et less well documented, but particularly for frogs, might al., 2007) and invertebrate predators (Toledo, 2005; be underrated. Freshwater crabs are known to feed on Wells, 2007). Amongst invertebrates, spiders are eggs (Hayes, 1983), tadpoles (Gray and Christy, 2000), most frequently listed (for a recent review concerning juvenile (Affonso and Signorelli, 2011) and adult African examples, see Babangenge et al., 2019), but frogs (Tsuji, 2005; Rosa et al., 2014; Wehrtmann et al., unusual anuran specialists like the carabid beetles 2019). Hence, all anuran life stages are potential prey Epomis have become known as well (Wizen and Gasith, of freshwater crabs. Interestingly, the ability to hunt 2011). Although Diesel (1989) reports an example seems to decrease in freshwater crabs exceeding 25 mm of a tree-hole breeding crab, occasionally preying on of carapace width. Large individuals are supposed to be anuran eggs and tadpoles, crustaceans are only rarely less agile, and hence less effective in capturing elusive mentioned as amphibian predators. Toledo (2005) only prey (Williams, 1962; Williams, 1965; Dobson, 2004). lists one species of decapod crab as a predator of post- Consequently, one might assume that larger and agile metamorphic anurans. More recently, Pyke et al. -
Does Selective Wood Exploitation Affect Amphibian Diversity? the Case of An’Ala, a Tropical Rainforest in Eastern Madagascar
Oryx Vol 38 No 4 October 2004 Does selective wood exploitation affect amphibian diversity? The case of An’Ala, a tropical rainforest in eastern Madagascar Denis Vallan, Franco Andreone, Vola H. Raherisoa and Rainer Dolch Abstract The diversity of amphibians before and rainforest habitat showed a non-significant 10.1% after low-level forest exploitation in An’Ala forest in decrease in abundance after logging. It appears therefore central-eastern Madagascar was compared over the that amphibians are relatively resilient to a low-level course of 4 years. Neither abundance nor diversity of of forest exploitation and their diversity is apparently not amphibians generally were significantly affected by affected, at least in the short-term. This and other studies low-level selective logging, although the abundance of have, however, shown that logging commonly results individual species differed. Mantelline anurans were in a shift in species composition, with species typical of the most sensitive, in contrast to the tree frogs of the pristine rainforests being replaced by species adapted to subfamily Boophinae (Mantellidae) and Cophylinae secondary habitats. (Microhylidae). The abundance of Mantellinae anurans decreased by 15.8% after logging, whereas Boophinae Keywords Amphibian, Boophinae, Cophylinae, and Microhylidae anurans increased by 12.1% and diversity, Mantellinae, rainforest, selective wood 3.7%, respectively. In general, species strongly tied to exploitation. Introduction deforestation upon natural animal communities is urgently needed. Tropical rainforests worldwide are cleared and exploited Despite the existence of 16 protected areas in the for many reasons, and trees are often felled selectively, eastern rainforests (ANGAP, 2001), the vast majority of especially if the aim is to remove the most valuable the remaining natural vegetation does not have legal timber rather than clear felling for pasture and/or crop protection. -
Correlates of Eye Colour and Pattern in Mantellid Frogs
SALAMANDRA 49(1) 7–17 30Correlates April 2013 of eyeISSN colour 0036–3375 and pattern in mantellid frogs Correlates of eye colour and pattern in mantellid frogs Felix Amat 1, Katharina C. Wollenberg 2,3 & Miguel Vences 4 1) Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400 Granollers, Catalonia, Spain 2) Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, 640 Dr. Mary McLeod Bethune Blvd., Daytona Beach, FL 32114, USA 3) Department of Biogeography, Trier University, Universitätsring 15, 54286 Trier, Germany 4) Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 18 March 2013 Abstract. With more than 250 species, the Mantellidae is the most species-rich family of frogs in Madagascar. These frogs are highly diversified in morphology, ecology and natural history. Based on a molecular phylogeny of 248 mantellids, we here examine the distribution of three characters reflecting the diversity of eye colouration and two characters of head colouration along the mantellid tree, and their correlation with the general ecology and habitat use of these frogs. We use Bayesian stochastic character mapping, character association tests and concentrated changes tests of correlated evolu- tion of these variables. We confirm previously formulated hypotheses of eye colour pattern being significantly correlated with ecology and habits, with three main character associations: many tree frogs of the genus Boophis have a bright col- oured iris, often with annular elements and a blue-coloured iris periphery (sclera); terrestrial leaf-litter dwellers have an iris horizontally divided into an upper light and lower dark part; and diurnal, terrestrial and aposematic Mantella frogs have a uniformly black iris. -
New Sahonagasy Action Plan 2016-2020
New Sahonagasy Action Plan 2016-2020 1 New Sahonagasy Action Plan 2016 – 2020 Nouveau plan d’Action Sahonagasy 2016 – 2020 Edited by: Franco Andreone, IUCN SSC Amphibian Specialist Group - Madagascar Jeff S. Dawson, Durrell Wildlife Conservation Trust Falitiana C. E. Rabemananjara, IUCN SSC Amphibian Specialist Group - Madagascar Nirhy H.C. Rabibisoa, IUCN SSC Amphibian Specialist Group - Madagascar Tsanta F. Rakotonanahary, Durrell Wildlife Conservation Trust With assistance from: Candace M. Hansen-Hendrikx, Amphibian Survival Alliance James P. Lewis, Amphibian Survival Alliance/Rainforest Trust Published by: Museo Regionale di Scienze Naturali (Turin, Italy) and Amphibian Survival Alliance (Warrenton, VA) Publication date: June 2016 Recommended citation: Andreone, F., Dawson, J.S., Rabemananjara, F.C.E., Rabibisoa, N.H.C. & Rakotonanahary, T.F. (eds). 2016. New Sahonagasy Action Plan 2016–2020 / Nouveau Plan d'Action Sahonagasy 2016–2020. Museo Regionale di Scienze Naturali and Amphibian Survival Alliance, Turin. ISBN: 978-88-97189-26-8 Layout by: Candace M. Hansen-Hendrikx, Amphibian Survival Alliance Translation into French: Mathilde Malas, Speech Bubbles, www.speechbubbles.eu Printed by: Centro Stampa Regione Piemonte, Turin Front cover: Spinomantis aglavei, Gonçalo M. Rosa Back cover: Mantella expectata, Gonçalo M. Rosa IUCN - International Union for Conservation of Nature Founded in 1948, The International Union for Conservation of Nature brings together States, government agencies and a diverse range of nongovernmental organizations in a unique world partnership: over 1,000 members in all spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. -
Species Limits, and Evolutionary History of Glassfrogs
!" # $"%!&"'(!$ ! )*)') !+ ,-.',)'**'-*)*' /0/ // ')11,2 !"#"$$$%$$& ' & & (' ') ' * ') + ,-'.)"$$). / 0 &1& )2 ) #3")44 ) )56,7,443,5474,3) 8 9 '' & ' & ' & ' * ) ' & ** ,& % & & & ' & ' ): '& ' ' ' '2 ) : ' ' ' ; < ;=2 > < ' * & &' '& ;& <) '' *'' & & ' &'' 9 * ' )? ' & ' & @ ' & ) ' '&' * & ' ' ;* ' '< &'>&' ) (' ' & 7$$ && ' ' ' & ' * ' ' )= &' & &*'' ' ) > * *& *'' ' ) : ' & & & ) > & 65 : , * A ) ' & & *' ' ' & & ' '= & ) 2 '2 ' & - ! (' = ( . . ! "# $ " # "% " "#!&'()* " B. + ,-'"$$ :..=7#47,#"73 :.=56,7,443,5474,3 % %%% ,7$$"C;' %AA )@)A D E % %%% ,7$$"C< Mathematical representation is inevitably simplistic, and occasionally one has to be brutal in forcing it to suit a reality that can only be very complex. And yet, there is a beauty about trees because of the simplicity with which they allow you to describe a series of events […]. But one must ask whether one is justified simplifying reality to the extent necessary to represent it as a tree. Cavalli-Sforza, Genes, People, and Languages (2001) The universe is no narrow thing and the order within it is not constrained by any latitude in is conception to repeat what exists in one part in any other part. Even in this world more things exist -
Hylidae: Hyloscirtus) and the Evolution of Acoustic Characters
SALAMANDRA 53(2) 237–244 Advertisement15 May 2017 callsISSN in Hyloscirtus 0036–3375 larinopygion group Statistical differences and biological implications: a comparative analysis of the advertisement calls of two Andean stream treefrogs (Hylidae: Hyloscirtus) and the evolution of acoustic characters Mauricio Rivera-Correa1,4, Fernando Vargas-Salinas2 & Taran Grant3 1) Laboratório de Sistemática de Vertebrados, Programa de Pós-Graduação em Zoologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil 2) Programa de Biología, Facultad de Ciencias básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia 3) Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil 4) Current address: Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Calle 67 # 53–108, Bloque 7–121, A.A. 1226, Medellín, Colombia Corresponding author: Mauricio Rivera-Correa, e-mail: [email protected] Manuscript received: 1 September 2015 Accepted: 1 February 2016 by Michael F. Barej Abstract. We describe and compare the advertisement calls of Hyloscirtus antioquia and H. larinopygion, two sibling spe- cies of the Andean stream treefrogs of the Hyloscirtus larinopygion group. We recorded individual calls at seven locali- ties in Colombia, including the type locality of H. antioquia. The advertisement calls of both species consist of a single, low-pitched, multi-pulsed note, with some overlaps in frequency and the duration of pulses (dominant frequency 1642.7– 1756.5 Hz and 5–6 periodic pulses in H. antioquia and 1722.7–1894.9 Hz and 5–6 periodic pulses in H. larinopygion). -
AFRICAN HERP NEWS ISSN 1017-6187 No
AFRICAN HERP NEWS ISSN 1017-6187 No. 36 December 2003 CONTENTS AFRICAN HERP NEWS E DITORIAL.____________________ l NEWSLETTER OF THE S HORT C OMMUNICATIONS MENEGON M et al. Nguu North forest reserve, Tanzania.___ 2 HERPETOLOGICAL ASSOCIATION OF AFRICA N ATURAL HISTORY NOTES CUNNINGHAM PL & W ADANK. Geochelone pardalis. ____ 9 CUNNINGHAM PL & W ADANK. Pachydactylus turneri 10 GEOGRAPHICAL D ISTRIBUTION RASMUSSEN JB. Micrelaps vaillanti 12 SCHMIDT WR & SCOTT E. Lamprophis-- swazicus-------- 14 DU TOIT DA & ALBLAS A. Nucras livida 15 ESTERHUIZEN A et al. Varanus albigularis 16 BROAD LEY DG & VAN DAELE P. Colopus wahlbergi 20 BAUER AM & LAMB T. Pachydactylus fasciatus 20 H ERPETOLOGICAL S URVEYS CUNNINGHAM M et al. Cockscomb Mt. South Africa. ____22 RECENT AFRICAN H ERPETOLOGICAL LITERATURE_____ _ _ 26 NEWS & ANNOUNCEMENTS_ _____________38 HAA FINANCIAL STATEMENTS.________ _ ____40 No. 36 December 2003 Af rican Herp News N o. 36 December 2003 HERPETOLOGICAL ASSOCIATION OF AFRICA http:/ /www. wits.ac.za/haa EDITORIAL FOUNDED 1965 The HAA is dedicated to the study and conservation of African reptiles and amphibians. Membership is open to anyone with an interest in the African herpetofauna. Members receive the It is now over a year since issue 35 of African Herp News and this long Association's journal, African Journal of Herpetolog,; (which publishes review papers, research overdue issue is replete with natural history and distribution notes, along with articles, short communications and book reviews - subject to peer review) and newsletter, Africa,i the latest update on African Herp literature from Bill Branch (apologies from Herp News (which includes short communications, life history notes, geographical distribution notes, herpetological survey reports, venom and snakebite notes, short book reviews, the editor for the delay). -
BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls -
Habitat Use and Abundance of a Low-Altitude Chameleon Assemblage in Eastern Madagascar
HERPETOLOGICAL JOURNAL 17: 247–254, 2007 Habitat use and abundance of a low-altitude chameleon assemblage in eastern Madagascar Jeanneney Rabearivony1, Lee D. Brady2, Richard K.B. Jenkins3,4 & Olga R. Ravoahangimalala1 1Département de Biologie Animale, Université d’Antananarivo, Madagascar 2Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, UK 3School of Biological Sciences, University of Aberdeen, UK 4Madagasikara Voakajy, Antananarivo, Madagascar We studied the density and abundance of chameleons in a lowland Malagasy rainforest during the austral summer and winter. Nocturnal searches for chameleons were conducted along transects within relatively intact forest and vegetation on abandoned agricultural land adjacent to the forest. Four chameleon species were encountered during the study, Brookesia superciliaris, Calumma parsonii parsonii, Calumma nasutum and Furcifer pardalis. Brookesia superciliaris was most common inside relatively intact forest and the few individuals located in the regenerating forest on abandoned agricultural land were found in tiny, isolated patches of degraded rainforest next to rivers. Calumma p. parsonii was only encountered on three occasions in relatively intact forest and was a rare member of the community. The abundance of C. nasutum was highest in relatively intact forest but this species also occurred in vegetation on abandoned agricultural land. Furcifer pardalis was only found on the abandoned agricultural land, where it was observed laying eggs in sandy soil in August. The abundance of all species in habitats alongside rivers was higher in January than July–August, with the exception of C. p. parsonii, which was not detected during the former period. Additional investigations into habitat preference of chameleons and surveys in other forests in region are needed to establish whether the low abundance of C. -
1704632114.Full.Pdf
Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref. -
BMC Ecology Biomed Central
BMC Ecology BioMed Central Research article Open Access The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola Ronald M Bonett*1, Kenneth H Kozak2, David R Vieites1, Alison Bare3, Jessica A Wooten4 and Stanley E Trauth3 Address: 1Museum of Vertebrate Zoology and Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA, 2Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA, 3Department of Biological Sciences, Arkansas State University, State University, AR, 72467, USA and 4Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA Email: Ronald M Bonett* - [email protected]; Kenneth H Kozak - [email protected]; David R Vieites - [email protected]; Alison Bare - [email protected]; Jessica A Wooten - [email protected]; Stanley E Trauth - [email protected] * Corresponding author Published: 7 September 2007 Received: 25 February 2007 Accepted: 7 September 2007 BMC Ecology 2007, 7:7 doi:10.1186/1472-6785-7-7 This article is available from: http://www.biomedcentral.com/1472-6785/7/7 © 2007 Bonett et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In most regions of the world human influences on the distribution of flora and fauna predate complete biotic surveys. In some cases this challenges our ability to discriminate native from introduced species. This distinction is particularly critical for isolated populations, because relicts of native species may need to be conserved, whereas introduced species may require immediate eradication.