ES Teacher Packet.Indd

Total Page:16

File Type:pdf, Size:1020Kb

ES Teacher Packet.Indd PROCESS OF EXTINCTION When we envision the natural environment of the Currently, the world is facing another mass extinction. past, one thing that may come to mind are vast herds However, as opposed to the previous five events, and flocks of a great diversity of animals. In our this extinction is not caused by natural, catastrophic modern world, many of these herds and flocks have changes in environmental conditions. This current been greatly diminished. Hundreds of species of both loss of biodiversity across the globe is due to one plants and animals have become extinct. Why? species — humans. Wildlife, including plants, must now compete with the expanding human population Extinction is a natural process. A species that cannot for basic needs (air, water, food, shelter and space). adapt to changing environmental conditions and/or Human activity has had far-reaching effects on the competition will not survive to reproduce. Eventually world’s ecosystems and the species that depend on the entire species dies out. These extinctions may them, including our own species. happen to only a few species or on a very large scale. Large scale extinctions, in which at least 65 percent of existing species become extinct over a geologically • The population of the planet is now growing by short period of time, are called “mass extinctions” 2.3 people per second (U.S. Census Bureau). (Leakey, 1995). Mass extinctions have occurred five • In mid-2006, world population was estimated to times over the history of life on earth; the first one be 6,555,000,000, with a rate of natural increase occurred approximately 440 million years ago and the of 1.2%. (Population Reference Bureau, 2006). most recent one occurred 65 million • The earth is estimated to be losing up to 27,000 years ago. Dinosaurs disappeared species of plants and animals per day (National from the face of the earth during Wildlife Federation, 2001). the most recent mass • One out of every 10 plants native to the United extinction. Over the States is in danger of extinction. (Center For millions of years Plant Conservation, 2004). after a mass • According to IUCN (World Conservation extinction Union) Red List categories, the United States occurs, is home to 935 species of animals that are many new listed as critically endangered, endangered, or vulnerable. This includes 41 species of mammals, 79 species of birds, 27 species of reptiles, 53 species of amphibians, 159 species of fish, and 576 species of invertebrates. (World Conservation Union, 2006). Passenger pigeon by 64'84-VUIFS$(PMENBO varieties of species begin to inhabit niches that were left empty by the disappearance of other species. In 1859, in his book “The Origin of Species,” Charles Touch the earth... Darwin wrote that “the appearance of new forms and Just inside the South Gate entrance at Woodland the disappearance of old forms...are bound together.” Park Zoo, you will find an interactive exhibit titled “Touch the earth...” This exhibit, realized through cooperation between Zero Population Growth Seattle and Woodland Park Zoo, includes a population counter, habitat loss counter, interactive computer touch screen and video clips. “Touch the earth...” emphasizes the relationships between rapidly growing human population and decreasing acreage of healthy natural habitat. &OEBOHFSFE4QFDJFT 8PPEMBOE1BSL;PP ENDANGERED SPECIES LEGISLATION What do we Mean by the Word is allowed only if special permits are acquired. The “Endangered”? IUCN also publishes Red Lists of data on threatened We often read statistics or quotes, similar to those and endangered species. These lists use categories listed previously, that use words like “endangered,” of endangerment determined by criteria developed “threatened,” “vulnerable” and “rare” in reference to by the IUCN. The categories, in order of decreasing species of animals and plants. But what do these words threat of extinction, include “Critically Endangered,” actually mean? Who makes the decisions about which “Endangered,” “Vulnerable” and “Lower Risk.” species are endangered? On CITES appendices and IUCN Red Lists, there are Generally speaking: variations in how organisms are listed. Sometimes • Species that are endangered are in immediate danger a species is listed, for example, the gorilla (Gorilla of becoming extinct over much or all of their range gorilla) is listed under Appendix I, meaning all if no intervention occurs to halt the process. subspecies of gorillas are included. Sometimes a higher • Species that are threatened will soon become taxon (such as a family) is listed. For example, the endangered if no intervention occurs. A threatened lemur family (Lemuridae spp.) is listed under Appendix species may be in danger of becoming extinct in I, meaning all genera and species within that family parts of its range. (Also referred to as vulnerable.) are included. Sometimes a subspecies is listed. For • Species that are rare are found only in small example, the Asiatic lion (Panthera leo persica) is listed populations, not in large numbers, but are not under Appendix I, meaning this subspecies, but not believed to be in danger of extinction. other subspecies, is included. Sometimes a designated (The Dictionary of Ecology and Environmental geographically separate population is listed. For Science, 1993) example, the populations of the gray wolf (Canis lupus) in Bhutan, India, Nepal and Pakistan are listed under However, there are many laws and treaties that Appendix I, meaning only wolves in these areas and not determine the status of animal and plant species. When in others are included. (These variations in listing are a species is referred to as endangered, threatened, also used in national and state legislation.) vulnerable, etc., the status reference may be to one of these laws or treaties specifically. These documents, as outlined in the following paragraphs, are applicable at different levels of government from international, to national to state. International Treaties on Endangered Species $*5&4 $POWFOUJPOPO*OUFSOBUJPOBM5SBEFJO &OEBOHFSFE4QFDJFTPG8JME'BVOBBOE'MPSB CITES is perhaps the most effective conservation treaty in existence. It is an international agreement, drafted by IUCN (World Conservation Union), that came into force in 1975, which as of 2004) has 144 countries party to it. CITES aims specifically at regulating wildlife trade through a worldwide system of controls. The Endangered Species Act is the U.S. law that serves as legislation for the implementation of CITES. CITES lists species of plants and animals on 3FOFF%F.BSUJO one of three different appendices: Appendix I lists species for which trade is absolutely prohibited because they are in immediate danger of extinction. Appendices II and III list species for which trade Western lowland gorilla 8PPEMBOE1BSL;PP &OEBOHFSFE4QFDJFT If a plant or animal is federally listed as threatened or endangered, the Secretaries of the Interior and Commerce are responsible for developing and implementing a recovery plan for that species. (Conservation measures for candidate species and species of concern are recommended but voluntary.) Plants receive less protection under the ESA than do animals. For example, in most circumstances, a private landowner could legally destroy a plant species listed under the ESA found on his or her property, but it would be illegal for him or her to kill or harm a listed species of animal. One species protected under the ESA is the American burying beetle (Nicrophorus americanus), which was 81; listed as endangered in 1989. This beetle, which has African elephant declined steadily throughout the 1900s, is an important CITES has been very effective in reducing declines recycler of decaying material. Burying beetles locate of endangered species by banning trade in animals, carcasses of small animals and after burying them, plants and parts or products derived from animals lay their eggs and rear their larvae in the buried body. or plants. One example of this is the great decline in The American burying beetle has declined due to a poaching of elephants when trade in ivory was banned number of factors including habitat fragmentation, with the listing of African (Loxodonta africana) and which has resulted in increased competition from other Asian elephants (Elephas maximus) on Appendix I of scavengers. DDT poisoning and pollution (affecting CITES. However, only countries that have become activities of nocturnal insects) have also been cited as parties to CITES are affected by CITES requirements. threats to burying beetle survival. In addition, a country can sign the treaty but take reservations on certain species, thus excusing that Under the ESA, an area of “critical habitat” may also country from CITES limitations on trade in those be designated for species on the list. Critical habitats, particular species (CITES, Article XV). For example, which are areas that are determined to be necessary both Japan and Peru have taken reservations on the for the management and conservation of listed species, Bryde’s whale (Balaenoptera edeni), meaning they are also protected from disturbance. This does not, could hunt these whales and trade them with each however, dictate the activities of private landholders on other. Or, if a whale was hunted by Peru or Japan in their land. Unfortunately, critical habitat has not been the open ocean beyond any political boundaries, the designated for approximately 80 percent of species whale could be brought back to the home country listed under the ESA. without a CITES permit because the country is not a party to CITES with respect to that species. One species for which critical habitat has been designated is the Indiana bat (Myotis sodalis). Indiana National Endangered Species bats are found mainly in the eastern United States Legislation where they are active during summer nights but 5IF&OEBOHFSFE4QFDJFT"DU &4" PG hibernate from fall to spring in caves. Indiana bats This act helps ensure the continued survival of require specific conditions when they hibernate and endangered and threatened species by regulating use only limestone caves with low, stable temperatures United States import, export, and harming of animals and high, stable humidity.
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Land-Use, Land-Cover Changes and Biodiversity Loss - Helena Freitas
    LAND USE, LAND COVER AND SOIL SCIENCES – Vol. I - Land-Use, Land-Cover Changes and Biodiversity Loss - Helena Freitas LAND-USE, LAND-COVER CHANGES AND BIODIVERSITY LOSS Helena Freitas University of Coimbra, Portugal Keywords: land use; habitat fragmentation; biodiversity loss Contents 1. Introduction 2. Primary Causes of Biodiversity Loss 2.1. Habitat Degradation and Destruction 2.2. Habitat Fragmentation 2.3. Global Climate Change 3. Strategies for Biodiversity Conservation 3.1. General 3.2. The European Biodiversity Conservation Strategy 4. Conclusions Glossary Bibliography Biographical Sketch Summary During Earth's history, species extinction has probably been caused by modifications of the physical environment after impacts such as meteorites or volcanic activity. On the contrary, the actual extinction of species is mainly a result of human activities, namely any form of land use that causes the conversion of vast areas to settlement, agriculture, and forestry, resulting in habitat destruction, degradation, and fragmentation, which are among the most important causes of species decline and extinction. The loss of biodiversity is unique among the major anthropogenic changes because it is irreversible. The importance of preserving biodiversity has increased in recent times. The global recognition of the alarming loss of biodiversity and the acceptance of its value resultedUNESCO in the Convention on Biologi – calEOLSS Diversity. In addition, in Europe, the challenge is also the implementation of the European strategy for biodiversity conservation and agricultural policies, though it is increasingly recognized that the strategy is limitedSAMPLE by a lack of basic ecological CHAPTERS information and indicators available to decision makers and end users. We have reached a point where we can save biodiversity only by saving the biosphere.
    [Show full text]
  • What Works in Conservation
    What Works in Conservation 2017 EDITED BY WILLIAM J. SUTHERLAND, LYNN V. DICKS, NANCY OCKENDON AND REBECCA K. SMITH To access digital resources including: blog posts videos online appendices and to purchase copies of this book in: hardback paperback ebook editions Go to: https://www.openbookpublishers.com/product/552 Open Book Publishers is a non-profit independent initiative. We rely on sales and donations to continue publishing high-quality academic works. What Works in Conservation 2017 Edited by William J. Sutherland, Lynn V. Dicks, Nancy Ockendon and Rebecca K. Smith http://www.openbookpublishers.com © 2017 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Sutherland, W.J., Dicks, L.V., Ockendon, N., and Smith, R.K. What Works in Conservation 2017. Cambridge, UK: Open Book Publishers, 2017. http://dx.doi.org/10.11647/OBP.0109 In order to access detailed and updated information on the license, please visit http://www.openbookpublishers.com/isbn/9781783743087#copyright Further details about CC BY licenses are available at http://creativecommons.org/licenses/by/4.0/ All links were active at the time of publication unless otherwise stated. Digital material and resources associated with this volume are available at http://www.openbookpublishers.com/isbn/9781783743087#resources and http://www.conservationevidence.com ISSN 2059-4232 (Print) ISSN 2059-4240 (Online) ISBN Paperback: 978-1-78374-308-7 ISBN Hardback: 978-1-78374-309-4 ISBN Digital (PDF): 978-1-78374-310-0 ISBN Digital ebook (epub): 978-1-78374-311-7 ISBN Digital ebook (mobi): 978-1-78374-312-4 DOI: 10.11647/OBP.0109 Funded by Arcadia, Synchronicity Earth, ESRC, NERC, Natural England and Waitrose Ltd.
    [Show full text]
  • Energy Development's Impacts on the Wildlife, Landscapes, And
    Losing Ground: Energy Development’s Impacts on the Wildlife, Landscapes, and Hunting Traditions of the American West A Report by the National Wildlife Federation and the Natural Resources Defense Council Barbara Wheeler he iconic game species of the American wildlife are an ecological marker for the health of non- West are in perilous decline, as migratory game species, which are also becoming increasingly T animals lose ground to energy development vulnerable to the effects of energy development. and habitat destruction in southeast Montana and northeast Wyoming. Sage-grouse, mule deer, and Bountiful wildlife populations are a major part of the pronghorn are facing decreasing herd sizes and cultures and economies of Montana and Wyoming. downward long-term population trends, which Deteriorations in habitat quality associated with threaten the continued viability of these species in energy development can negatively affect wildlife the coming decades. Of the species considered, only populations and, in turn, impact hunters, wildlife- elk populations are forecast to rebound and stabilize watchers, and the tourism industry as a whole, which brings millions of people and billions of dollars to that additional habitat loss or degradation from the region every year. These impacts justify the need from historic lows, though there is significant concern energy development could stall population growth and for land management reforms and for wide-scale further displace the species. Simultaneously, big game investments in game and non-game wildlife protection Losing Ground Jack Dempsey at state and federal levels to offset the increasing impact on wildlife from energy development. Oregon Department of Fish and Wildlife A study commissioned by the National Wildlife Federation and the Natural Resources Defense A study commissioned by the Council analyzes trends in population and hunting National Wildlife Federation and opportunities for mule deer, pronghorn, elk, and the Natural Resources Defense greater sage-grouse.
    [Show full text]
  • Faune De Belgique / Fauna Van België
    Faune de Belgique / Fauna van Belgi Bulletin de la Société royale belge d’Entomologie/Bulletin van de Koninklijke Belgische Vereniging voor Entomologie, 153 (2017): 15–20 Donacia crassipes Fabricius, 1775 a rare or a neglected species in Belgium? (Coleoptera: Chrysomelidae: Donaciinae) Kevin S CHEERS 1,2 , Edward V ERCRUYSSE 2, Vincent SMEEKENS 2 & Steven DE SAEGER 2 1 Corresponding author: [email protected] 2 Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium Abstract Donacia crassipes Fabricius, 1775 is an easily recognizable species of reed beetles (Donaciinae). The species is associated with Nymphaeaceae (both Nymphaea and Nuphar species). The species was not uncommon in Belgium until 1950, afterwards a notable decline was seen in the number of known records and from 1950 onwards only five records are known. A survey was carried out to assess the present status and distribution of the species in Belgium. 47 sites in the north of Belgium with stable populations of Nymphaeaceae were checked for the presence of D. crassipes . Of these sampled sites D. crassipes was present at 35 (74,5%) and thus the species seems currently not as rare as recent records indicated. This species was encountered for the first time in the province Limburg. Furthermore we present the first records of D. crassipes on non-indigenous water-lilies ( Nymphaea cultivars). Keywords : Donacia crassipes , Donaciinae , water beetle, reed beetle, Belgium, neglected species, Nymphaeaceae, water lilies Samenvatting Donacia crassipes Fabricius, 1775 is een relatief makkelijk herkenbaar riethaantje (Donaciinae). De soort is gebonden aan vegetaties van Nymphaeaceae (zowel Nymphaea en Nuphar soorten).
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Analyses of Proposals to Amend
    CoP17 Prop. 38 Inclusion of False Tomato Frog Dyscophus guineti and Antsouhy Tomato Frog D. insularis in Appendix II Proponent: Madagascar Summary: The False Tomato Frog Dyscophus guineti and the Antsouhy Tomato Frog D. insularis comprise two of three species in the genus Dyscophus, all of which are endemic to Madagascar. The third species, D. antongilii was included in Appendix I in 1987. It is subject to a separate proposal to be transferred from Appendix I to Appendix II (Proposal 37). All three are attractive red-orange coloured frogs. Dyscophus are known to breed explosively with the availability of water during the rainy season (typically January-March) and during that time they can be found in abundance at breeding sites. Hundreds of eggs are laid in water following mating. Dyscophus guineti The known distribution of D. guineti includes a number of patches in the remnant central eastern rainforest of Madagascar. The species is secretive and believed likely to be more widespread than records indicate1. Overall population is unknown; locally the species can vary from extremely common to very rare1. Sexual maturity is attained between two and four years, comparatively earlier in males than in females2. The habitat of the species is affected by conversion of forest to agriculture, timber extraction, charcoal production and potentially small-scale mining activities. The species reportedly does not tolerate severe degredation1. There is not known to be local use of the species. As a consequence of the Appendix-I listing in 1987 of the similar Dyscophus antongilii, collectors interested in "red Dyscophus" have shifted their attention to D.
    [Show full text]
  • Cop17 Prop. 37
    Original language: English CoP17 Prop. 37 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September – 5 October 2016 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Downlisting of Dyscophus antongilii from Appendix I to Appendix II B. Proponent Madagascar* C. Supporting statement 1. Taxonomy 1.1 Class: Amphibia 1.2 Order: Anura 1.3 Family: Microhylidae Gunther 1859, subfamily Dyscophinae 1.4 Genus, species: Dyscophus antongilii Grandidieri 1877 1.5 Scientific synonyms: 1.6 Common names: English: Tomato Frog French: La grenouille tomate, crapaud rouge de Madagascar Malagasy: Sahongoangoana, Sangongogna, Sahogongogno (and similar writings) 2. Overview The genus Dyscophus contains three species of large microhylids composing the subfamily Dyscophinae endemic to Madagascar. D. antongilii, D. guineti and D. insularis. Dyscophus antongilii is red-orange in coloration and commonly called the tomato frogs because of its appearance. It is well-known and iconic amphibian species. Described by Alfred Grandidier in the 1877, D. antongilii occurs in a moderate area of northeast and east of Madagascar. Dyscophus antongilii has been listed within CITES Appendix I since 1987 while the other two species currently have no CITES listing but proposed to be inserted into Appendix II for this year by a separate proposal. Some studies on the species led by F. Andreone demonstrate that this species is frequently found outside of protected area and one of the strategies to conservation purpose is the trade. The species is listed as Near Threatened on the IUCN Red List.
    [Show full text]
  • Plebejus Idas Empetri (Crowberry Blue)
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Plebejus idas empetri (Crowberry Blue) Priority 2 Species of Greatest Conservation Need (SGCN) Class: Insecta (Insects) Order: Lepidoptera (Butterflies, Skippers, And Moths) Family: Lycaenidae (Gossamer-winged Butterflies) General comments: 17 peatlands; habitat specialist and regional endemic; few if any additional populations anticipated Species Conservation Range Maps for Crowberry Blue: Town Map: Plebejus idas empetri_Towns.pdf Subwatershed Map: Plebejus idas empetri_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: Plebejus idas empetri is listed as a species of Special Concern in Maine. Recent Significant Declines: NA Regional Endemic: Plebejus idas empetri's global geographic range is at least 90% contained within the area defined by USFWS Region 5, the Canadian Maritime Provinces, and southeastern Quebec (south of the St. Lawrence River). Notes: 17 peatlands; habitat specialist and regional endemic; few if any additional populations anticipated High Regional Conservation Priority: NA High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Crowberry Blue: Formation Name Peatland Macrogroup Name Northern Peatland & Fens Habitat System Name: Acadian Maritime Bog **Primary Habitat** Notes: where host plant (black crowberry) present; Washington Co. only Habitat System Name: Boreal-Laurentian-Acadian Acidic Basin Fen
    [Show full text]
  • Washington Inland Fish
    NatureMapping for Fish and Streams A citizen’s guide to stream monitoring and restoration Washington Department of FISH AND WILDLIFE Outreach and Education TABLE OF CONTENTS Page Number Introduction 1 NatureMapping 1 Stream Safety and Etiquette 1 How to Use This Manual 1 Fish and Their Needs 2 Salmon 3 The Salmon Life Cycle 3 Other Fish 4 Data Collection 6 Fish Surveys 6 Habitat Surveys 9 Stream Bugs 9 Redd Identification 12 Step by Step Survey Instructions 13 Data Input Form 14 Appendix 1 - Anadromous Fish 15 Appendix 2 - Inland Fish 19 Appendix 3 - Critical Stocks 22 Glossary 23 January 1997 Produced by the Washington Department of Fish and Wildlife, Outreach and Education Funded by the Shewmaker Bequest Scholarship Written by Adam Couto Contributors: Chuck Baranski, Jim Byrd, Kent Dimmitt, Steve Jenks, Mike O’Malley, Lynn Palensky, Darrell Pruett, Carol Smith, Kathleen South, Margaret Tudor, Bill Tweit, the Washington State Department of Ecology, and the North West Indian Fisheries Commision. Introduction Introduction NatureMapping ...is a joint outreach program (developed by the NATUREMAPPING for STREAMS Washington Department of Fish and Wildlife and the Stream Safety and Etiquette University of Washington Gap Analysis Project) to 1. Always ask permission to enter private property. Your promote biodiversity studies through citizen and school- ability to monitor and enhance fish habitat depends on based data collection. The objective is to empower the goodwill of the landowner. citizens to plan and manage resources for a community 2. Watch for redds (salmon egg nests), particularly from within a watershed. September through January. Redds can be hard to see, and eggs are easily killed by a poorly placed foot.
    [Show full text]
  • (Coleoptera Chrysomelidae Donaciinae) in the Malay Archipelago
    Bulletin S.RB.E.IKB. V.E., 136 (2000) : 44-52 Observations on Donacia (Cyphogasier) javana WIEDEMAN, 1821 (Coleoptera Chrysomelidae Donaciinae) in the Malay Archipelago by Pascal LAYS Rue F. Desoer 34, B-4031 Liege, Belgium. Summary Some faunistical and biological observations were made in Singapore and the Philippines (Minda­ nao) (Philippines fauna nov.) on Donacia (Cyphogaster) javana WIEDEMAN, 1821 (Coleoptera Chry­ somelidae Donaciinae). Nymphaea pubescens WILLDENOW (Nymphaeaceae) appears to be Donacia javana's food plant. Keywords : Chrysomelidae, Donaciinae, Faunistics, Singapore, Philippines, Mindanao, Nymphaea. Resume Quelques observations faunistiques et biologiques ont ete realisees a Singapour et aux Philippines (Mindanao) (Philippines fauna nov.) sur Donaciajavana WIEDEMAN, 1821 (Coleoptera Chrysome­ lidae Donaciinae). Nymphaea pubescens WILLDENOW (Nymphaeaceae) apparait etre la plante nourri­ ciere de Donacia javana. Introduction out : D. javana or D. lenzi SCHONFELD, 1888, two species morphologically close to each other. "' The subgenus Cyphogaster GOECKE, 1934, to I identified the specimens collected in Singapore which D. javana belongs, is easily identifiable as belonging to D. javana, but the specimens from the two other sub genera Donacia F ABRI­ from the Philippines were identified as belonging crus, 1775 and Donaciomima MEDVEDEV, 1973, to D. lenzi. However, having a doubt concerning composing the genus Donacia F ABRICIUS, 177 5, the identification of the latter specimens, a cou­ by the presence of a pair of median tubercles on ple from Mindanao (South Philippines) was sub­ the first ventrite of males (GOECKE, 1934 : 217). mitted to my American colleague, specialist of This subgenus, that mainly occurs in the Indo­ Donaciinae, Dr. I. ASKEVOLD. malayan and Australian Regions, comprises pre­ Based on a comparative study (including the sently seven species (ASKEVOLD, 1990 : 646; endophallus) of the submitted Mindanao speci­ REm, 1993), and this number could be even mens with material from Java, Singapore, South fewer (see below).
    [Show full text]