Systematic Index

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Index Cambridge University Press 978-0-521-85867-0 — The Crato Fossil Beds of Brazil David M. Martill , Günter Bechly , Robert F. Loveridge Index More Information Systematic index Acanaloniidae 298 Amphibia 447 Acanthopteroctetidae 393 Amphiesmenoptera 92, 367, 387 Acari 115, 116, 117, 147, 148 Amphizoidae 342 Acariformes 115 Ampulicidae 353, 363 Achilidae 297, 298 (Fig. 11.48 – 299), 300, 301 Ampulicinae 363 (Fig. 11.52 – 306), 312, 313 Anajapygidae 151 Achilixidae 297, 312 Anaplecta 246 Achilixinae 297 Anaplectidae 240, 242, 246 Acixiites 298, 300 Anaplectinae 240 Acixiites costalis 300 Anaxyelidae 90, 351 (Fig. 11.76 – 364; Pl. 15 – 640) Acixiites immodesta (Fig. 11.48 – 299), 300 Ancorale 307 Acrididae 264, 275 Ancorale aschemon (Fig. 11.48 – 299), 308 Acridoidea 275, 279 Ancorale flaccidum (Fig. 11.48 – 299), 308 Actinistia 439 Ancoralinae 307 Actinopterygii 430 Ancoralini 307 Aculeata 350, 351, 352, 353, 357, 361 Anemia 539 (Fig. 19.3 – 541), 542, 559 Adephaga 342 Anemia adiantifolia 539 (Fig. 19.3 – 541) Aenigmephemeridae 167 Anemia mexicana (Fig. 19.3 – 541) Aerophasmatidae 263, 266 (Fig. 11.27 – 266) Angarosphecidae 352 (Fig. 11.71 – 354; Fig. 11.75 – Aerophasmatinae 342 362), 363 Aeroplanidae 263 Angiospermae 551 Aeschnidae 196 Anhangeura 491 (Fig. 17.8 – 493) Aeschnidiidae (Fig. 11.11 – 191; Fig. 11.12 – 197), Anhangueridae 483, 486 198, 199, 342 Anisolabididae 224 (Fig. 11.19 – 226), 227, 228, 230, Aetalionidae 295, 296 233 Afropollis jardinus 569 (Pl. 32 – 657) Anisolabidoidea 232 Agathis 349 Anisoptera 148, 184, 185, 186, 187, 188, 196 (Fig. Agnatha 157 11.12 – 197; Fig. 11.18 – 220), 223 (Pl. 10 – 635) Alexcarabus megagnathus 343 Anisozygoptera 148, 184, 185, 193 Aleyrodoidea 312 Annonaceae 558 Alisporites 570 Anomalaeschna 207 Allopteridae (Fig. 11.69 – 340) Anomalaeschna berndschusteri (Fig. 11.14 – 206), Alloraphidiidae 329 207 Alticinae 348 Anopleura 147 Alydidae 325 Anostostomatidae 268 Amblypygi 125, 147 Anthoboscidae 354, 357 Ameletopsidae 164 Anthoboscinae 353, 357, 358 Amia calva 432 Anthophagini 344 Amiidae 432 (Pl. 16 – 641) Anthophorinae 356 Amiiformes 432 (Pl. 16 – 641) Antilophia bokermanni 3 Amnestinae 318, 319, 320 Antliophora 366, 367, 369 Amorphoscelididae 236 Anura 444, 447 Amorphoscelis 235 Anurognathidae (Fig. 17.19 – 512) 608 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85867-0 — The Crato Fossil Beds of Brazil David M. Martill , Günter Bechly , Robert F. Loveridge Index More Information Systematic index 609 Apachyidae 224, 228 Araripelocusta brevis 282 (Fig. 11.42 – 282; Pl. 11 – Aphodiinae 345 636) Aphodiites Araripelocusta longinota 282 (Fig. 11.42 – 282; Pl. Apidae 350, 351, 352 (Fig. 11.71 – 354), 356, 357, 11 – 636) 363 Araripelocustidae 282 (Pl. 11 – 636) Apis 90 Araripemydidae 455 Apioceridae 372, 382 Araripemys 455, 456 Apocrita 351 Araripemys arturi (Fig. 14.2 – 454), 455, 456 Apoidea 351, 361, 363 Araripemys barretoi (Fig. 14.1 – 453), 455, 456 Appendicisporites tricornitatus 568 Araripeneuridae 89, 334 Apterobittacus 366 Araripenymphes seldeni (Fig. 11.68 – 339) Apteropanorpidae 366 Araripephlebia 215 Apterygota 149 Araripephlebia mirabilis 215 (Fig. 11.17 – 216; Araceae 558 Pl. 10 – 635) Arachnida 92, 103 Araripephlebiidae 215 (Fig. 11.17 – 216) Aradidae 316, 317, 319, 326 Arariperaphidia rochai 330 (Fig. 11.59 – 330) Aradus 326 Araripescorpius 112, 114 Araneae 105, 108, 147 Araripescorpius ligabuei 111, 112 (Fig. 9.4 – 112; Araneida Pl. 4 – 629) Araneidae 105 Araripesuchidae 469 Araneoidea 105, 106 Araripesuchus 463, 468, 469, 470 Araneomorphae 106 Araripesuchus buitreraensis 469 Araripebelostomum 320, 321 Araripesuchus gomesi 468, 469 Araripebelostomum martinsnetoi 319, 320 Araripesuchus patagonicus 469 Araripeberotha fairchildi (Fig. 11.66 – 337) Araripesuchus wegeneri 469 Araripechlorogomphidae (Fig. 11.17 – 216), 217 Araripetermes native (Fig. 11.26 – 257), 260 Araripechlorogomphus 217 Arariphrynus 448, 449 Araripechlorogomphus muratai (Fig. 11.17 – 216), Arariphrynus placidoi (Fig. 13.2 – 446), 448, 449 217 Araripia florifera 563 Araripegomphidae (Fig. 11.12 – 197; Fig. 11.14 – Araripogon 370, 371 (Fig. 11.82 – 377, 383; Fig. 206, 207; Fig. 11.15 – 209) 11.85 – 384), 385 Araripegomphus 207, 208, 219, 221 Araripogon axelrodi 370, 383 (Fig. 11.85 – 384), Araripegomphus andreneli (Fig. 11.12 – 197; Fig. 385 11.14 – 206), 207, 208 (Pl. 10 – 635) Araucaria 349, 542 Araripegomphus cretacicus (Fig. 11.14 – 206), 207, Araucariaceae 349, 542, 544 208 Araucariacites australis 568, 570, 571 (Pl. 32 – 657) Araripegomphus hanseggeri (Fig. 11.14 – 206, 208; Archaeognatha 147, 149 Fig. 11.15 – 209) Archaeogryllotalpoides ornatus (Fig. 11.28 – 268), Araripegomphus imperfectus 208 272 Araripegryllus 271 Archaeolepis mane 387 Araripegryllus camposae (Fig. 11.30 – 270; Fig. Archaeoptera 144 11.33 – 273) Archaeoscoliinae 352, 358, 359, 360 Araripegryllus femininus (Fig. 11.33 – 273) Archaeoscolia 359 Araripegryllus marianoi (Fig. 11.33 – 273) Archegocimicidae 318 (Fig. 11.55 – 323), 325 Araripegryllus nanus (Fig. 11.33 – 273) Archescytinoidea 316 Araripegryllus serrilhatus (Fig. 11.33 – 273) Archidermaptera 227, 228 Araripegryllus spinosus (Fig. 11.33 – 273) Architettix 284, 290 (Fig. 11.46 – 291) Araripelabia costae 233 Architettix compacta 290 (Fig. 11.46 – 291) Araripelepidotes 429, 430 Architiphia rasnitsyni 354 (Fig. 11.75 – 362; Pl. 15 – Araripelepidotes temnurus 430, 440 640) Araripeleptocerus 391 Architipula 371 Araripeleptocerus primaevus 388 (Fig. 11.87 – 389; Archizelmiridae 371 Fig. 11.89 – 391) Archizygoptera 186 Araripelibellula 218 Archostemata 341, 342 (Pl. 13 – 638) Araripelibellula martinsnetoi (Fig. 11.17 – 216), 218 Arecaceae 558 Araripelibellulidae (Fig. 11.17 – 216), 217 Argyrarachne 105 Araripelibellulinae 217 Aristolochiaceae 558 Araripeliupanshania 203 Arixeniina 223, 224, 228 Araripeliupanshania annesuseae (Fig. 11.14 – 201), Armandochrysopa borschukewitzi (Fig. 11.62 – 333) 203 (Pl. 10 – 635) Arthemisia 352 Araripelocusta 282 Arthurdactylus 475, 483, 484, 485, 486, 489, 515 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85867-0 — The Crato Fossil Beds of Brazil David M. Martill , Günter Bechly , Robert F. Loveridge Index More Information 610 Systematic index Arthurdactylus conandoylei 476 (Fig. 17.2 – 478; Blattapterix 244, 245 Fig. 17.3 – 479), 481, 482, 483, 488, 489 Blattaria 147, 226, 235, 236, 239 (Fig. 11.23 – 243), (Fig. 17.17 – 511) 245, 253 Ascalaphidae 333, 334 Blattellidae 91, 240, 241 (Fig. 11.23 – 243, 246, 247, Asilidae 371, 372 (Fig. 11.82 – 377, 383; Fig. 11.85 – 248; Fig. 11.24 – 248) 384), 385 Blattidae 240, 249 Asilomorpha 381 Blattodea 86, 90, 91 Aspidorhynchidae 434 Blattulidae 91, 241, 242 (Fig. 11.23 – 243), 247 Aspidorhynchus 434 Blittesdorffia pulcherrina (Fig. 11.68 – 339) Astigmata 116 Bojophlebia 158 Attelabidae 349 (Pl. 13 – 638) Bojophlebia prokopi 167 Auchenorrhyncha 147, 314 Boreidae 366 Auletes 349 Boreopterus 489 Australiephemera revelata (Fig. 11.4 – 169), 181 Boreoscytidae 312 Austroraphidia 329, 330 Bothremydidae 456 Aves 530 Bouretia 283 Avitabatrachus uliana 449 Bouretia elegans 283 Axelrodichthys 429, 439, 440 (Pl. 17 – 642) Bouretidae 277, 279, 283 Axelrodichthys araripensis 439 Brachycera (Fig. 11.79 – 368), 369, 370, 371, 374, Axelrodiellus ruptus 349 380, 386 Azhdarchidae 493, 499, 504 (Fig. 17.19 – 512) Brachycistidinae 353 Azhdarcho 504 Brachyphyllum castilhoi 544 (Fig. 19.5 – 545) Azhdarchoidea 491, 492, 502 (Fig. 17.19 – 512) Brachyphyllum obesum 542 (Fig. 19.4 – 543), 544 Branchitergaliae 165, 177 Babinskaiidae 334 Brasacypris 138 Baeocossus 287, 289 Brasenia 553 Baeocossus finchae 287 Brasileodactylus 487, 488, 489, 490, 491 (Fig. 17.7 – Baeocossus fortunatus (Fig. 11.44 – 286), 287 (Pl. 12 492), 516 – 637) Brasileodactylus araripensis (Fig. 17.6 – 490) Baetidae 163, 164, 170, 172 Brentidae 349 Baetisca 182 Brillanceausuchus babouriensis 471 Baetiscidae (Fig. 11.6 – 171), 182, 183, 184 Britopygus 126 Baetoidea 165 Britopygus weygoldti 126 (Fig. 9.10 – 126), 127 Baisopardus cryptohymen (Pl. 2 – 627) Brogniartiellidae 334 Baissogryllidae (Fig. 11.11 – 194, 268; Fig. 11.30 – Bromeliaceae 555 270) Brontogryllus 271 Baissophasma 266 Brontogryllus excelsus (Fig. 11.29 – 269) Baissoptera 330 (Fig. 11.69 – 339; Pl. 14 – 639) Bufonidae 448 Baissoptera brasiliensis 330 Buprestidae 345 (Pl. 13 – 638) Baissopteridae 329 (Fig. 11.69 – 339) Balanophoraceae 349 Caatingatermes megacephalus (Fig. 11.26 – 257), Balmeisporites minutus 570 260 Balticobaetisca velteni 182 Caatingatermitinae 259 Batiscidae 165 Cabomba 553 Baurubatrachus pricei 449 Caelifera 147, 264, 267, 275 (Fig. 11.37 – 277; Fig. Bebaiotinae 297 11.39 – 279, 280; Fig. 11.40 – 280; Fig. 11.41 – Behningiidae 164 281; Fig. 11.42 – 282), 481 Belidae 349 Caenidae 164 Belonostomus 434 Calamoceratidae 388 Belostomatidae 74, 91, 318, 319, 320, 321 (Fig. 11.54 Calamopleurus 432 – 321), 322 Calamopleurus mawsoni 432 Belostomatinae 320, 321 Calamopleurus cylindricus 432 Bennettitales 542, 544, 570 Caliscelidae 221 Berothidae 335 Callialasporites dampieri (Fig. 20.1 – 567), 570, 571 Beurlenia 133, 134, 135 Calopterygoidea 186 Beurlenia araripensis 79, 133, 134 (Fig. 10.1 – 135; Calycanthaceae 555 Pl. 6 – 631) Campodeidae 151 Bibionidae 374 (Fig. 11.85 – 384) Campodeoidea 151 Bibionomorpha 371, 374 Campodeomorpha 149, 150, 151 Bittacidae 366, 368 (Fig. 11.79 – 368) Campsomerini 359 Blaberidae 240 Candona 138 © in this web service Cambridge University Press www.cambridge.org
Recommended publications
  • Insetos Do Brasil
    COSTA LIMA INSETOS DO BRASIL 2.º TOMO HEMÍPTEROS ESCOLA NACIONAL DE AGRONOMIA SÉRIE DIDÁTICA N.º 3 - 1940 INSETOS DO BRASIL 2.º TOMO HEMÍPTEROS A. DA COSTA LIMA Professor Catedrático de Entomologia Agrícola da Escola Nacional de Agronomia Ex-Chefe de Laboratório do Instituto Oswaldo Cruz INSETOS DO BRASIL 2.º TOMO CAPÍTULO XXII HEMÍPTEROS ESCOLA NACIONAL DE AGRONOMIA SÉRIE DIDÁTICA N.º 3 - 1940 CONTEUDO CAPÍTULO XXII PÁGINA Ordem HEMÍPTERA ................................................................................................................................................ 3 Superfamília SCUTELLEROIDEA ............................................................................................................ 42 Superfamília COREOIDEA ............................................................................................................................... 79 Super família LYGAEOIDEA ................................................................................................................................. 97 Superfamília THAUMASTOTHERIOIDEA ............................................................................................... 124 Superfamília ARADOIDEA ................................................................................................................................... 125 Superfamília TINGITOIDEA .................................................................................................................................... 132 Superfamília REDUVIOIDEA ...........................................................................................................................
    [Show full text]
  • Brief Report Acta Palaeontologica Polonica 61 (4): 863–868, 2016
    Brief report Acta Palaeontologica Polonica 61 (4): 863–868, 2016 A new pentatomoid bug from the Ypresian of Patagonia, Argentina JULIÁN F. PETRULEVIČIUS A new pentatomoid heteropteran, Chinchekoala qunita gen. (Wilf et al. 2003). It consists of a single specimen, holotype et sp. nov. is described from the lower Eocene of Laguna MPEF-PI 944a–b, with dorsal and ventral sides, collected from del Hunco, Patagonia, Argentina. The new genus is mainly pyroclastic debris of the plant locality LH-25, latitude 42°30’S, characterised by cephalic characters such as the mandibular longitude 70°W (Wilf 2012; Wilf et al. 2003, 2005). The locality plates surpassing the clypeus and touching each other in dor- was dated using 40Ar/39Ar by Wilf et al. (2005) and recalculated sal view; head wider than long; and remarkable characters by Wilf (2012), giving an age of 52.22 ± 0.22 (analytical 2 σ), related to the eyes, which are surrounded antero-laterally ± 0.29 (full 2 σ) Ma. The specimen was originally partly covered and posteriorly by the anteocular processes and the prono- by sediment and was prepared with a pneumatic hammer. It was tum, as well as they extend medially more than usual in the drawn with a camera lucida attached to a Wild M8 stereomicro- Pentatomoidea. This is the first pentatomoid from the Ypre- scope and photographed with a Nikon SMZ800 with a DS-Vi1 sian of Patagonia and the second from the Eocene in the re- camera. For female genitalia nomenclature I use valvifers VIII gion, being the unique two fossil pentatomoids in Argentina.
    [Show full text]
  • Mantodea (Insecta), with a Review of Aspects of Functional Morphology and Biology
    aua o ew eaa Ramsay, G. W. 1990: Mantodea (Insecta), with a review of aspects of functional morphology and biology. Fauna of New Zealand 19, 96 pp. Editorial Advisory Group (aoimes mae o a oaioa asis MEMBERS AT DSIR PLANT PROTECTION Mou Ae eseac Cee iae ag Aucka ew eaa Ex officio ieco — M ogwo eae Sysemaics Gou — M S ugae Co-opted from within Systematics Group Dr B. A ooway Κ Cosy UIESIIES EESEAIE R. M. Emeso Eomoogy eame ico Uiesiy Caeuy ew eaa MUSEUMS EESEAIE M R. L. ama aua isoy Ui aioa Museum o iae ag Weigo ew eaa OESEAS REPRESENTATIVE J. F. awece CSIO iisio o Eomoogy GO o 1700, Caea Ciy AC 2601, Ausaia Series Editor M C ua Sysemaics Gou SI a oecio Mou Ae eseac Cee iae ag Aucka ew eaa aua o ew eaa Number 19 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy G W Ramsay SI a oecio M Ae eseac Cee iae ag Aucka ew eaa emoa us wig mooogy eosigma cooaio siuaio acousic sesiiiy eece eaiou egeeaio eaio aasiism aoogy a ie Caaoguig-i-uicaio ciaio AMSAY GW Maoea (Iseca – Weigo SI uisig 199 (aua o ew eaa ISS 111-533 ; o 19 IS -77-51-1 I ie II Seies UC 59575(931 Date of publication: see cover of subsequent numbers Suggese om o ciaio amsay GW 199 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy Fauna of New Zealand [no.] 19. —— Fauna o New Zealand is eae o uicaio y e Seies Eio usig comue- ase e ocessig ayou a ase ie ecoogy e Eioia Aisoy Gou a e Seies Eio ackowege e oowig co-oeaio SI UISIG awco – sueisio o oucio a isiuio M C Maews – assisace wi oucio a makeig Ms A Wig – assisace wi uiciy a isiuio MOU AE ESEAC CEE SI Miss M oy
    [Show full text]
  • Monitoring and Sampling Manual 2018
    Monitoring and Sampling Manual Environmental Protection (Water) Policy 2009 Prepared by: Water Quality and Investigation, Department of Environment and Science (DES) © State of Queensland, 2018. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470. This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3170 5470 or email <[email protected]>. Citation DES. 2018. Monitoring and Sampling Manual: Environmental Protection (Water) Policy. Brisbane: Department of Environment and Science Government. Acknowledgements The revision and update of this manual was led by Dr Suzanne Vardy, with the valued assistance of Dr Phillipa Uwins, Leigh Anderson and Brenda Baddiley. Thanks are given to many experts who reviewed and contributed to the documents relating to their field of expertise. This includes government staff from within the Department of Environment and Science, Department of Agriculture and Fisheries, Department of Natural Resources, Mines and Energy and many from outside government.
    [Show full text]
  • Feeding and Foraging Behaviors of Subterranean Termites (Isoptera:Rhinotermitidae)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1989 Feeding and Foraging Behaviors of Subterranean Termites (Isoptera:Rhinotermitidae). Keith Scott elD aplane Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Delaplane, Keith Scott, "Feeding and Foraging Behaviors of Subterranean Termites (Isoptera:Rhinotermitidae)." (1989). LSU Historical Dissertations and Theses. 4838. https://digitalcommons.lsu.edu/gradschool_disstheses/4838 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • INSECTS of MICRONESIA Heteroptera: Pentatomoidea1
    INSECTS OF MICRONESIA Heteroptera: Pentatomoidea1 By HERBERT RUCKES RESEARCH ASSOCIATE, DEPARTMENT OF ENTOMOLOGY AMERICAN MUSEUM OF NATURAL HISTORY, NEW YORK EMERlTUS PROFESSOR OF BIOLOGY, CITY COLLEGE OF NEW YORK INTRODUCTION The Pentatomoidea consists of the families Plataspidae, Cydnidae, Pentatomidae, Acanthosomidae, Phloeidae, Urostylidae, Aphylidae, and Lestoniidae. In this classification I am following the terminology proposed by China and Miller (l955, Ann. Mag. Nat. Hist. XII, 8: 257-267). Of these various families, representatives of the Phloeidae, Urostylidae, Lestoniidae, and Aphylidae have not, as yet, been recorded from Micronesia. The Phloei­ dae, represented by two genera, are found only in Brazil. The Urostylidae, however, are native to India; China, Japan, Australia, the Philippines, and intermediate islands such as Borneo and Java. It is rather surprising that examples of this family have not been taken from Micronesia since the other pentatomoid fauna of these islands is, for the most part, derived from the nearby Australian, Asian, and adjacent insular regions where the Uro­ stylidae occur. Aphylidae and Lestoniidae are strictly Australian families, each represented by a single genus. The remaining families have varying representation in the Micronesian fauna. I wish to take this opportunity to express my sincere thanks to Miss Marjorie Statham, of the technical staff of the Department of Entomology of the American Museum of Natural History, for generously donating her time and ability to make the fine drawings that accompany this report. Her gratuitous services are, indeed, greatly appreciated. Thanks are also extended to Miss Setsuko Nakata, of the Bernice P. Bishop Museum staff, for editing and preparing the typescript of this article for publication.
    [Show full text]
  • Diplura and Protura of Canada
    A peer-reviewed open-access journal ZooKeys 819: 197–203 (2019) Diplura and Protura of Canada 197 doi: 10.3897/zookeys.819.25238 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Diplura and Protura of Canada Derek S. Sikes1 1 University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska 99775-6960, USA Corresponding author: Derek S. Sikes ([email protected]) Academic editor: D. Langor | Received 23 March 2018 | Accepted 12 April 2018 | Published 24 January 2019 http://zoobank.org/D68D1C72-FF1D-4415-8E0F-28B36460E90A Citation: Sikes DS (2019) Diplura and Protura of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 197–203.https://doi.org/10.3897/ zookeys.819.25238 Abstract A literature review of the Diplura and Protura of Canada is presented. Canada has six Diplura species documented and an estimated minimum 10–12 remaining to be documented. The Protura fauna is equally poorly known, with nine documented species and a conservatively estimated ten undocumented. Only six and three Barcode Index Numbers are available for Canadian specimens of Diplura and Protura, respectively. Keywords biodiversity assessment, Biota of Canada, Diplura, Protura Diplura, sometimes referred to as two-pronged bristletails, and Protura, sometimes called coneheads, are terrestrial arthropod taxa that have suffered from lack of scientific attention in Canada as well as globally. As both groups are undersampled and under- studied in Canada, the state of knowledge is considered to be poor, although there have been some modest advances since 1979. Both of these taxa are soil dwelling, and, given the repeated glaciations over most of Canada, the Canadian diversity is expected to be relatively low except possibly in unglaciated areas.
    [Show full text]
  • Isoptera Book Chapter
    Isoptera 535 See Also the Following Articles Biodiversity ■ Biogeographical Patterns ■ Cave Insects ■ Introduced Insects Further Reading Carlquist , S. ( 1974 ) . “ Island Biology . ” Columbia University Press , New York and London . Gillespie , R. G. , and Roderick , G. K. ( 2002 ) . Arthropods on islands: Colonization, speciation, and conservation . Annu. Rev. Entomol. 47 , 595 – 632 . Gillespie , R. G. , and Clague , D. A. (eds.) (2009 ) . “ Encyclopedia of Islands. ” University of California Press , Berkeley, CA . Howarth , F. G. , and Mull , W. P. ( 1992 ) . “ Hawaiian Insects and Their Kin . ” University of Hawaii Press , Honolulu, HI . MacArthur , R. H. , and Wilson , E. O. ( 1967 ) . “ The Theory of Island Biogeography . ” Princeton University Press , Princeton, NJ . Wagner , W. L. , and Funk , V. (eds.) ( 1995 ) . “ Hawaiian Biogeography Evolution on a Hot Spot Archipelago. ” Smithsonian Institution Press , Washington, DC . Whittaker , R. J. , and Fern á ndez-Palacios , J. M. ( 2007 ) . “ Island Biogeography: Ecology, Evolution, and Conservation , ” 2nd ed. Oxford University Press , Oxford, U.K . I Isoptera (Termites) Vernard R. Lewis FIGURE 1 Castes for Isoptera. A lower termite group, University of California, Berkeley Reticulitermes, is represented. A large queen is depicted in the center. A king is to the left of the queen. A worker and soldier are he ordinal name Isoptera is of Greek origin and refers to below. (Adapted, with permission from Aventis Environmental the two pairs of straight and very similar wings that termites Science, from The Mallis Handbook of Pest Control, 1997.) Thave as reproductive adults. Termites are small and white to tan or sometimes black. They are sometimes called “ white ants ” and can be confused with true ants (Hymenoptera).
    [Show full text]
  • Pterosaurs Flight in the Age of Dinosaurs Now Open 2 News at the Museum 3
    Member Magazine Spring 2014 Vol. 39 No. 2 Pterosaurs Flight in the Age of Dinosaurs now open 2 News at the Museum 3 From the After an unseasonably cold, snowy winter, will work to identify items from your collection, More than 540,000 Marine Fossils the Museum is pleased to offer a number of while also displaying intriguing specimens from President springtime opportunities to awaken the inner the Museum’s own world-renowned collections. Added to Paleontology Collection naturalist in us all. This is the time of year when Of course, fieldwork and collecting have Ellen V. Futter Museum scientists prepare for the summer been hallmarks of the Museum’s work since Collections at a Glance field season as they continue to pursue new the institution’s founding. What has changed, discoveries in their fields. It’s also when Museum however, is technology. With a nod to the many Over nearly 150 years of acquisitions and Members and visitors can learn about their ways that technology is amplifying how scientific fieldwork, the Museum has amassed preeminent own discoveries during the annual Identification investigations are done, this year, ID Day visitors collections that form an irreplaceable record Day in Theodore Roosevelt Memorial Hall. can learn how scientists use digital fabrication of life on Earth. Today, 21st-century tools— Held this year on May 10, Identification Day to aid their research and have a chance to sophisticated imaging techniques, genomic invites visitors to bring their own backyard finds have their own objects scanned and printed on analyses, programs to analyze ever-growing and curios for identification by Museum scientists.
    [Show full text]
  • Cuticle Ultrastructure in Brachyphyllum Garciarum Sp. Nov (Lower Cretaceous, Argentina) Reveals Its Araucarian Affinity
    Review of Palaeobotany and Palynology 269 (2019) 104–128 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Cuticle ultrastructure in Brachyphyllum garciarum sp. nov (Lower Cretaceous, Argentina) reveals its araucarian affinity Martin A. Carrizo a,⁎, Maiten A. Lafuente Diaz a, Georgina M. Del Fueyo a, Gaëtan Guignard b a División Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, CONICET. Av. Ángel Gallardo 470, 1405 Buenos Aires, Argentina b Université Lyon 1, CNRS, UMR 5023 LEHNA, 7-9 rue Raphaël Dubois, Villeurbanne cedex F-69622, Lyon, France article info abstract Article history: A detailed and extensive study of a new species, Brachyphyllum garciarum sp. nov., was carried out through the Received 28 February 2019 analysis of the gross morphology and the cuticle fine details, structure and ultrastructure characters of its leaves Received in revised form 14 June 2019 using light microscope and scanning and transmission electron microscope. The fossils consist of compressions of Accepted 19 June 2019 incomplete twigs with well-preserved cuticle, collected from pelitic levels of the Springhill Formation (lower Hauterivian/lower Barremian) at the Río Correntoso locality in the Santa Cruz province, Argentina. The twigs Keywords: have adpressed scale-like leaves spirally disposed. Leaves have a rhomboidal to pyramidal shape, a width and Foliar cuticle length always in a 1:1 ratio, margin entire and apex mostly rounded. Leaves are amphistomatic with stomatal ap- Ultrastructure paratuses occurring in groups of narrow-wedge shape along the leaf axis. Stomatal apparatuses are close to each Taxonomy other with subsidiary cells in contact; the guard cells are sunken, with marked polar extensions and thickened Brachyphyllum mouth.
    [Show full text]
  • The Genus Metallyticus Reviewed (Insecta: Mantodea)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228623877 The genus Metallyticus reviewed (Insecta: Mantodea) Article · September 2008 CITATIONS READS 11 353 1 author: Frank Wieland Pfalzmuseum für Naturkunde - POLLICHIA-… 33 PUBLICATIONS 113 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Frank Wieland letting you access and read them immediately. Retrieved on: 24 October 2016 Species, Phylogeny and Evolution 1, 3 (30.9.2008): 147-170. The genus Metallyticus reviewed (Insecta: Mantodea) Frank Wieland Johann-Friedrich-Blumenbach-Institut für Zoologie & Anthropologie und Zoologisches Museum der Georg-August-Universität, Abteilung für Morphologie, Systematik und Evolutionsbiologie, Berliner Str. 28, 37073 Göttingen, Germany [[email protected]] Abstract Metallyticus Westwood, 1835 (Insecta: Dictyoptera: Mantodea) is one of the most fascinating praying mantids but little is known of its biology. Several morphological traits are plesiomorphic, such as the short prothorax, characters of the wing venation and possibly also the lack of discoidal spines on the fore femora. On the other hand, Metallyticus has autapomor- phies which are unique among extant Mantodea, such as the iridescent bluish-green body coloration and the enlargement of the first posteroventral spine of the fore femora. The present publication reviews our knowledge of Metallyticus thus providing a basis for further research. Data on 115 Metallyticus specimens are gathered and interpreted. The Latin original descriptions of the five Metallyticus species known to date, as well as additional descriptions and a key to species level that were originally published by Giglio-Tos (1927) in French, are translated into English.
    [Show full text]
  • Formation of the Entognathy of Dicellurata, Occasjapyx Japonicus (Enderlein, 1907) (Hexapoda: Diplura, Dicellurata)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 399–404 ISSN: 1864-6417 Formation of the entognathy of Dicellurata, Occasjapyx japonicus (Enderlein, 1907) (Hexapoda: Diplura, Dicellurata) Kaoru Sekiya1, 2 and Ryuichiro Machida1 1 Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386-2204, Japan 2 Corresponding author: Kaoru Sekiya (e-mail: [email protected]) Abstract The development of the entognathy in Dicellurata was examined using Occasjapyx japonicus (Enderlein, 1907). The formation of entognathy involves rotation of the labial appendages, resulting in a tandem arrangement of the glossa, paraglossa and labial palp. The mandibular, maxillary and labial terga extend ventrally to form the mouth fold. The intercalary tergum also participates in the formation of the mouth fold. The labial coxae extending anteriorly unite with the labial terga, constituting the posterior region of the mouth fold, the medial half of which is later partitioned into the admentum. The labial appendages of both sides migrate medially, and the labial subcoxae fuse to form the postmentum, which posteriorly confines the entognathy. The entognathy formation in Dicellurata is common to that in another dipluran suborder, Rhabdura. The entognathy of Diplura greatly differs from that of Protura and Collembola in the developmental plan, preventing homologization of the entognathies of Diplura and other two entognathan orders. Keywords: Entognatha, comparative embryology, mouth fold, admentum, postmentum 1. Introduction The Diplura, a basal clade of the Hexapoda, have traditionally been placed within Entognatha [= Diplura + Collembola + Protura], a group characterized by entognathy (Hennig 1969). However, Hennig’s ‘Entognatha-Ectognatha System’, especially the validity of Entognatha, has been challenged by various disciplines.
    [Show full text]